Новости м теория вселенной для чайников

Следующий этап развития теории суперструн — М-теория — насчитала уже одиннадцать размерностей. Именно законы Вселенной определяют то, что с нами происходит в жизни. Своё видение устройства мироздания и как выглядит модель Вселенной, рассказывает известный российский учёный Плыкин В.Д.

Физики: У Вселенной не было начала

А их, по примерным оценкам, в обозримой Вселенной триллионы и триллионы. Как же тогда эту тёмную материю удалось обнаружить, если её ни в один телескоп различить нельзя: именно по гравитации. Можно сказать, что учёные её вычислили математически. Каким образом: они берут любую галактику, подсчитывают общую массу всего её видимого содержимого и приходят к одному и тому же — всей этой массы категорически недостаточно для создания той гравитации, которая есть и которая держит собой всю конструкцию этой галактики.

То есть для того, чтобы галактика не разлетелась на отдельные разрозненные звёзды, нужна масса раз в пять большая, чем наблюдается. Галактика JO206. Как будто их что-то разгоняет.

И размер вселенной из-за непостоянства её пространства-времени зависит от того, какое определение расстояния принять. Сопутствующее расстояние до самого удалённого наблюдаемого объекта составляет около 14 миллиардов парсеков эквивалентно 46 миллиардам световых лет во всех направлениях. Художественное изображение Наблюдаемой Вселенной в логарифмическом масштабе. В центре Солнечная система, внутренние и внешние планеты, пояс Койпера, облако Оорта, Альфа Центавра, рукав Персея, галактика Млечный Путь, галактика Андромеды, соседние и дальние галактики, крупномасштабная структура Вселенной и реликтовое излучение. Важно отметить, что свет от самых дальних наблюдаемых объектов вскоре после Большого взрыва, дошёл до нас всего за 13,8 миллиарда световых лет, что значительно меньше, чем сопутствующее расстояние до этих объектов, равное 46 миллиардам световых лет, опять же из-за расширения Вселенной. Эта вертикально ориентированная логарифмическая карта Вселенной охватывает почти 20 порядков величины, уводя нас от планеты Земля к краю видимой Вселенной. Каждая большая отметка на шкале справа соответствует увеличению шкалы расстояний в 10 раз. Следовательно, при движении в любом направлении рано или поздно вы вернётесь на исходную точку. В таком случае Вселенная может быть конечной, но без определенных границ. Открытая Вселенная: В этой модели Вселенная расширяется вечно, и пространство беспредельно.

Здесь нет определённых границ, и Вселенная действительно бесконечна. Плоская Вселенная: В этой модели Вселенная имеет плоскую геометрию, а её размеры могут быть ограниченными, но опять-таки без определённых границ. В целом, сегодня «границу» наблюдаемой Вселенной можно установить на отметке в 13,8 миллиарда световых лет. Впрочем, это не значит, что Вселенная на этом обрывается.

Но как это сделать? Темная материя Геометрия Вселенной связана с плотностью ее вещества : если она больше определенного значения 5,5 атома водорода на кубический метр. В 1936 году Альберт Эйнштейн опубликовал в журнале Science статью «Линзоподобное действие звезды при отклонении света в гравитационном поле». Он пришел к этим выводам еще в 1914 году, но забыл о них, потому что считал, что это не так важно. На самом деле феномен гравитационной линзы, конечно, крайне важен.

Вследствие явления, описанного Эйнштейном, мы можем видеть на изображении выше не только отдельные галактики и их скопления, но и множественные изображения одной и той же галактики. Свет от этой галактики прошел через другую галактику, попал в гравитационную линзу и был искажен. Мы также можем подсчитать массу галактики, которая так сильно исказила свет. Эту сложную задачу, математическую инверсию, ученые решили в конце 1990-х годов. Они получили диаграмму распределения масс, на которой галактики обозначены пиками, — но присутствуют также пики там, где галактик вроде бы не видно. Это невидимая материя, которой в 40 раз больше, чем видимой, а раз она невидима и не сияет, то ее назвали темной. Оказалось, что в галактиках гораздо больше темной материи, чем материи самих галактик. Темная материя состоит не из обычных протонов и нейтронов, а из других элементарных частиц. Она везде, а раз так, мы можем провести эксперимент здесь, на Земле, чтобы ее найти.

