Новости гелий 3 на луне

Специалисты стартапа Interlune разработали стратегию по добыче гелия-3 на Луне и последующей доставке его на Землю. Гелий-3 — это газ, который потенциально может быть использован в качестве топлива для будущих термоядерных электростанций, но крайне редко встречается на Земле, хотя в изобилии существует на Луне. Что касается доставки гелия-3 на Землю, то в этом могут помочь SpaceX или Blue Origin, которую ранее возглавлял Мейерсон. При этом общие запасы гелия-3 на Луне составляют около 1,3 млн тонн, а гелия-4 — 3,6 млрд тонн.

Колонизация Луны и добыча там гелия-3? Пока это фантастика из далекого будущего

Редкий изотоп: как Росатом создаёт Гелий-3 из жидкого гелия Новое открытие делает Китай третьей страной в мире, обнаружившей новый минерал на Луне, сообщил Дун Баотун, заместитель директора CAEA.
Редкий изотоп: как Росатом создаёт Гелий-3 из жидкого гелия Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям.

Американский стартап Interlune намерен запустить добычу гелия-3 на Луне к 2030 году

Причем на Луне гелий-3 находится лишь в поверхностном слое и имеет солнечное происхождение, а Луна играет роль ловушки для солнечного ветра. Бывшие сотрудники компании Blue Origin создали стартап, который планирует заниматься добычей гелия-3 на Луне. Гелий-3 — это газ, который потенциально может быть использован в качестве топлива для будущих термоядерных электростанций, но крайне редко встречается на Земле, хотя в изобилии существует на Луне.

Луна на очереди: в Китае хотят добывать гелий-3 с поверхности спутника Земли

Топливо будущего: где и зачем добывают гелий-3 Добыча гелия-3 на Луне будет сложным и многоступенчатым процессом.
Индийские эксперты заявили о создании базы на Луне через 10 лет Запасы гелия-3 на Луне исследователи оценили в около 1,3 млн тонн.
Что за новый источник энергии нашли в арктических скалах? Китай не сообщил, когда он планирует начать добычу гелия-3 на Луне.

Луна и грош, или история гелиевой энергетики

Хотя это финансирование относительно скромное по сравнению с крупными коммерческими космическими проектами, последствия остаются потенциально значительными. Добыча гелия-3: к новому видению лунной экономики Концепция добычи полезных ископаемых на Луне не нова. Фактически, она была предложена учеными еще в начале 1970-х годов. Уже тогда исследователи определили элементы и ресурсы, которые можно добывать на Луне, но технологические ограничения не позволили добиться значительного прогресса в этой области. Однако в последние годы, с развитием робототехники, освоением космоса и различных методов добычи ресурсов, идея добычи полезных ископаемых на Луне была вновь возрождена.

На этот раз ученые намерены совершить революцию в производстве энергии за счет использования гелия-3. Исследователи считают, что гелий-3 дает проблеск надежды в поисках управляемого термоядерного синтеза. Элемент, из которого получают этот изотоп, образуется в результате солнечной реакции и присутствует почти повсюду в космосе. Однако Земля обладает лишь крошечным количеством этого элемента, что делает ее редкой находкой.

Поэтому компания Interlune планирует изменить ситуацию, задействовав лунные ресурсы. Однако такой подход вызывает ряд вопросов. Во-первых, научное сообщество интересуется, как стартап собирается добывать полезный газ из лунного реголита — абразивного, каменистого и загрязненного материала, находящегося на поверхности Луны.

Предполагается, что Луна станет базой запусков космических аппаратов для исследования других планет Солнечной системы, поскольку сила тяжести там в 6 раз меньше, чем на Земле, и вдобавок не надо преодолевать сопротивление воздуха ввиду его отсутствия. Есть и такие экзотические проекты, как усыпать ее поверхность тончайшим слоем мела, чья отражательная способность в несколько раз выше таковой лунного грунта, и таким образом освещать Луной Землю по ночам, обходясь без расходования электроэнергии на освещение улиц. Космические технологии Теме предстоящего освоения Луны посвящено множество публикаций как в научно-популярных ресурсах, так и в СМИ для широкой публики.

