Зарядное устройство забирает электроны с катода, оставляя его с положительным зарядом, и направляет их на анод, сообщая ему отрицательный заряд. Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора.
КАТОД, сеть магазинов и СТО
В описанном процессе заряда полимерное покрытие катода остается стабильным во всем диапазоне рабочих потенциалов. Автоматическое зарядное устройство КАТОДЪ-501 здорово всем народ сегодня решила разобрать и посмотреть что с этим зарядным устройством так как он работает неправильно. Полученный материал был применен в качестве катода для литий-ионного аккумулятора и показал хорошую стабильность и высокую емкость. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.
Из полимеров сделали катоды для литиевых аккумуляторов
3D-модель катода аккумулятора телефона под микроскопом показала, почему одни ячейки стареют быстрее, чем другие. Новая структура микрочастиц катода, разработанная командой, может привести к созданию более долговечных и безопасных батарей, способных работать при очень высоком напряжении. В процессе заряда ионы Li⁺ экстрагируются из материала катода, переносятся через электролит к аноду и внедряются в его структуру.
Ученые создали долговечный катод для натрий-ионных аккумуляторов
Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта, который позволит увеличить пробег электрокаров на одной зарядке. История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания. Новосибирское оборонное предприятие Катод поставило приборы ночного видения воинским подразделения из региона, участвующим в спецоперации, сообщили в.
Новый материал катода ускорит зарядку литий-ионных батарей
Во время заряда положительным является анод, отрицательным является катод. В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт. Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду. В новых батареях ионы натрия заменяют ионы лития в катоде, а соли лития в электролите (жидкость, которая помогает переносить заряд между электродами батареи) заменяются.
Автоматическое зарядное устройство КАТОДЪ-501
Для этого команда ученых заменила оксид лития-кобальта на дисульфид ванадия. Поскольку этот материал легче, это позволило увеличить плотность энергии. А его повышенная проводимость ускорила зарядку. Исследователи обращаются к дисульфиду ванадия VS2 не в первый раз. И всегда основным препятствием в реализации такой батареи была нестабильность этого материала. Низкая стабильность означает короткий срок службы аккумулятора.
Также KPFM даёт возможность измерить потенциалы на поверхности материала оценить величину заряда. Выяснилось, что на межзёренных границах отрицательного электрода на катоде в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. При прохождении через такие скопления ионов лития что происходит в момент зарядки и разрядки аккумуляторов они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались. Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания.
При этом такой аккумулятор намного безопаснее. Команда продемонстрировала обратимость в течение 150 циклов. Помимо портативных аккумуляторов, этот химический состав можно использовать в устройствах, которые требуют больших энергий на уровне киловатт или мегаватт. Применение также оправдано, когда безопасность и токсичность являются основными проблемами, включая невоспламеняющиеся накопители для самолетов, морских или космических кораблей, а также крупногабаритных систем хранения.
Аккумуляторы на базе таких катодов могут обладать плотностью хранения заряда, превосходящей LFP-батареи как минимум в два раза. Ещё в прошлом десятилетии начались эксперименты по увеличению размеров частиц марганца, но до сих пор они преимущественно имели поликристаллическую структуру. Улучшить характеристики катодов на основе марганца авторы разработки смогли за счёт создания специального токопроводящего покрытия, которое повышает устойчивость материала к воздействию высоких температур, неизбежно возникающих при эксплуатации тяговых батарей.
Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях
Аноды современных ЛИА в основном изготавливают из графита, а катоды — из литированных оксидов переходных металлов. В 1979 г. Джон Гуденаф University of Texas, Austin, США впервые продемонстрировал электрохимическую ячейку с напряжением 4 В, в которой в качестве катода был использован кобальтат лития LiCoO2 , а в качестве анода — металлический литий. Это было наиболее значимым событием и сделало создание ЛИА реальностью. Прототип электрохимической ячейки с углеродным анодом и катодом из кобальтата лития был создан в 1985 г. Йошино Ashi Kasei Corp. В наши дни для анодов в исследовательской практике применяют разнообразные углеродные материалы, а в промышленности — только некоторые специальные, такие как «мезоуглеродные мезобусы» MCMB — продукт карбонизации пековых смол, выпускаемый японской компанией Osaka gas Co. Любой химический источник тока состоит из двух электродов катода и анода , контактирующих с электро-литом.
Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. При включении аккумулятора во внешнюю электрическую цепь в ней возникает электрический ток. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделенных процессов: на катоде восстановитель окисляется, образующиеся свободные электроны, создавая разрядный ток, переходят по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя В конце прошлого века внимание исследователей привлекли также материалы на основе оксида олова. При использовании их в качестве анода литий внедряется не собственно в оксид, а в металлическое олово, образующееся при первоначальной катодной поляризации электрода. Теоретическая емкость аккумулятора с таким анодом почти втрое выше, чем с углеродным, однако недостатком всех металлических анодов является заметное изменение их объема при внедрении лития. Проблему удалось решить благодаря применению кремния, из которого стали изготавливать аноды в виде тонких аморфных пленок или наноструктурированных композитов с углеродом. Сегодня емкость ЛИА лимитируется в основном свойствами катодных материалов.
В качестве последних используют различные по структуре соединения. Наиболее широкое распространение получил упомянутый выше кобальтат лития LiCoO2: его слоистая структура обеспечивает двумерную диффузию ионов лития. Преимуществами этой системы являются высокое рабочее напряжение 4 В , относительная простота синтеза, высокая электронно-ионная проводимость, что способствует циклированию при больших плотностях тока, и т. Однако у LiCoO2 имеется и немало недостатков: токсичность, невысокая практическая удельная емкость около половины от теоретической , недостаточная термическая и структурная устойчивость и др. К тому же кобальтовое сырье довольно дорого. В последние годы стали использоваться и другие соединения со слоистой структурой, содержащие ионы нескольких переходных металлов кобальта, никеля, марганца , практическая емкость которых в полтора раза превосходит емкость кобальтата лития. В отличие от слоистой, шпинельная структура обеспечивает трехмерную диффузию ионов лития.
Однако свободный объем, доступный для ионов лития, невелик, что ограничивает скорость диффузии и снижает мощность электрохимической ячейки в целом.
Она включает в себя три элемента: токопроводящую добавку — металл или сажу, активное вещество и полимерное связующее, состав которых мы и подбираем. Капитан команды, магистрантка направления «Физика» Анна Никитенко «Во время нагрева аккумулятора благодаря уникальному составу нашего катода в нем возрастает сопротивление. Это ведет к тому, что ток перестает течь внутри аккумулятора и передаваться по внешней цепи. Температура больше не повышается, и аккумулятор возвращается в привычный режим работы», — рассказала капитан команды, магистрантка направления «Физика» Анна Никитенко. Такой способ имеет ряд преимуществ. Его внедрение на предприятиях не потребует перестройки производственной цепочки и, следовательно, больших вложений. Помимо этого, новая катодная масса будет в каждом аккумуляторе устройства, в то время как, например, выключатель прикрепляется только к одному из них, и если нагревание батареи начнется не с него, то сигнал о неполадках придет с опозданием. Еще один плюс проекта состоит в том, что изменения в катоде не отразятся на размере исходного изделия, что упростит масштабирование технологии в производство. Ребята планируют сотрудничать с производителями аккумуляторов для мобильных телефонов, бытовой техники и автомобилей, а также с изготовителями крупных промышленных батарей, например, для подводных лодок или электрокаров, предлагая предприятиям готовый продукт или лицензию на свою разработку.
Студенты уже ведут переговоры с некоторыми компаниями.
Опубликовано: 19. В Шанхае Китай продолжится международная выставка водных ресурсов, сбора и обработки сточных вод и природных энергоресурсов. Подробности Опубликовано: 19. Об этом сообщили в пресс-службе компании.
Название статьи говорит само за себя: «Проводящий анод с S-легированием из многовалентного сульфида железа с низкой кристалличностью и катод из 3D-пористого графитового углерода с высоким содержанием N [натрия] для высокопроизводительных натриево-ионных гибридных накопителей энергии». Понятно, что нельзя просто взять и объединить в новом устройстве аноды от обычных аккумуляторов и катоды от суперконденсаторов.
Необходимо изменить свойства как анодов, так и катодов. У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью. Поэтому учёные пошли по пути создания объёмных электродов на основе пористых 3D-материалов — так называемых металлорганических каркасов.