Можно попробовать зафиксировать взаимодействие какой-нибудь массивной темной частицы с обычной частицей. Этому мешает естественный радиационный фон, поэтому такие эксперименты проводятся глубоко под землей. Такие детекторы расположены в разных частях земного шара, но пока что они не зафиксировали ничего, что можно было бы однозначно трактовать как темную материю. Можно еще попробовать создать темную материю в лабораторных условиях — для этого у нас есть Большой адронный коллайдер. Глядя на диаграмму выше, мы можем подсчитать общую массу, массу видимых галактик и массу темной материи. Можно было бы сделать вывод, что наша Вселенная открытая и будет расширяться бесконечно. Но здесь есть подвох: все эти подсчеты касаются только галактик и их скоплений. А то, что находится между ними, мы взвесить не можем. Так что нам нужен какой-нибудь другой объект для измерения.

Геометрия Вселенной Когда мы глядим на Вселенную, то чем дальше смотрим, тем в более глубокое прошлое заглядываем. Можно было бы предположить, что где-то там виден и Большой взрыв, — но между нами и Большим взрывом стена. В самом начале Вселенная была настолько жаркой и плотной, что свет не мог покинуть ее. Потом Вселенная постепенно охлаждалась и, когда ей было 379 тысяч лет, стала электрически нейтральной замедлившиеся электроны начали соединяться с протонами и альфа-частицами , образуя атомы водорода и гелия. Этот момент — самая ранняя точка, которую мы видим, оглядываясь назад во времени. Вот так она выглядела это проекция Мольвейде , которая также часто используется в картографии : Реликтовое излучение, которое фиксируют детекторы, находящиеся на Земле, исходит от условной поверхности последнего рассеяния , которое видится нам как окружающая нас на очень далеком расстоянии сфера. На этой поверхности видны более горячие участки — там, где 379 тысяч лет назад были сгустки материи. Мы знаем их максимально возможный размер он зависит от скорости гравитации , а ее значение равно скорости света — 100 млн световых лет. Сравнивая эти цифры с тем, что мы наблюдаем, можно сделать вывод о том, в какой Вселенной мы живем: в закрытой Вселенной сгустки из-за искривления пространства казались бы нам меньше, чем на самом деле; в открытой — больше, а в плоской Вселенной никаких искривлений нет и сгустки выглядели бы на свои 100 млн световых лет.

С помощью аэростатов радиотелескоп поднимался на высоту 42 тысячи метров, где мог фиксировать реликтовое излучение без потерь, в то время как в атмосфере оно поглощается микроволнами. Энергия пустого пространства В пустом пространстве, в ничто. Звучит, конечно, глупо, но пустое пространство не такое уж и пустое. Вот так выглядит то, что происходит внутри протона: постоянно что-то бурлит, появляются и исчезают различные частицы: Мы не «видим» их, потому что они возникают на очень непродолжительное время, но при этом они составляют основную часть массы протона. А раз так, то, возможно, они появляются в открытом пространстве и дают какую-то энергию. Может быть, вакуум тоже что-то весит? Еще когда я учился в университете, было предположение, что энергия вакуума — это единица со 120 нулями, но этого просто не может быть: будь это так, Вселенная была бы другой и нас бы просто не существовало. Мы ждали какого-то математического чуда, которое бы позволило нам сократить это число; предполагали даже, что энергия пустого пространства равна нулю. А затем решили не полагаться на теоретиков: если у пустого пространства есть энергия, ее можно измерить.

Но как? Гравитация в большинстве случаев притягивает объекты друг к другу, но вакуум создает антитяготение. Чтобы рассчитать его, необходимо понять, расширяется ли наша Вселенная с ускорением или с замедлением. Первые попытки определить это сделал Эдвин Хаббл в 1929 году, но сейчас мы знаем, что его расчеты были неверны из-за того, что, в частности, не учитывали эволюцию галактик и связанные с ней изменения светимости. Так что нам нужны были какие-то другие объекты с известной яркостью. Это изображение галактики, расположенной в 7 млн световых лет от нас. В левом нижнем углу виден яркий объект — можно предположить, что в кадр случайно попала звезда из нашей Галактики, но нет: это сверхновая, которая светится как сто миллиардов звезд. Потом она тускнеет, но в первый месяц она светится с яркостью, которая нам известна. Сверхновые появляются в Галактике примерно раз в сто лет.