Любопытно, что в большинстве статей, особенно американских, насаждается мнение, что в скором будущем Земле грозит энергетический голод и спасение придет с Луны с ее гигантскими запасами гелия-3 и возможностью покрыть ее поверхность солнечными батареями. В отдельных статьях, в конце, мельком упоминается, что все это, в том числе создание сверхстойких роботов для выполнения работ на Луне вместо людей, потребует огромных затрат, но таковые оправданы с учетом предстоящих грандиозных выгод. Вот как по нашей просьбе обрисовал положение дел компетентный специалист в этой области профессор Алексей Дмитриев, участвовавший в свое время в создании орбитальной станции «Мир», а последние 12 лет работающий в Институте космических исследований при Национальном центральном университете Тайваня занимается разработкой совместного российско-тайваньского проекта космических исследований. Не созданы еще для этого термоядерные реакторы, технология совершенно не развита, и не было ни одного положительного эксперимента по проведению термоядерного синтеза на Земле с использованием магнитной ловушки. Есть различные предсказания, огромное количество модельных расчетов, но аппарата, который бы дал хороший положительный выход энергии в течение продолжительного времени, нет. Поэтому тратить огромные деньги на то, чтобы разрабатывать гелий-3 на Луне, сейчас бессмысленно.

Особенно при тех космических технологиях, которые у нас есть». Фото: NASA По решению Международной авиационной федерации ФАИ 12 апреля — день, когда в 1961 году человек, преодолев притяжение Земли, впервые взлетел в космическое пространство, отмечается как Всемирный день авиации и космонавтики. Это эпохальное событие пробудило в те времена небывалое воодушевление у жителей Земли, породив грандиозные надежды на предстоящее вскоре освоение космоса, ближайших планет, а затем и всей Вселенной, с обретением новых невообразимых возможностей и знаний. Но мало кто сейчас помнит, что за два года до триумфального полета Юрия Гагарина, 12 сентября 1959 года, первой достигла Луны советская автоматическая станция «Луна-2», а следом, 4 октября 1959-го, стартовала «Луна-3», которая 7 октября произвела облет Луны, передав на Землю снимки ее обратной стороны. Все это раззадорило американцев, которые десятилетие спустя, в 1969 году, первыми ступили на поверхность Луны. Но через пару десятилетий рассвет космической эры сменился закатом с постепенным забвением былых надежд.

И вот теперь забрезжил новый рассвет. По его мнению, Луна интересна прежде всего интенсивным развитием космических технологий, которые в последние десятилетия очень сильно затормозились. Новые ракеты, которые делают американцы, якобы частные, коммерческие, похоже, очень низкого качества, их запуски постоянно отодвигаются.

Его планируют использовать, как топливо для термоядерных реакторов ученые близки к тому, чтобы управлять термоядерным синтезом. Гелий-3 есть и на Земле, но в крайне незначительных количествах. Стоимость одного литра газа достигает 1200 долларов США.

На Луне концентрация гораздо выше, минимальная оценка запасов превышает 500 тысяч тонн. Рыночная стоимость этого ресурса более 10 квадриллионов долларов, примерно около 500 годовых ВВП такой страны как США. Ученые подсчитали: для того, чтобы обеспечить все население Земли энергией в течении года достаточно 30 тонн гелия. Солнечные батареи и электричество. На Луне нет ни атмосферы, ни облаков поэтому КПД солнечных панелей по расчетам вдвое выше, чем на у нас. А если установить панели на обратной стороне месяца, то солнце будет освещать их постоянно.

Были даже проекты, которые предполагали передачу лунного электричества на Землю с помощью лазерных лучей или направленного микроволнового излучения. Но проще использовать эту электроэнергию прямо на Луне. Ведь там планируют развернуть большое строительство: обитаемые базы, космодромы, научные комплексы и многое другое. А на Луне тарелку можно сделать размером километра полтора и она будет легкая и невесомая. Данные дистанционного зондирования говорят, что в грунте очень много металлов. Есть проекты создания полностью автоматических металлургических заводов.

Для которых условия Луны, где нет атмосферы, это идеальное место для производства.

Он есть на Луне. Но можно ли там организовать его добычу с последующей доставкой на нашу планету? Насколько это экономически целесообразно? Вторая трудность в том, что пока отсутствует технология управляемого термоядерного синтеза. Задача не решена, несмотря на многолетние усилия даже для более простой реакции синтеза на дейтерии и тритии. Впрочем, прежде всего нужно оценить, насколько реальна добыча и доставка гелия-3 с Луны в необходимых количествах и каковы в действительности его запасы там? Этот поток, называемый солнечным ветром, попадает на поверхность Луны. В отсутствие активных геологических процессов и круговорота веществ пылевидный материал, называемый реголитом, миллиарды лет накапливает приносимые частицы, в том числе гелия.

