Новости 26 задача егэ информатика

Заспамили меня по поводу оформления второй части, особенно по 26 заданию, поэтому ловите. В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python. Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике.

Задание №26 в Excel

Задание 26 ЕГЭ-2019 по информатике: теория и практика Задание по информатике 24-27. Ответы и решения заданий ЕГЭ.
ЕГЭ по информатике — 2024: структура и изменения ⋆ MAXIMUM Блог #разбор заданий егэ по информатике 2022.

Search code, repositories, users, issues, pull requests...

Разбор задания 26 из ЕГЭ по информатике с помощью Python. 5сть полное совпадение задач 26 и 27. 2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова (). Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике.

ЕГЭ по информатике часть 2 с ответами и решением

  • Как решать 26 задание в егэ по информатике через эксель
  • Разбор 26 задания ЕГЭ 2017 по информатике из демоверсии
  • Для продолжения работы вам необходимо ввести капчу
  • Задание 26. Алгоритмы сортировки. Обработка целочисленной информации.. ЕГЭ 2024 по информатике
  • ЕГЭ по информатике с решением, разбор заданий, примеры, ответы в Москве
  • GitHub - Shuta4/inf2022-02-13: ЕГЭ по информатике: задача 26 с UnixTime

Задание КИМ 26. Обработка данных через сортировку. Источник: Поляков

Учитель информатики Булгаков Сергей: Сложное 14 Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов.
ЕГЭ по информатике 2023 - Задание 26 (Сортировка) Теория по заданию №26 из ЕГЭ 2024 по информатике: конспекты, примеры заданий от ФИПИ, разборы задач с ответами, шаблоны и формулы для решения.
ЕГЭ по информатике — 2024: структура и изменения ⋆ MAXIMUM Блог 2024. 3 месяца назад. Самый мощный обстрел Белгорода за всю войну / Новости России.

5 самых сложных задач из ЕГЭ по информатике в 2023 году — и как их решать

Это задание лишилось простого решения, где ответ можно было получить обычным перебором, используя граф. Теперь из-за больших величин аргументов стоит опираться в первую очередь на аналитическое мышление. А также понимать, что именно считает функция. Задание не вызовет серьезных проблем, если ребенок разбирается в программировании. Для решения нужно знать, как записывать логические выражения на языке программирования, а также понимать структуру циклов перебора и алгоритма ветвления. Вторая категория — «числовые отрезки». Основную трудность вызывает применение законов алгебры логики для упрощения выражений. Ученики либо не видят способ применения того или иного закона, либо просто забывают о них. Поэтому в этом задании нужно как можно больше практики.

Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках. Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода.

Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков? Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша один в два раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28.

Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Побеждает тот игрок, который называет последнюю букву любого слова из набора.

Петя ходит первым. Определить выигрышную стратегию. В первом слове 99 букв, во втором 164. Задание 2 Необходимо поменять две буквы местами из набора пункта 1А в слове с наименьшей длинной так, чтобы выигрышная стратегия была у другого игрока. Объяснить выигрышную стратегию. У кого из игроков есть выигрышная стратегия? Обосновать ответ и написать дерево всех возможных партий для выигрышной стратегии. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней.

У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.

Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней. В обоих случаях Ваня удваивает кучу и выигрывает в один ход. Выигрывает Ваня 14 - проигрышная позиция Задание 2. Возможные значения S: 7, 13. В этих случаях Петя, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 14 камней: в первом случае удвоением, во втором — добавлением одного камня.

Эта позиция разобрана в п.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные находятся в файле.

Значит, если в двоичной записи нечетное кол-во единиц, то справа дописывается "10", а если четное, то дописывается "00".

Итак, мы будем подбирать числа N с помощью цикла for, затем, построив двоичную запись, используем данное правило и в конце сравним с числом 43. Если результат подходит, то выведем его на экран и завершим программу, выйдя из цикла с помощью ключевого слова break так как нас просят найти наименьшее число. Первое найденное число и будет наименьшим. Так выглядел бы код, если бы мы не объединяли условия: Стоит отметить, что функция bin возвращает нам строку, поэтому мы можем использовать конкатенацию.

Ответ: 46 Задача 2 На вход алгоритма подаётся натуральное число N. Строится двоичная запись числа N. К этой записи дописываются справа ещё два разряда по следующему правилу: а складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа справа. Полученная таким образом запись в ней на два разряда больше, чем в записи исходного числа N является двоичной записью результирующего числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления. Решение: Здесь мы также можем объединить условия А и Б. От предыдущей задачи эта отличается только тем, что в ответе нужно указать не число R, а число N.