Можно выдать каждому студенту по галактике, и пусть постоянно смотрит на нее — за сто лет как раз напишет диссертацию. Но на самом деле галактик очень много: если соединить пальцы в кружок размером с пятирублевую монету и посмотреть через него на небо, в этом кружочке будут сотни галактик. А значит, в небе постоянно взрываются сверхновые, так что мы легко можем использовать их, чтобы рассчитывать расстояния до отдаленных галактик и скорости, с которыми эти расстояния увеличиваются. Эти расчеты были проведены в 1998 году, и результатом стал вот такой график: Если бы темпы расширения Вселенной были одинаковыми, то в его нижней части была бы просто прямая линия. Астрономы ожидали, что все сверхновые будут либо на этой линии, либо ниже. Но большая часть таких звезд оказалась выше линии — это могло быть только в том случае, если бы темпы расширения Вселенной увеличивались. Тогда все сходится. В 2011 году Нобелевскую премию по физике получили ученые, обнаружившие, что Вселенная расширяется с ускорением, а большая часть массы находится в пустом пространстве.

Температура Темной материи Ученые пытаются понять не только что такое Темная материя — им интересно, насколько она может быть холодной или горячей. Разные теории предполагают, что темная материя может быть горячей, теплой или холодной, однако общепринятой считается модель «Лямбда-СиДиЭм», согласно которой эта субстанция является холодной и темной.

Темная энергия Темной энергией в 1990-е годы группа астрофизиков назвала субстанцию, которая, по их мнению, противодействует гравитации и ускоряет расширение Вселенной. Согласно некоторым теориям, темная энергия представляет собой область, известную как «квинтэссенция» — понятие переменного во времени и пространстве скалярного поля, предложенное Эйнштейном. Немезида — наше второе солнце Некоторые тайны космического пространства человеческому мозгу воспринять очень сложно, если вообще возможно. Так, многие ученые считают, что когда-то у нас было два солнца, одно из которых носило имя Немезиды. Что удивительно, последние исследования это подтверждают, поскольку в результате детального изучения звезд Млечного пути ученые пришли к выводу, что все солнцеподобные звезды рождаются в парах. Тем не менее, до тех пор пока не будет найдена звезда, идентичная по составу нашему солнцу, Немезида останется одной из самых таинственных загадок вселенной. Луна На самом деле никто не знает, откуда появилась Луна. Несмотря на многочисленные исследования, ответ на этот вопрос до сих пор найден и все остается на уровне теорий и предположений.

Теория суперструн для начинающих

  • «В начале было ничто»: как возникла Вселенная и какое будущее нас ожидает — T&P
  • Теория струн для чайников: основы, базовые принципы и понятия
  • Стивен Хокинг надеялся, что M-теория объяснит Вселенную. Что это за теория?
  • ДОСЬЕ «КП»
  • Введение в M-теорию
  • Воздушный шарик

Другая Вселенная: Астрофизики взбудоражены неожиданным открытием

Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию. Но самая главная проблема струн, как уже было сказано, в невозможности по крайней мере, пока доказать их наличие экспериментальным путем. Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро — как минимум через десятилетия, как максимум — даже через сотню лет. Красивым поэтическим словосочетанием «теория струн» названо одно из направлений в теоретической физики, объединяющее в себе идеи теории относительности и квантовую механику. Данное направление физики занимается изучением квантовых струн — то есть одномерных протяженных объектов. В этом состоит его основное отличие от множества других разделов физики, в которых изучается динамика точечных частиц.

В своей основе Теория струн отрицает и утверждает, что Вселенная существовала всегда. То есть, Вселенная представляла собой не бесконечно малую точку, а струну с бесконечно малой длиной, при этом теория струн гласит о том, что мы живем в десятимерном пространстве, хотя ощущаем всего лишь 3-4. Остальные существуют в свернутом состоянии, и если вы решили задать вопрос: «Когда же они будут разворачиваться, и произойдет ли это вообще когда-нибудь? Математика его попросту не нашла — струнную теорию невозможно доказать опытным путем. Правда, были попытки разработать универсальную теорию, чтобы можно было проверять ее практически. Но чтобы это случилось, ее нужно сделать настолько упрощенной, чтобы она доходила до нашего уровня восприятия реальности.

