Когда большая звезда исчерпывает все ядерное топливо, она может сбросить внешние слои материи и сжаться в горячее сморщенное небесное тело, называемое белым карликом. Этот белый карлик также оказался одним из потенциально самых массивных известных белых карликов, сформировавшихся в результате эволюции одиночной звезды. звёзды главной последовательности: оранжевые и жёлтые карлики, желто-белые и белые звёзды, бело-голубые гиганты, голубые сверхгиганты и гипергиганты.
Две звезды объединились в массивный белый карлик
Звезда является белым карликом, сверхплотным ядром погибшего светила. Если белый карлик заберет не так много вещества себе, то он останется обычной мертвой звездой, которая постепенно остывает. Что такое белый карлик: звезда или фантом? Если компаньоном является другой белый карлик, а не активная звезда, то два «звездных мертвеца» сольются в одну звезду. Астрономы нашли гигантского белого карлика, который появился в результате слияния двух отдельных белых карликов. «Эта звезда уникальна, потому что у нее есть все ключевые характеристики белого карлика.
Белые карлики — очередная загадка Вселенной
Белые карлики — «тлеющие», но весьма горячие остатки не очень массивных звезд, которые сожгли свое термоядерное топливо и обречены на медленное затухание. Обычно в конце эволюции звезды наподобие Солнца раздуваются до стадии красного гиганта, после чего внешняя оболочка сдувается, и остается типичный белый карлик — углеродно-кислородное ядро, иногда с небольшим включением более тяжелых элементов, окруженное горячей оболочкой из газа. Моделирование показывает, что Солнце проэволюционирует до фазы белого карлика примерно через 5 млрд лет. Наблюдения, проведенные астрономом Иларией Каяццо из Калифорнийского технологического института с помощью камеры Zwicky Transient Facility ZTF в Паломарской обсерватории в США, позволили обнаружить белый карлик, меняющий представление об эволюции подобного рода объектов. Один из кандидатов отличался быстрым изменением своей яркости, и ученые решили детально исследовать его с помощью других инструментов обсерватории на Канарских островах.
Но затем в дело вмешивается нечто, называемое магнитным барьером. Это явление может возникать, когда сам белый карлик или создаваемое им магнитное поле вращается со столь быстрой скоростью, что оно начинает играть роль магнитного барьера, отталкивающего материал, приближающийся к поверхности звезды. После формирования такого барьера количество поглощаемой звездой материи резко падает и падает яркость свечения звезды. Через какое-то время магнитный барьер разрушается из-за недостатка энергии, и весь цикл «включения» и «выключения» начинает идти по новому кругу. В настоящее время ученые продолжают исследовать происходящее в системе TW Pictoris более тщательно, надеясь узнать больше о физике так называемых процессов прироста, процессов, когда такие объекты, как черные дыры, белые карлики и нейтронные звезды питаются материей от соседних звезд.
ZTF проводит роботизированные обзоры ночного неба, ища объекты, которые вспыхивают или меняются в яркости: сверхновые, звёзды, поглощаемые чёрными дырами, а также астероиды и кометы. Но именно данные, полученные с помощью обсерватории Кека на Гавайях, раскрыли необычный спектр звезды, то есть её характерный химический отпечаток: одна сторона водород, другая гелий. Кайаццо и её соавторы полагают, что это может быть белый карлик, пойманный в процессе редкого перехода от водородной к гелиевой поверхности. Однако это не объясняет, почему одна сторона карлика переходит в другую быстрее, чем это происходит в обратную сторону. В настоящее время у астрономов есть две гипотезы объяснения этого странного явления, обе связаны с магнитными полями. Одна из них предполагает, что магнитное поле Януса может быть асимметричным. Поэтому, если магнитное поле сильнее с одной стороны, то на этой стороне будет меньше смешивания и, следовательно, больше водорода», — говорит Кайаццо. Возможно, гелиевая сторона Януса выглядит такой пузырчатой потому, что конвекция удалила тонкий слой водорода на поверхности, обнажив находящийся под ним гелий. Другая гипотеза заключается в том, что магнитные поля звезды могут менять давление и плотность атмосферных газов.
В свою очередь, при сходе в процессе эволюции менее массивного компонента с главной последовательности и его переходе на ветвь красных гигантов размер эволюционирующей звезды начинает расти до тех пор, пока она не заполняет свою полость Роша. Поскольку полости Роша компонентов двойной системы соприкасаются в точке Лагранжа L1, то на этой стадии эволюции менее массивного компонента через точку L1 начинается переток материи с красного гиганта в полость Роша белого карлика и дальнейшая аккреция богатой водородом материи на его поверхность, что приводит к ряду астрономических феноменов: Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик , приводит к возникновению карликовых новых звёзд типа U Gem UG и новоподобных катастрофических переменных звёзд. Аккреция на белые карлики, обладающие сильным магнитным полем , направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях магнитного поля карлика вызывает сильную поляризацию излучения в видимой области поляры и промежуточные поляры. Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности состоящей преимущественно из гелия и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды. Достаточно длительная и интенсивная аккреция на массивный белый карлик приводит к превышению его массой предела Чандрасекара и термоядерному взрыву , наблюдаемому как вспышка сверхновой типа Ia. Примером такого события является взрыв сверхновой SN 1572. Звёзды-зомби[ править править код ] Если в двойной звёздной системе находится белый карлик и обычная звезда, а также расстояние между ними маленькое, то белый карлик будет перетягивать на себя массу ближайшей звезды, и как следствие набирать массу. Со временем, при приближении к определённой массе, белый карлик разогревается до такой температуры, что в его ядре снова начинаются термоядерные реакции, которые сопровождаются ещё одной вспышкой сверхновой звезды.