В среднем содержание 3He в поверхностном слое мощностью 3 m составляет около 4 ppb частей на миллиард. В районах развития высокотитанистых базальтов "лунных морей" концентрация изотопа может достигать 20 ppb и более. Концентрация гелия в реголите зависит от многих факторов. Очень важен возраст материала: чем дольше облучается поверхность, тем больше накапливается в нем внедрившихся частиц солнечного ветра. Имеет значение и размер зерен реголита. У слишком крупных относительно малая поверхность, а очень мелкие - не удерживают гелий. Оптимальный размер - 20 - 50 мкм. Существен и минеральный состав самих зерен. Лучше всего гелий накапливается в ильмените - минерале, содержащем титан FeTiO3.

Луна им богата. На каждый атом 3He приходится 3000 атомов обычного 4He, и второй от первого нужно отделить. Заметим: 1 т реголита, перспективного для разработки, содержит в среднем около 20 мг 3He 10 ppb. Недавно мы в ГЕОХИ совместно с Петербургским физико-техническим институтом доктор физико-математических наук Георгий Ануфриев перемерили содержание 3He в колонке реголита, доставленного советским космическим аппаратом "Луна-24" в 1976 г. По всей длине колонки длиной 2 м не обнаружено направленного изменения содержания 3He. Кстати, грунт был взят в районе развития низкотитанистых базальтов, в котором содержание 3He ближе к минимальной границе, составляющей, как показал анализ, около 1 ppb. Чтобы добыть 1 т гелия-3, нужно переработать 100 млн. Зато энергетическая эффективность 3He огромна: 1 т гарантирует работу агрегатов мощностью 10 ГВт в течение года. Напомню: суммарная мощность электростанций России составляет 215 ГВт.

Иначе говоря, для обеспечения потребностей нашей страны нужно приблизительно 20 т 3He в год, а для планеты в целом - около 200 т. Во второй половине XXI в. Запасов же гелия-3 на Луне около 1 млн. Таким образом, их хватит более чем на тысячу лет. Для сравнения следует отметить: доступное содержание этого ценного изотопа в природном газе, атмосфере и породах на Земле не превосходит 200 кг. Выходит, 1 т гелия-3 заменит 20 млн. Транспортировка 1 кг груза на траектории Земля-Луна-Земля обойдется сегодня приблизительно в 20 - 40 тыс. Чтобы доставить 1 т 3He, придется перевезти 2 - 5 т сопровождающего груза в виде контейнеров, охлаждающего оборудования и т. Таким образом, доставка с Луны 1 т 3He потребует 100 млн.

Кажется, огромная сумма. Для того чтобы организовать добычу 3He в промышленных масштабах, потребуется развернуть на Луне целую индустрию. Во-первых, придется вскрыть и переработать грунт на площади в сотни квадратных километров. Из каждого килограмма гелия можно получить максимум 0,3 г 3He с процессом сжижения и хранения неизбежно сопряжены потери. Понятно, что первоначальные затраты, связанные с завозом оборудования, развертыванием лунной базы и организацией крупномасштабной добычи, будут велики. В то же время следует учесть, что в инженерном отношении все процедуры хорошо известны и достаточно просты. Гелий заключен в сорбированном состоянии в рыхлом лунном грунте, залегающем на самой поверхности. Поэтому после создания необходимого производства расходы на добычу и эксплуатацию соответствующей инфраструктуры должны быть умеренными. По расчетам американского астронавта Харрисона Шмитта, по профессии геолога, побывавшего в 1972 г.

По мнению Шмитта, предварительные расходы на стадии исследований их, очевидно, должно взять на себя государство составят около 15 млрд. Затем ранее небывалый энергетический проект станет привлекательным для частных инвестиций, поскольку перейдет в разряд прибыльных. При переработке грунта и десорбции гелия выделяться будет не только последний, но в еще больших объемах другие элементы, в том числе водород и углерод. Нетрудно также наладить получение кислорода из силикатов. Это значит, что непосредственно на Луне можно организовать синтез топлива и окислителя для ракет-носителей. Лунный грунт богат титаном. Выплавка его позволит изготовлять тяжелые фрагменты конструкции и корпусов ракет прямо на Луне. С Земли придется доставлять только высокотехнологичные элементы.

Что за новый источник энергии нашли в арктических скалах?