Тогда идея проверки полностью лишается смысла. Основные критерии и понятия теории струн Теория относительности говорит о том, что наша Вселенная — это плоскость, а квантовая механика заявляет, что на микроуровне происходит бесконечное движение, из-за которого искривляется пространство. А теория струн пытается соединить эти два предположения, и в соответствии с ней, элементарные частицы представляются в виде специальных компонентов в составе каждого атома — оригинальных струн, являющихся своеобразными ультрамикроскопическими волокнами. Элементарные частицы при этом обладают свойствами, которые объясняет резонансное колебание образующих эти частицы волокон. Подобными типами волокон осуществляются вибрации в бесконечном количестве. Для более точного понимания сути, простой обыватель может представить себе струны обычных музыкальных инструментов, которые могут в разное время натягиваться, успешно сворачиваться, постоянно вибрировать.

Такими же свойствами обладают нити, взаимодействующие друг с другом при определенных вибрациях. Сворачиваясь в стандартные петли, нити образуют более крупные разновидности частиц — кварки, электроны, чья масса уже будет напрямую зависеть от уровня натянутости и частоты вибрации волокон. Так что энергию струн соотносят именно с этими критериями. Масса элементарных частиц будет выше при большем количестве излучаемой энергии. Насущные проблемы теории струн При изучении теории струн ученые многих стран периодически сталкивались с целым рядом проблем и нерешаемых вопросов. Самым важным моментом можно считать недостаток математических формул, поэтому придать теории завершенный вид специалистам пока не удается.

Второй существенной проблемой является подтверждение сутью теории наличия 10-ти измерений, когда на самом деле ощутить мы можем всего 4 из них. Предположительно остальные 6 из них существуют в скрученном состоянии, и в реальном времени ощутить их не представляется возможным. Поэтому, хотя опровержение теории в корне невозможно, экспериментальное подтверждение пока тоже представляется довольно затруднительным. При этом исследование теории струн стало явным толчком для развития оригинальных математических конструкций, а также топологии. Физика с ее теоретическими направлениями довольно прочно укоренилась в математике также с помощью изучаемой теории. Более того, сущность современной квантовой гравитации и материи смогли досконально понять, начав изучать гораздо глубже, чем было возможно до этого.

Поэтому исследования теории струн продолжаются непрерывно, а результатом многочисленных экспериментов, включая испытания на Большом адронном коллайдере, могут стать недостающие понятия и элементы. В этом случае физическая теория будет абсолютно доказанным и общепринятым явлением. Теория относительности представляет Вселенную «плоской», но квантовая механика утверждает, что на микроуровне происходит бесконечное движение, искривляющее пространство. Теория струн объединяет эти идеи и представляет микрочастицы как следствие объединения тончайших одномерных струн, которые будут иметь вид точечных микрочастиц, следовательно, не могут наблюдаться экспериментально. Данная гипотеза позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Все свойства элементарных частиц объясняются резонансным колебанием волокон, их образующих.

Эти волокна могут совершать бесконечное множество вариантов вибраций. Данная теория предполагает объединение идей квантовой механики и теории относительности. Но из-за наличия множества проблем в подтверждении мыслей заложенных в ее основе большая часть современных ученых считают, что предложенные идеи не более чем самая обыкновенная профанация или другими словами — теория струн для чайников, то есть для людей, которые совершенно не разбираются в науке и строении окружающего мира. Свойства ультрамикроскопических волокон Чтобы понять их суть, можно представить струны музыкальных инструментов — они могут вибрировать, изгибаться, сворачиваться. Тоже происходит и с этими нитями, которые издавая определенные вибрации, взаимодействуют друг с другом, сворачиваются в петли и образуют более крупные частицы электроны, кварки , масса которых зависит от частоты вибрации волокон и их натянутости — эти показатели определяют энергию струн. Чем больше излучаемая энергия, тем выше масса элементарной частицы.