Разбор задания № 26 ЕГЭ по информатике

Новая школа: подготовка к ЕГЭ с нуля САМЫЙ ЛЕГКИЙ СПОСОБ решения ЗАДАНИЯ №26 ЕГЭ по Информатике!
Задание 26 | ЕГЭ по информатике | ДЕМО-2024 Сегодняшний урок посвящн 26 заданию из егэ по информатике 2021. на нм мы будем тренировать умение обрабатывать целочисленную информацию с.
Информатика ЕГЭ уроки для подготовки к экзаменам ЕГЭ ОГЭ.
Задание 26 ЕГЭ 2024 по информатике: теория и практика с ответами в форме тестов Разбор задания 26 из ЕГЭ по информатике с помощью Python.

Задание 27

Отмена. Воспроизвести. Информатика ЕГЭ Умскул. Главная» Новости» 13 задание егэ информатика 2024. Разбор 24 задания ЕГЭ по информатике демо 2021 и с сайта Полякова К. (21), на Pascal и PythonСкачать. Объяснение решения 26 задания ЕГЭ по информатике о программной обработке целочисленной информации с использованием сортировки. 2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова (). Инфоурок › Информатика ›Конспекты›Разбор задания №26 ЕГЭ (Информатика).

Задания 20, 21 ЕГЭ по информатике: Аналитическое решение демоварианта

задание 26 решение. Главная Топ видео Новости Спорт Музыка Игры Юмор Животные Авто. В ЕГЭ по информатике 27 заданий разного уровня: и ряд из них требует особого подхода. ЕГЭ по информатике.

ВСЕ ЗАДАЧИ 26 с официальных ЕГЭ | Информатика ЕГЭ 2023 | Умскул

Объём диска может быть меньше, чем требуется для переноса файлов за один раз. Свободный объём на диске и размеры файлов известны. По заданной информации об объёме файлов на компьютере и свободном объёме на диске определите максимальное число файлов, которые могут быть перенесены за один раз на внешний жесткий диск, а также максимальный размер файла, записанного на этот диск, при условии, что перенесено наибольшее возможное число файлов.

Все данные в строках входного файла отделены одним пробелом. Если в качестве времени старта указан ноль, это означает, что процесс был активен в момент начала исследования. Если в качестве времени завершения указан ноль, это означает, что процесс не завершился к моменту окончания исследования. При совпадающем времени считается, что все старты и завершения процессов происходят одновременно, в начале соответствующей секунды.

Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше.

В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44.

Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом. Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19.

Везде следующим ходом выиграет Ваня, см. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней. При меньших значениях S за один ход нельзя получить кучу, в которой больше 30 камней. Паше достаточно увеличить количество камней на 10. При S 1. Тогда после первого хода Паши в куче будет 21 камень или 30 камней.

В обоих случаях Ваня увеличивает количество камней на 10 и выигрывает в один ход. Возможные значения S: 10, 19. В этих случаях Паша, очевидно, не может выиграть первым ходом. В ней игрок, который будет ходить теперь это Вова , выиграть не может, а его противник то есть Паша следующим ходом выиграет. Возможное значение S: 18. После первого хода Паши в куче будет 19 или 28 камней. Если в куче станет 28 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 19 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Вова , выигрывает своим вторым ходом.

Гость 26. Константин Лавров Да, 9 - тоже является правильным ответом. Достаточно указать хотя бы одно верное значение. Два игрока, Паша и Вова, играют в следующую игру. Игра завершается в тот момент, когда количество камней в куче становится не менее 41. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 41 или больше камней. Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы. Опишите выигрышную стратегию Вовы. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши. Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче. При меньших значениях S за один ход нельзя получить кучу, в которой больше 40 камней.

Тогда после первого хода Паши в куче будет 31 камень или 40 камней. Возможные значения S: 20, 29. Возможное значение S: 28. После первого хода Паши в куче будет 29 или 38 камней. Если в куче станет 38 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 29 камней, разобрана в п. В таблице изображено дерево возможных партий при описанной стратегии Вовы. Заключительные позиции в них выигрывает Вова подчёркнуты.