По словам ученых, гелий накопился в лунном грунте благодаря постоянному воздействию солнечного ветра — потока ионизированных частиц, сообщает RT. По словам ученых, гелий накопился в лунном грунте благодаря постоянному воздействию солнечного ветра — потока ионизированных частиц, сообщает RT. В привезённых на Землю образцах лунного реголита содержание гелия-3 на тонну составило 0,01 грамма. Индия намерена стать лидером по добыче изотопа гелия-3, который в изобилии имеется на Луне и может стать перспективным источником энергии для Земли. Гелий-3 переносится на Луну солнечным ветром и, как полагают, остается на поверхности, застряв в грунте, тогда как при достижении Земли он блокируется магнитосферой.

СМИ: Россия планирует добывать полезные ископаемые на Луне

Содержание Гелия 3 на Луне в 10 тысяч раз выше, чем на Земле. Сообщается, что из образцов ученые смогли узнать, в какой концентрации в грунте Луны содержится гелий-3. Гелий-3 же в относительно больших количествах содержится в космическом гелии, который образуется, например, на Солнце при термоядерных реакциях.

Колонизация Луны и добыча там гелия-3? Пока это фантастика из далекого будущего

Луна на очереди: в Китае хотят добывать гелий-3 с поверхности спутника Земли Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям.
Российские ученые обнаружили на Луне почти 1,5 млн тонн гелия-3, которого нет на Земле Содержание Гелия 3 на Луне в 10 тысяч раз выше, чем на Земле.
На Луну спешим летим!:-) ГЕЛИЙ-3 забрать хотим!:-) — DRIVE2 изотоп гелий-3.
Китай будет добывать гелий-3 на Луне Для добычи гелия-3 нужно будет переработать прямо на спутнике миллионы тонн лунного грунта (даже при условии, что на Луне изотопа сильно больше, чем на Земле, его содержание все равно не больше 0,01 г на тонну).

На Луну спешим летим!:-) ГЕЛИЙ-3 забрать хотим!:-)

Зонд «Чанъэ-5», который вернулся на Землю 17 декабря 2020 года, доставил в общей сложности 1731 грамм лунных образцов, в основном горных пород и почвы с лунной поверхности. Пекинский научно-исследовательский институт геологии урана был одним из первых научно-исследовательских институтов, получивших лунные образцы, доставленные зондом «Чанъэ-5». Исследователи наблюдали и изучали 50-миллиграммовый образец лунного грунта с помощью оптического микроскопа высокого разрешения. Основной целью исследования является определение содержания гелия-3 в лунном грунте, параметров извлечения гелия-3, которые указывают, при какой температуре мы можем извлекать гелий и как гелий-3 прикрепляется к лунному грунту.

Почему мы возвращаемся туда? Причин вернуться на Луну много: прежде всего, научные исследования и мягкая сила в прошлом веке символ флага США определял абсолютное первенство западной науки в коллективном воображении. Однако появление гелия-3 на этой шахматной доске открывает нам наводящую на размышления и странную картину: Луна может стать Персидским заливом этого столетия. Сегодня невозможно оценить влияние, которое чистая и обильная термоядерная энергия окажет на мир. Препятствия на пути строительства работающего реактора могут быть устранены к середине этого века, и эта возобновленная космическая гонка может еще больше приблизить время. Все связано с нашей способностью вернуть на Землю образцы, гораздо большие, чем «волосы», собранные китайцами. А «волосы», однако, имеют принципиальное значение: они приносят очко в пользу Китая в решающем матче. Страна, которая будет контролировать источник энергии, обеспечивающий работу технологической цивилизации, будет контролировать Землю. Джанлука Риччио, креативный директор Melancia adv, копирайтер и журналист. С 2006 года он руководит Futuroprossimo.