Инфляционная теория и струны Согласно инфляционной гипотезе, Вселенная была создана благодаря расширению микро пространства, размером в струну длина Планка. По мере увеличения этой области растягивались и так называемые ультрамикроскопические волокна, теперь их длина соизмерима с размерами Вселенной. Они точно так же взаимодействуют между собой и производят те же вибрации и колебания. Выглядит это как производимый ими эффект гравитационных линз, искажающих лучи света дальних галактик. А продольные колебания порождают гравитационное излучение. Математическая несостоятельность и другие проблемы Одной из проблем считается математическая несостоятельность теории — физикам, изучающим ее, не хватает формул для приведения ее в завершенный вид.

А вторая заключается в том, что данная теория полагает, о существовании 10 измерений, но мы ощущаем всего 4 — высота, ширина, длина и время. Ученые предполагают, что остальные 6 — в скрученном состоянии, наличие которых не ощущается в реальном времени. Также проблемой является не возможность экспериментального подтверждения этой теории, но и опровергнуть ее никто не может. Приходила ли вам в голову мысль, что вселенная похожа на виолончель? Правильно - не приходила. Потому что вселенная не похожа на виолончель.

Но это не означает, что у нее нет струн. Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. Эти нити похожи, скорее, на крошечные "Резинки", способные извиваться, растягиваться и сжиматься на все лады. Все это, однако, не означает, что на них нельзя "Сыграть" симфонию вселенной, ведь из этих "нитей", по мнению струнных теоретиков, состоит все сущее. Противоречие физики. Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя.

Беда, как и водится, случилась из-за ерунды - одного из мелких "Облачков", еще остававшихся на чистом, понятном небе науки. А именно - при расчете энергии излучения абсолютно черного тела гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны - NS. Существует лишь некая вероятность нахождения частицы во множестве областей пространства - времени. Частицы на субатомном уровне словно "Размазаны" по пространству. Мало этого, не определен и сам "Статус" частиц: в одних случаях они ведут себя как волны, в других - проявляют свойства частиц. В общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе.

Пространство представляется похожим на батут - гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства - времени - то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая общая теория относительности находится в неразрешимом конфликте с "Взбалмошной Хулиганкой" - квантовой механикой, и, как следствие, макромир не может "помириться" с микромиром. Теория всего. Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ото и квантовой механики, мечту, которая до конца дней не давала покоя величайшему "Цыгану и Бродяге" Альберту Эйнштейну. Может быть - даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле.

Ото описывает одну из самых известных сил вселенной - гравитацию. Впоследствии к ним добавилось и сильное ядерное взаимодействие - но вот гравитация к ним не присоединяется никак. Теория струн - одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во вселенной - недаром ее еще называют "Теорией Всего". Вначале был миф. До сих пор далеко не все физики пребывают в восторге от теории струн. Само ее рождение - легенда.

В конце 1960-х годов молодой итальянский физик - теоретик Габриэле венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия - чрезвычайно мощный "Клей", который скрепляет ядра атомов, связывая воедино протоны и нейтроны.

Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех.

В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее.

Понимание цели Цель, к которой стремятся ученые, исследуя суперструны — «теория всего», т. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной. Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны.

В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора.

Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также.

Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн.

В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий. Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени.

Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе.

А все остальное пространство атома является невидимым взаимосвязанным полем информации. Исходя из этого, родилось удивительное и перевернувшее научный мир понимание, что вся Вселенная состоит из чистой энергии, какой бы плотной она ни казалась! То есть наш мир — это энергия! И с этим уже не поспоришь — это вывод ученых, а не магов и чародеев.

В квантовой физике вообще не существует никаких определенных материальных объектов. Материя существует как некий феномен — как возможность или вероятность. А человечество при этом всеми силами пытается ухватиться именно за материальное, по-прежнему упрямо твердя, что остальное — эфемерно и «сказочно». Эффект наблюдателя Но и это еще не все научные сюрпризы. Ученые сделали еще одно открытие — так называемый «эффект наблюдателя».

Удивительно, но на поведение элементарных частиц воздействует наблюдатель. Частицы то исчезают, то появляются, и как только субъект направляет свое внимание на конкретное местоположение электрона, он тут же там появляется. Но когда наблюдатель перестает туда смотреть, субатомная частица исчезает в бескрайнем поле энергии. Звучит как магия, но это все научные факты. То есть получается, что физической материи не существует до тех пор, пока мы, не направляем на нее свое внимание.