Как технологии твердотельных Ssbt-аккумуляторов изменят мир
Аналогично натрий не внедряется в графитовый анод, а калий делает это с трудом. Потому нужны принципиально новые материалы, а найти их среди неорганических соединений не так просто. Инновационный подход в этой области разрабатывается в Лаборатории перспективных электродных материалов для химических источников тока в Федеральном исследовательском центре проблем химической физики и медицинской химии Российской ака демии наук ФИЦ ПХФ и МХ РАН. Именн о там неорганические катоды и аноды решили заменить на органические соединения — они, как правило, не имеют жесткой кристаллической решетки, то есть являются аморфными и потому с легкостью принимают катионы не только лития, но также калия и натрия, что очень важно для развития новых аккумуляторных технологий. Однако для создания калий-ионного аккумулятора нужны не только катодные материалы, но и анодные — решением стало использование нового класса редокс-активных полимеров, показавших высокие и обратимые емкости. В последней работе, вышедшей в журнале Molecules и описывающей материал на основе сополимера из производных антрахинона, был сделан значительный шаг в плане обеспечения долговременной стабильности аккумуляторов. Заведующая лабораторией, к. Ольга Александровна Краевая следующим образом характеризует результаты, представленные в недавней публикации ее коллектива: «Разработка нового полимерного катодного материала на основе антрахинона и хинизарина позволила улучшить характеристики как литиевых, так и калиевых источников тока.
Высокие емкостные характеристики разработанных электродных материалов в совокупности с великолепной стабильностью и быстродействием калиевых источников тока полный заряд и разряд аккумулятора за несколько минут открывают широкие возможности для их практического использования, например в качестве дешевых и надежных стационарных накопителей энергии высокой емкости.
Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий — все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей емкости даже после 25 тысяч рабочих циклов — если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Таким образом, российские ученые показали, что разработанные полимерные катодные материалы можно использовать для создания эффективных литиевых и калиевых двухионных аккумуляторов.
И здорово, что коллектив так быстро — буквально за полгода — в разы увеличил объёмы производства. Мы, конечно, будем оказывать всяческую поддержку. Ведь кратное увеличение объёмов производства, в частности, на «Катоде», — это серьезный вклад в повышение эффективности работы наших бойцов», — заявил губернатор во время визита на завод. Фото пресс-службы правительства региона По данным правительства региона, подразделения военнослужащих из Новосибирска полностью обеспечены приборами ночного видения. Как отметил Андрей Травников, множество предприятий области сейчас обеспечивает военных всем необходимым. Мы целевым образом помогаем воинским формированиям, которые дислоцируются или были созданы на территории нашего региона — это и «Ермак», и армейские подразделения, составленные из мобилизованных.
Многочисленные попытки модифицировать материал анода не увенчались успехом, и лишь в начале 1990-х гг. Литий «с плюсом» Функционирование литий-ионных аккумуляторов основано на способности материалов, обладающих определенной структурой так называемой «матрицей» , к обратимому внедрению ионов лития. В процессе заряда разряда аккумулятора эти ионы уходят из одной матрицы и внедряются в другую. Выходное электрическое напряжение таких систем чуть меньше, чем металлических литиевых, зато уровень безопасности существенно выше. По основным техническим характеристикам ЛИА существенно превосходят «конкурентов». Так, по сравнению с никель-металло-гидридными аналогами у ЛИА вдвое больше электрохимическая емкость и почти втрое выше плотность аккумулируемой энергии и удельная мощность. ЛИА выдерживает очень высокие токи разряда, что важно для использования в мощных переносных электроинструментах. ЛИА в меньшей степени подвержены и так называемому эффекту памяти — их можно начать перезаряжать в любой момент, не дожидаясь полной разрядки. Электрохимия как наука, изучающая взаимосвязь электрических явлений и химических реакций, началась с опытов итальянца Л. Знаменитый соотечественник Гальвани, А. Вольта, предположил, что «гальванический» эффект обусловлен наличием контакта разнородных металлов, и в 1800 г. В этом источнике происходило непосредственное преобразование химической энергии в электрическую. В последующие два десятилетия было осуществлено электролитическое разложение воды на водород и кислород, а также электроосаждение металлов из растворов. Путем электролиза расплавленных солей выдающийся английский ученый Х. Дэви выделил в чистом виде щелочные металлы, в том числе и литий. С помощью химических источников тока был сделан ряд важнейших физических открытий, включая явление магнитного действия электрического тока Ампер, 1820 , закон пропорциональности тока и напряжения Ом,1827 , тепловыделение при прохождении тока Джоуль, 1843 , электромагнитную индукцию Фарадей, 1931. А русский ученый Б. Якоби, еще в 1834 г. Поэтому во все бытовые аккумуляторы встраивают электронную схему, которая ограничивает напряжение заряда. Кроме того, ЛИА полностью выводятся из строя в результате глубокой разрядки, да и вообще эти аккумуляторы пока еще довольно дороги. Однако следует заметить, что литий-ионные технологии находятся только в начале пути, в то время как их «конкуренты» вплотную приблизились к своему теоретическому пределу. Будучи уже внедренными в промышленное производство, ЛИА до сих пор являются предметом интенсивного изучения, направленного на улучшение их электрохимических характеристик. Совершенствованию подвергаются все три компонента системы: электролит, катод и анод.