Обнаружен белый карлик с постоянно расширяющейся орбитой
Он также экстремально вращается, делая оборот вокруг своей оси каждые семь минут. Это не самое быстрое вращение белых карликов, но оно есть. Эти характеристики указывают на слияние в прошлом. Нейтронные звезды — даже более плотные, чем белые карлики, и поддерживаемые давлением нейтронного вырождения — образуются, когда звезда, масса которой в 8—30 раз превышает массу Солнца, достигает конца своей жизни. Команда надеется их найти. Как генерируется магнитное поле и почему есть ли такое разнообразие напряженности магнитного поля среди белых карликов?
Одна из них предполагает, что магнитное поле Януса может быть асимметричным.
Поэтому, если магнитное поле сильнее с одной стороны, то на этой стороне будет меньше смешивания и, следовательно, больше водорода», — говорит Кайаццо. Возможно, гелиевая сторона Януса выглядит такой пузырчатой потому, что конвекция удалила тонкий слой водорода на поверхности, обнажив находящийся под ним гелий. Другая гипотеза заключается в том, что магнитные поля звезды могут менять давление и плотность атмосферных газов. Мы не знаем, какая из этих теорий верна, но мы не можем придумать другой способ объяснения асимметричных сторон без магнитных полей», — говорит соавтор Джеймс Фуллер James Fuller , теоретический астрофизик из CIT. Следующим шагом будет поиск других «двуликих» белых карликов. Эта задача станет проще, когда начнёт работу обсерватория Веры Рубин в Чили, оснащённая 8,4-метровым телескопом для сканирования всего неба каждые несколько ночей.
Учёные уже наблюдали менее экстремальные спектральные вариации в другом белом карлике GD 323. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы.
Две звезды, движущиеся по спирали к взрывной гибели, обнаружены в наших космических окрестностях Автор Маргарита Романова На чтение 2 мин. Просмотров 71 Опубликовано 12. HD265435 состоит из мертвой звезды, называемой белым карликом, и ее двойного компаньона; они вращаются вокруг друг друга так близко друг к другу, что белый карлик поглощает материал другой звезды. Это будет ненадолго, но открытие такой обреченной двойной системы — редкость, говорит группа ученых во главе с астрономом Ингрид Пелизоли из Уорикского университета в Великобритании; открытие может помочь нам лучше понять процессы, приведшие к этим невероятным событиям. Это важно, потому что тип сверхновой, которую вызовет эта нестабильная звезда, — это то, что мы называем стандартной свечой — одним из ключевых инструментов, которые мы используем для измерения космических расстояний. Эти звезды по-прежнему светятся остаточным теплом, и им требуется очень и очень много времени, чтобы остыть до темноты.
Звёздное скопление Гиады. Автор исследования, Дэвид Миллер из отдела физики и астрономии Университета Британской Колумбии и его соавторы изучили феномен отсутствия белых карликов в Гиадах, чтобы восстановить историю скопления. Если суметь идентифицировать звёзды, которые были изгнаны, особенно белые карлики в данном случае, то возможно восстановить и историю скопления. Космический телескоп Европейского космического агентства Gaia отслеживает более 1 миллиарда звёзд во Млечном Пути, что предоставляет Миллеру и его коллегам огромный объём данных. Команда нашла три белых карлика с траекториями, указывающими на возможное покидание скопления Гиады. Для двух из них диапазон масс делает маловероятным их происхождение в скоплении, но для третьего объекта это не исключено. Они состоят из вырожденного вещества и излучают только остаточную тепловую энергию. Их масса регулируется пределом Чандрасекара и в максимуме может достигать около 1,44 массы Солнца.
Две звезды, движущиеся по спирали к взрывной гибели, обнаружены в наших космических окрестностях
Поскольку белый карлик — крошечная мишень, маленькие тела не врезаются в звезду, а разрываются на части гравитацией, образуя диски из камней, которые превращаются в пыль, когда они вращаются очень близко к белому карлику. Белые карлики — звёзды, состоящие из электронно-ядерной плазмы, лишённые источников термоядерной энергии и светящиеся благодаря своей тепловой энергии, постепенно остывая в течение миллиардов лет. Умирающая звезда-гигант кормит белый карлик своим веществом, сбрасывая свой внешний водородный слой. *Белые карлики — это компактные сверхплотные объекты, в которые превращаются звёзды после потухания. Звезда, которая заканчивает свою жизнь в одной из этих планетарных туманностей, оставляет после себя ядро, известное как белый карлик. В таком случае, если белый карлик втягивает (аккрецирует) вещество из звезды-компаньона, масса, а также его плотность будут увеличиваться и вызывать реакцию слияния в ядре.