А как только мы перестаем наблюдать, объект тут же исчезает.

Что умеют программные роботы «В этой работе мы надели новые очки, чтобы взглянуть на космос и его нераскрытые тайны, и предприняли математическую трансформацию физических законов, которые им управляют», — сказал изданию Life Science физик-теоретик Лукас Ломбризье, автор статьи. Согласно его интерпретации, Вселенная не расширяется, а остается плоской и статичной, как думал некогда Эйнштейн. Эффекты, которые мы наблюдаем и которые выглядят для нас как расширение, объясняются эволюцией масс частиц, таких как протоны и электроны. В предложенной картине мира частицы возникают из поля, пронзающего пространство-время. Космологическая постоянная задана массой этого поля, а поскольку оно колеблется, массы частиц тоже меняются. Космологическая постоянная меняется со временем, но по другой причине — из-за изменения массы частиц во времени, а не из-за расширения Вселенной. По этой же причине у далеких галактик больше наблюдаемое астрономами красное смещение.

10 самых загадочных и необъяснимых тайн Вселенной

У более далеких галактик красное смещение больше, чем у тех, что расположены ближе. Недавно ученые обнаружили свидетельства того, что расширение Вселенной протекает не с фиксированной скоростью, а все быстрее и быстрее. Это ускорение описывается космологической постоянной, точно рассчитать которую ученые пока не смогли, так как разные методы расчета дают отличающиеся результаты. Обычно космологи пытаются преодолеть это затруднение, предложив новую частицу или физическую силу, но ученые из Университета Женевы решили пойти другим путем. Что умеют программные роботы «В этой работе мы надели новые очки, чтобы взглянуть на космос и его нераскрытые тайны, и предприняли математическую трансформацию физических законов, которые им управляют», — сказал изданию Life Science физик-теоретик Лукас Ломбризье, автор статьи. Согласно его интерпретации, Вселенная не расширяется, а остается плоской и статичной, как думал некогда Эйнштейн.

Эффекты, которые мы наблюдаем и которые выглядят для нас как расширение, объясняются эволюцией масс частиц, таких как протоны и электроны.

Такие фильмы, как «Матрица», «Фонтан», «Секрет» и другие, рассказывают об устройстве Вселенной и ее энергетических законах. И несмотря на то, что фильмы поданы как художественные и для массового зрителя, суть в них очень правильная. Мир — это энергия Старые взгляды уже не работают и это понимают и сами ученые, которые во многом достигли «потолка» и потихоньку начинают обращаться и в сторону расширения границ науки, рассматривая и изучая явления, которые раньше казались и вовсе антинаучными. Более того, периодически случаются прорывы, которые доказывают, что мир совсем иной и только с помощью материальных величин его не познать. Модель атома из школьной программы уже устарела, на ее место пришла квантовая реальность.

То есть атомы содержат ничтожно малое количество материального вещества, более того, эта материя ведет себя хаотично и непредсказуемо, абсолютно игнорируя пределы пространства и времени и не соблюдая законы Ньютона — она то появляется, то исчезает. А все остальное пространство атома является невидимым взаимосвязанным полем информации. Исходя из этого, родилось удивительное и перевернувшее научный мир понимание, что вся Вселенная состоит из чистой энергии, какой бы плотной она ни казалась! То есть наш мир — это энергия! И с этим уже не поспоришь — это вывод ученых, а не магов и чародеев. В квантовой физике вообще не существует никаких определенных материальных объектов.

Материя существует как некий феномен — как возможность или вероятность. А человечество при этом всеми силами пытается ухватиться именно за материальное, по-прежнему упрямо твердя, что остальное — эфемерно и «сказочно». Эффект наблюдателя Но и это еще не все научные сюрпризы. Ученые сделали еще одно открытие — так называемый «эффект наблюдателя».