Китайская CATL представила первые натрий-ионные аккумуляторы для электромобилей
Поэтому учёные пошли по пути создания объёмных электродов на основе пористых 3D-материалов — так называемых металлорганических каркасов. Если есть каркас, то туда всегда можно поместить что-то нужное. Таким образом исследователи создали анод, включив тонкодисперсные активные материалы в пористый углерод МО-каркас. Полученный материал обладал высочайшей кинетикой, позволяя быструю зарядку, и приблизил его по этому параметру к суперконденсаторам. Похожим образом, но с использованием других материалов, был создан катод, отличающийся рекордной ёмкостью.
Катод у полупроводниковых приборов[ править править код ] Название электродов у кремниевого диода и изображение диода на схемах Электрод полупроводникового прибора диода , тиристора , подключенный к отрицательному полюсу источника тока, когда прибор открыт то есть имеет маленькое сопротивление , называют катодом, подключённый к положительному полюсу — анодом , т. При работе электролизера например, при рафинировании меди внешний источник тока обеспечивает на одном из электродов избыток электронов отрицательный заряд , здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод. В то же время при работе гальванического элемента к примеру, медно-цинкового , избыток электронов и отрицательный заряд на одном из электродов обеспечивается не внешним источником тока, а собственно реакцией окисления металла растворения цинка , то есть у гальванического элемента отрицательным, если следовать приведённому определению, будет анод. Электроны, проходя через внешнюю цепь, расходуются на протекание реакции восстановления меди , то есть катодом будет являться положительный электрод.
Помимо портативных аккумуляторов, этот химический состав можно использовать в устройствах, которые требуют больших энергий на уровне киловатт или мегаватт. Применение также оправдано, когда безопасность и токсичность являются основными проблемами, включая невоспламеняющиеся накопители для самолетов, морских или космических кораблей, а также крупногабаритных систем хранения. Ученые говорят о приближении технологии аккумуляторов на водной основе к коммерческому применению. Однако пока что неизвестно, можно ли разработать долговечный прототип.
Материал неоднороден и стремится к разрушению со всеми сопутствующими рисками выхода из строя целой ячейки.
Это в очередной раз доказывает нам — брак аккумулятора вероятен даже в самых дорогих и проверенных линейках потребительских устройств. Больше науки Пишите вопросы в комментарии. Мы ждём ваши сообщения и ВКонтакте NeovoltRu. Подпишитесь на нашу группу, чтобы узнавать новости из мира автономности гаджетов, об их улучшении и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter.
Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.
Долговечные литий-металлические аккумуляторы разработали в KIT
Историк Марьяна Скуратовская Узнать больше Подпишитесь на ежемесячную рассылку новостей и событий российской науки! Самые интересные проекты, открытия и исследования, а также информация о конкурсах и мероприятиях в вузах и научных центрах России в одном удобном формате. Будьте в курсе событий Десятилетия науки и технологий!
Также в проработке вопрос по переходу на альтернативные источники энергии.
Преимущество нашего катода LMR заключается в значительно более низком спаде напряжения при использовании батареи по сравнению с традиционными катодами», — пояснил профессор Лю. В тестовых испытаниях новый катод, обогащенный литием, показал себя успешно, подтвердив возможности продлить срок службы и повысить производительность литий-ионных аккумуляторов. Однако основное внимание при тестировании было уделено тому, насколько удалось преодолеть недостатки, вызываемые явлением «утечки напряжения». По оценке исследователей, эта давняя проблема была почти полностью устранена. Теперь исследовательская группа ставит перед собой задачу поиска решения еще одной сложной проблемы катодных материалов LMR — гистерезиса напряжения.