Чрезвычайно массивный белый карлик смог покинуть звёздное скопление Гиады
Астрономы нашли гигантского белого карлика, который появился в результате слияния двух отдельных белых карликов. Им удалось обнаружить необычно горячий белый карлик WD1832+089 с температурой в несколько десятков тысяч градусов, что втрое выше температуры большинства известных звезд этого типа. Когда большая звезда исчерпывает все ядерное топливо, она может сбросить внешние слои материи и сжаться в горячее сморщенное небесное тело, называемое белым карликом.
Астрономы впервые увидели весь процесс перехода белого карлика в нову
Американская команда также заметила странный ветер, наблюдая за материей, выброшенной новой звездой, которая, по их мнению, может зависеть от положения белого карлика и его звезды-компаньона. Похоже, они формируют поток вещества в космос, окружающий систему, лежащую в созвездии Геркулеса. Он очень удобно расположен, находясь на темном небе на востоке, так как после захода солнца сгущаются сумерки. Новые звезды могут сообщить нам важную информацию о нашей Солнечной системе и даже о Вселенной в целом.
Считается, что каждый год в Млечном Пути происходит от 30 до 60, хотя за это время обнаруживается только около 10. Большинство из них скрыты межзвездной пылью. Белый карлик собирает и изменяет материю, а затем наполняет окружающее пространство новым материалом, когда превращается в новую.
Это важная часть круговорота материи в космосе, поскольку материалы, выбрасываемые новыми звездами, в конечном итоге образуют новые звездные системы. Такие события также помогли сформировать нашу Солнечную систему, обеспечив, чтобы Земля была больше, чем кусок углерода. Профессор Старрфилд сказал: «Мы всегда пытаемся выяснить, как сформировалась Солнечная система, откуда взялись химические элементы в Солнечной системе.
Иногда белый карлик не теряет всю собранную материю во время взрыва новой, поэтому с каждым циклом он набирает массу. Это в конечном итоге сделает его нестабильным, и белый карлик может породить сверхновую типа 1а, которая является одним из самых ярких событий во Вселенной. Каждая сверхновая типа 1a достигает одинакового уровня яркости, поэтому они известны как стандартные свечи.
Соавтор профессор Чарльз Вудворд из Университета Миннесоты сказал: «Стандартные свечи настолько яркие, что мы можем видеть их на больших расстояниях по всей Вселенной. Это одна из интересных причин, по которой мы изучаем некоторые из этих систем». Кроме того, новые звезды могут рассказать нам больше о том, как звезды в двойных системах эволюционируют до своей смерти, а этот процесс еще недостаточно изучен.
Наблюдения показали, что объект вращается вокруг своей оси с периодом 15 минут и имеет крайне необычную "двуликую" природу. ЗапускиКак перенос старта «Союза МС-25» повлиял на предполетные традиции «Поверхность белого карлика кардинально меняется от одной стороны к другой. Когда я показывала эти наблюдения коллегам, они были в восторге», — поделилась Каяццо. Необычный белый карлик с двумя разными половинками получил название «Янус» — в честь двуликого древнеримского бога. Однако что привело к такому явлению, точно неизвестно.
Два известных белых карлика-пульсара могут внутри быть чем-то подобным Как правило, магнитные поля белых карликов в миллион раз сильнее земного. Последние исследования показывают, что механизм генерации магнитного поля в звезде, скорее всего, похож на тот, что работает и внутри нашей планеты. По сути, движение материи внутри небесного приводит к возникновению электрических токов, которые в свою очередь генерируют магнитные поля. Однако у белых карликов это поле гораздо сильнее. Астрономы считают, что электрические токи вызваны конвективным движением в ядре белого карлика.
Эти конвективные токи вызваны выделением тепла из застывающего ядра. Поскольку белый карлик — это остывающий остаток звезды, его ядро в конечном итоге «кристаллизуется» по мере остывания. Из-за своего преклонного возраста белые карлики в системах AR Sco и J1912—4410 должны быть довольно холодными. Температура J1912—4410 достаточно низкая, чтобы такая кристаллизация могла произойти или произойдёт в ближайшее время.
Одна из звезд в составе карлика достигает фазы красного гиганта раньше другой, расширяясь и охватывая своего партнера. Когда первая звезда начинает сжиматься, расстояние между ними уменьшается.
Затем вторая звезда проходит фазу красного гиганта, расширяясь и окутывая другую. Но для всех белых карликов существует верхний предел массы, и даже для пары, которая слилась. Если получившийся звездный объект будет достаточно массивным, он взорвется.