Но при всех своих сильных сторонах общая теория относительности неполна. По крайней мере, в двух конкретных местах Вселенной математика общей теории относительности просто не работает, не давая надежных результатов: в центрах черных дыр и при возникновении Вселенной. Эти области называются «сингулярностями» — это точки в пространстве-времени, где рушатся наши текущие законы физики. Внутри обеих сингулярностей гравитация становится невероятно сильной на очень крошечных масштабах. Таким образом, чтобы разгадать тайны сингулярности, физикам необходимо микроскопическое описание сильной гравитации, также называемое квантовой теорией гравитации.

Есть много претендентов, включая теорию струн и петлевую квантовую гравитацию. И есть еще один подход, который полностью меняет наше понимание пространства и времени. Теория причинных множеств. Во всех современных теориях физики пространство и время непрерывны. Они образуют гладкую ткань, лежащую в основе всей реальности. В таком непрерывном пространстве-времени две точки могут быть как можно ближе друг к другу в пространстве, и два события могут происходить как можно ближе друг к другу по времени.

По мере расширения и охлаждения Вселенной это неизвестное квантовое поле в конечном итоге трансформировалось, вызвав образование темной материи. Иными словами, новый подход к теории Большого взрыва отделяет эволюцию темной материи от эволюции "нормальной" материи, то есть той материи, которую мы можем увидеть, услышать, пощупать и т. Это означает, что эволюция обоих видов материи идет отдельными друг от друга путями. Ученые также выдвинули идею о том, что на самом деле могло произойти два Больших взрыва, причем второй был "темным", и именно он породил в конечном итоге темную материю. Моделирование указывает на то, что второй Большой взрыв мог произойти позже первого - примерно тогда, когда Вселенной было меньше месяца. Исследование показало, что темный Большой взрыв мог высвободить уникальную сигнатуру мощных гравитационных волн, которые сохранились в современной Вселенной. Эксперименты последних лет в целом подтверждают факт присутствия таких волн в космосе, существование которых прогнозировал еще знаменитый физик Альберт Эйнштейн.

Новая теория: Вселенная могла начаться с темного Большого взрыва

Ты узнаешь о законах энергии Вселенной и сможете понять, как использовать эти законы в своей жизни. Вселенная обладает определенным количеством энергии, но, когда эта энергия будет израсходована, согласно теории, Вселенная станет постепенно замедляться. Звучание Вселенной для человеческого уха недоступно, поскольку в условиях космоса молекулы вещества не сталкиваются друг с другом и не создают вибрацию, привычную для нашей барабанной перепонки. Оппонент этой теории астроном Фред Хойл в 1949 году назвал ее пренебрежительно «Большим взрывом» (Big Bang), однако определение закрепилось в науке. ТЕОРИЯ СТРУН На сегодняшний день главной и единственной теорией, которая может объяснить все многообразие сил, организующих Вселенную, является струнная теория. Вселенная, новости космоса, НЛО, а также непознанное на самом популярном сайте Наша Вселенная.

Теории о Вселенной, которые взорвут ваш мозг 💥

Напротив, М-теория предсказывает существование огромного множества вселенных, созданных буквально из ничего. Их создание не требовало вмешательства какого-либо сверхъестественного существа или Бога. Скорее, эти множественные вселенные возникли естественным образом, как следствие физических законов. Они являются научным предположением. Каждая Вселенная имеет множество предысторий и множество возможных будущих состояний, то есть времена подобные настоящему, спустя долгий срок после их возникновения. Большинство из этих состояний будут значительно отличаться от условий той Вселенной, которую мы можем наблюдать». Стивен Хокинг и Леонард Млодинов «Великий замысел» Абстрактные логические выводы привели ученых к уникальной теории, которая предсказывает и описывает громадную Вселенную. М-теория является объединенной теорией, которую пытался создать Эйнштейн. Если М-теория подтвердится наблюдениями, это будет выдающимся открытием, к которому люди шли тысячелетиями. Надежда на экспериментальное свидетельство М-теории жива по двум причинам. Первая — возможное открытие в ближайшем десятилетии суперсимметричных частиц.

Это может произойти в Большом адронном коллайдере. Вторая проверка на реальность — поиск отклонений от закона тяготения. В настоящее время проводится ряд экспериментов, проверяющих с высокой точностью закон всемирного тяготения на расстояниях в сотые доли миллиметра.