Они в основном носят инженерный характер, причем разрешение их в рамках последовательных проектов вплоть до построения реактора, дающего полезную энергию, потребует не столь значительных средств. Речь идет о 10 - 15 годах и 6 - 8 млрд. А в проекте ИТЭР предполагают получить уже полезный выход энергии. Ведь реактор типа токамак в рамках ИТЭР представляет собой весьма массивное сооружение, а выделяющийся поток нейтронов довольно быстро приведет к разрушению материалов, образующих внутреннюю часть конструкции. При эксплуатации возникнет не только необходимость захоронения радиоактивных отходов, но и проведения громоздких, дорогостоящих и неизбежно частых каждые несколько лет восстановительных работ. Впрочем, с такими утверждениями не все согласятся. Безусловно, этой категоричной точке зрения можно противопоставить контраргументы. Многие известные физики, с которыми я затрагивал эту тему, проявляют изрядный скептицизм в отношении термоядерной энергетики на 3He. Вместе с тем нельзя не учитывать, что научная карьера большинства крупнейших специалистов в области термоядерного синтеза связана с исследованием процессов магнитного удержания плазмы и традиционными установками типа токамак. Да и в изысканиях, связанных с термоядерным оружием, вопрос о 3He не был актуален, поскольку решались другие задачи. Здесь нужно, по-видимому, прежде всего серьезное внимание к проблеме и адекватное наращивание экспериментальных и теоретических работ. Глобальная энергетика, основанная на 3He, возможна только при доставке его с Луны. Но акцентирую: для экспериментов и даже для достаточно мощного опытного термоядерного генератора гелий оттуда не потребуется. На Земле накоплены значительные количества этого элемента, используемого в термоядерном оружии. Только за счет естественного распада запасенного трития образуется 15 - 20 кг 3He в год. В распоряжении России и США в общей сложности имеется несколько сот килограммов искусственно полученного 3He. Кстати, мы продаем его американцам по 1000 дол. Нам он не нужен, а они почему-то покупают. Лунный гелий-3 потребуется не раньше, чем через 20 лет. Но еще до первой его доставки предстоит проделать грандиозную работу. Начать нужно с геологоразведки. Она включает картирование лунной поверхности, выявление и оконтуривание участков с максимальным содержанием полезных компонентов, оценку удобства их эксплуатации. Работа должна сопровождаться исследованием геологического строения Луны, выявлением ресурсов для развития локального производства. В этой связи большое значение имеет ответ на вопрос о наличии там воды. В замороженном состоянии она может присутствовать в затененных кратерах на полюсах. Свидетельства тому есть. Необходима организация экспедиций и исследование образцов с соответствующих участков. Следующий шаг - проведение экспериментальных вскрышных работ и по десорбции летучих компонентов из реголита в условиях Луны. Далее - обустройство базы. Проектирование и испытание устройств, предназначенных для производства гелия-3. Чтобы обеспечить хотя бы подготовительную стадию всех работ, понадобится доставить на Луну сотни тонн машин и материалов. Полное обеспечение потребностей землян в энергии потребовало бы порядка 20 млрд. Конечно, эти объемы представляются фантастическими. Однако сравнивать следует с теми, что проводятся в интересах энергетики на Земле. Сегодня тут добывают около 5 млрд. Объемы вскрышных работ на порядок больше. Выходит, это сопоставимо с гипотетическим масштабом на Луне. А ведь энергетическая, экологическая и экономическая эффективность сходных по масштабу работ в итоге окажется там гораздо выше. Их организация - вполне в пределах современных экономических и технических возможностей человека. Но поскольку потребуются десятки лет целенаправленного труда, начинать нужно сейчас. Интенсивность полетов по трассе Земля-Луна должна уже составлять несколько в год. А сегодня у нас в программе только один запуск аппарата "Луна-Глоб", запланированный на 2012 г. В настоящее время на предприятиях Российского космического агентства разрабатывают проекты исследования Луны. В частности, в Ракетно-космической корпорации "Энергия" им. Королева проектируют летательный аппарат многоразового использования "Клипер". По мнению президента, генерального конструктора корпорации Николая Севастьянова, с 2015 г. В НПО им. Лавочкина генеральный директор, генеральный конструктор Георгий Полищук интенсифицируют проектирование соответствующих космических аппаратов, имеющих как орбитальные, так и посадочные модули. К сожалению, Совет по космосу РАН стоит пока в стороне от этих инициатив. Мы в России должны понять, что наши американские коллеги серьезно работают над реализацией проекта, связанного с использованием лунного гелия-3. В проектировании горных работ на Луне, как и в экспериментальных исследованиях термоядерного синтеза на 3He, американцы заметно продвинулись вперед. Его председателем весной нынешнего года назначен доктор Х.

Считается, что гелий-3 практически не имеет недостатков в качестве источника топлива. Элемент не является радиоактивным, что делает его идеальным топливом для чистой термоядерной энергетики. Даже небольшое количество этого элемента позволяет получить огромное количество энергии из реакции синтеза — 0,02 грамма гелия-3 содержит количество энергии, равное одному баррелю нефти. По оценкам газеты Mail Online, всего 40 тонн гелия-3 обеспечат Соединенные Штаты энергией на целый год. На Луне находится около 10 миллионов тонн этого топлива.

Похожие новости:

Оцените статью
Добавить комментарий