Это явление вызывается разницей в профилях напряжения во время циклов зарядки и разрядки аккумулятора.
Экстракция натрия, в изобилии встречающаяся в соленой воде, несет гораздо меньшее вредное воздействие на окружающую среду. Это позволит конкурировать с литий-ионными батареями и по цене, и по качеству.
Преимущества твердотельных Ssbt-батарей Выше мы уже коснулись некоторых ключевых преимуществ solid-state battery, но каковы другие важные преимущества этой технологии? Более быстрая зарядка — твердотельные батареи обеспечивают гораздо более высокую скорость зарядки. В зависимости от технологии, некоторые из них могут заряжаться в шесть раз быстрее, чем литий-ионные аккумуляторные батареи.
Если исследования квантовых твердотельных накопителей в конечном итоге окажутся успешными, можно будет заряжать solid-state battery практически мгновенно. Более высокая плотность энергии — еще одно потенциальное преимущество твердотельных батарей. У некоторых технологий его может быть вдвое больше, чем у литий-ионных батарей при том же объеме.
Значительно увеличенный срок службы — одно из основных преимуществ твердотельных Ssbt-батарей. Срок службы заряда-разряда-перезарядки — может быть продлен до десяти лет, по сравнению с более скромными двумя годами у традиционных альтернатив. Сниженная скорость утечки саморазряд — еще одно потенциальное преимущество твердотельных батарей.
Их можно сделать меньше и дешевле теоретически твердотельные батареи могут быть гораздо меньше литий-ионных альтернатив. Безопасность — основным преимуществом твердотельных батарей является их относительная безопасность. Они не производят газообразный водород.
Возможности использования твердотельных батарей и пути выхода из кризиса Ожидается, что главной движущей силой развития аккумуляторных технологий станут — электромобили. Так, тайваньские компании, имеющие опыт в производстве аккумуляторов для компьютерного и телекоммуникационного секторов, уже начали сборку аккумуляторов для электромобилей. В частности, в этом преуспели компании Simplo, Dynapack и Celxpert.
Чуть дальше пошли тайваньские компании, которые смогли наладить производство материалов для электродов литиевых аккумуляторов — анодов и катодов. Но стоит еще раз подчеркнуть, что батареи на подобных материалах приближаются к пределу своих возможностей и не сохранят лидирующие позиции в будущем. Foxconn заявила, что демонстрация ее твердотельных Ssbt-продуктов состоится в конце 2021 года, а серийный запуск производства — к 2024 году.
Почему основное применение твердотельных аккумуляторов ожидается в индустрии электромобилей? Ssbt-батареи потенциально предлагают меньший вес, повышенную надежность, дальность действия, безопасность и меньшую скорость перезарядки, по сравнению с жидкостными батареями. Все эти преимущества, вместе взятые, фактически произведут революцию в индустрии электромобилей.
Это, в свою очередь, создаст огромную потребность в поставках лития во всем мире, что приведет к увеличению затрат на производство новых батарей если не будут разработаны способы безопасной и надежной утилизации старых Li-on батарей. Чтобы преодолеть это потенциальное узкое место в поставке аккумуляторных батарей, многие автомобильные компании сами разрабатывают более дешевые и устойчивые solid-state battery. Например, Toyota недавно объявила, что планирует добавить Ssbt-батареи в свои новые автомобили уже в 2021 году.
Согласно отчету, опубликованному Nikkei Asia , это может позволить электромобилям предлагать запас хода в 310 миль 500 км на одной зарядке, а также быструю перезарядку с нуля до полной за 10 минут. General Motors вместе с SolidEnergy Systems организовал производство аккумуляторов Ultium с жидким электролитом, анодами на базе графита и катодов с комбинацией никеля, кобальта, марганца и алюминия. Это снизит потребность в дефицитных металлах, а также позволит удвоить плотность хранения заряда в аккумуляторах без ущерба для безопасности.
В Китае появляются электромобили на альтернативных литий-железо-фосфатных аккумуляторах ЛЖФ. Они дешевле и менее токсичные, однако имеют меньшую емкость. Tesla и Volkswagen также обещают в ближайшие годы сократить использование кобальта.
BMW и Ford нацелены использовать низкозатратную и эффективную технологию твердотельных аккумуляторов Solid Power в будущих электромобилях. Murata Manufacturing планирует в ближайшие месяцы развернуть серийное производство solid-state battery.