Строение и развитие Вселенной для «чайника» На протяжении человеческой истории, по мере развития, как технологий, так и человеческого ума, менялись и представления о вселенной. Собрать и структурировать всё эти представления в небольшом материале, подобном этому, попросту невозможно. И даже о том, что вселенная представляет из себя на данный момент в глазах человека было написано более миллиона страниц, сказано ещё больше слов и выведено огромное количество формул и законов. В этой статье даны лишь начальные представления о том, что мы думаем о вселенной на данный момент. Сперва нам стоит разобраться с понятием вселенной. Грубо говоря, вселенная — всё, что нас окружает.

А поскольку у такой вселенной нет начала, то нет ни Большого взрыва, ни сингулярности. Однако, по словам физика Уильяма Кинни из Университета Буффало, соавтора второго исследования, на пути теории вечно циклической Вселенной стоит одно препятствие. Это энтропия, которая накапливается с каждым отскоком Вселенной. Часто рассматриваемая как количество беспорядка в системе, энтропия связана с количеством полезной энергии в системе: чем выше энтропия, тем меньше энергии доступно. Если мы вернемся в прошлое, к началу Вселенной, то эта идея подразумевает фактически бесконечно малое количество энтропии, но энтропия присутствует и сильно напоминает Большой взрыв. Поэтому исследователи изучили последствия этого увеличения энтропии в циклической Вселенной. Они пришли к выводу, что хотя циклическая Вселенная может обойти проблему энтропии, сильно расширяясь с каждым циклом, такое решение само по себе гарантирует, что Вселенная не бессмертна.

Внутри, сферических бутонов, мембраны колеблется, создавая давление сброса мембран в наружу.

При взаимодействие сферических бутонов с элементарной частицей с не нулевой массой, давление сброса мембран, проявляется как гравитационное взаимодействие элементарных частиц. Субатомная частица, стремиться к идеальной сферической симметрии но предпочтение отдаёт, тем сферическим бутонам где давление по ниже, проявляется у мембран. К примеру, вероятность обнаружить, одну частицу нейтрино, возможно в построенной комбинации из большого множество, сферических бутонов , развёрнутых и частично развёрнутых мембран. Но так же есть вероятность, что в одном сферическом бутоне, проявить гравитационно, могут все субатомы из скопление галактик, то есть каждый субатом на своей сферической орбите бутона.

6 секретов Вселенной, которые вас удивят

Результаты нового исследования, опубликованного в Classical and Quantum Gravity, позволяют предположить, что теория о расширении Вселенной может быть ошибочной. В этой статье я максимально простым языком изложу 8 самых фундаментальных законов Вселенной. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.

История и свойства М-теории

Скажем, для теории нейросети гипотеза о множественности вселенных не нужна. Чтобы понять основную идею М-теории, нужно вернуться к 1970-м годам, когда ученые поняли, что вместо описания Вселенной, основанной на точечных частицах, вы можете описать ее в терминах крошечных колеблющихся струн (трубок энергии). Скажем, для теории нейросети гипотеза о множественности вселенных не нужна.

Вселенная «для чайников»

  • Описание документа
  • Аномалии в космическом микроволновом фоне
  • Расширение Вселенной — миф? Новое исследование перевернуло модель строения нашего мира
  • Теории и модели происхождения Вселенной. Как, почему, откуда появилась Вселенная
  • Просто невероятно: как устроена Вселенная, почему желания сбываются и зачем смотреть «Матрицу»

Происхождение Вселенной. Какие новые версии предлагает наука и религия?

Сам Эйнштейн выдвинул теорию статической Вселенной, она подверглась критике и была потом практически забыта. В своей основе Теория струн отрицает и утверждает, что Вселенная существовала всегда. Грохочущую “космическую басовую ноту” гравитационных волн, которые, как полагают, возникают в результате замедленного слияния сверхмассивных черных дыр по всей Вселенной, обнаружили астрономы. РИА Новости, 19.07.2023. Научные теории о том, что может находиться за пределами Вселенной основаны, как правило, на предположениях, выводах из известных физических законов и математических моделях. Своё видение устройства мироздания и как выглядит модель Вселенной, рассказывает известный российский учёный Плыкин В.Д.

Похожие новости:

Оцените статью
Добавить комментарий