Итак, мы будем подбирать числа N с помощью цикла for, затем, построив двоичную запись, используем данное правило и в конце сравним с числом 43. Если результат подходит, то выведем его на экран и завершим программу, выйдя из цикла с помощью ключевого слова break так как нас просят найти наименьшее число. Первое найденное число и будет наименьшим. Так выглядел бы код, если бы мы не объединяли условия: Стоит отметить, что функция bin возвращает нам строку, поэтому мы можем использовать конкатенацию. Ответ: 46 Задача 2 На вход алгоритма подаётся натуральное число N. Строится двоичная запись числа N. К этой записи дописываются справа ещё два разряда по следующему правилу: а складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа справа. Полученная таким образом запись в ней на два разряда больше, чем в записи исходного числа N является двоичной записью результирующего числа R. Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления. Решение: Здесь мы также можем объединить условия А и Б. От предыдущей задачи эта отличается только тем, что в ответе нужно указать не число R, а число N. Последняя цифра двоичной записи удаляется.

Разбор демоверсии 2024 по информатике ЕГЭ | Задание 26 | Новая Школа

Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. Задание 1. Опишите выигрышную стратегию Васи. Задание 2. Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася.

Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы. При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче.

Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз. Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73.

Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней.

За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом.

Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19. Везде следующим ходом выиграет Ваня, см.

Если в качестве времени завершения указан ноль, это означает, что процесс не завершился к моменту окончания исследования. При совпадающем времени считается, что все старты и завершения процессов происходят одновременно, в начале соответствующей секунды. В частности, если время старта одного процесса совпадает с временем завершения другого и других стартов и завершений в этот момент нет, то количество активных процессов в этот момент не изменяется. В ответе запишите два целых числа: сначала максимальное количество процессов, которые выполнялись одновременно на неделе, начиная с момента UNIX-времени 1633305600, затем суммарное количество секунд, в течение которых на этой неделе выполнялось такое максимальное количество процессов.

Она отметила также, что оптимальным для выполнения заданий ЕГЭ по информатике является язык Python — простой и понятный для учеников, но можно пользоваться любым языком, если выпускник чувствует себя в нем более уверенным. Отвечая на вопросы зрителей эфира, педагоги уточнили, что единых требований к программному обеспечению на экзамене нет — этот вопрос регламентируют региональные центры обработки информации. Эксперты посоветовали сочетать различные виды подходов в подготовке к экзамену в течение ближайшего месяца. Так, например, на выходных можно ставить таймер и решать по одному полному варианту в день, а затем собирать статистику и отрабатывать задачи, вызывающие сложности. Если есть возможность решить задачу разными способами, воспользуйтесь ей, проверяйте себя», — подчеркнул Сергей Сосенушкин.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные: В первой строке входного файла находятся два числа: S— размер свободного места на диске натуральное число, не превышающее 10 000 и N— количество пользователей натуральное число, не превышающее 4000. В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример решения задачи в случае увеличения камней в куче двумя способами "+1" и "*2"

  • ВСЕ ЗАДАЧИ 26 с официальных ЕГЭ | Информатика ЕГЭ 2023 | Умскул
  • Демовариант ЕГЭ по информатике 2020 года, задание 26
  • ВСЕ ЗАДАЧИ 26 с официальных ЕГЭ | Информатика ЕГЭ 2023 | Умскул - Скачать видео
  • Use saved searches to filter your results more quickly
  • ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26"
  • Разбор задания № 26 ЕГЭ по информатике

Формулировка задания №26 ЕГЭ 2024 из демоверсии ФИПИ

  • Задание 27
  • Use saved searches to filter your results more quickly
  • 2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia
  • Рубрика «ЕГЭ Задание 26»
  • Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация
  • Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация

Задание 26 | ЕГЭ по информатике | ДЕМО-2024

Если мы нашли такой номер ряда, и оказалось, что таких схем в нем несколько, то нужно выбрать минимальный номер свободного места. Алгоритм решения задачи Читаем данные из файла в список списков. В результате у нас будет список, каждый элемент которого будет являться списком из 2-х чисел. Поменяем знак второго элемента в каждом вложенном списке на противоположный. Сделаем сортировку списка с помощью sort.

Это облегчит решение, так как теперь нужно будет искать максимальный ряд и максимальное место.

Решение задач по теме «Обработка целочисленной информации» Выполнила: Черноиванова Екатерина Вадимовна Слайд 2 Задание Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Разбор 26 задания ЕГЭ 2017 1. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня. Выигрышная стратегия есть у Вали. Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней. Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает. Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень.

Вопросы можно задавать в комментариях, или на моих страничках в соц. Обработка целочисленной информации с использованием сортировки" На складе хранятся кубические контейнеры двух цветов различного размера. Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга. Чтобы вложенные контейнеры было лучше видно, их цвета при вложении обязательно должны чередоваться, то есть нельзя вкладывать контейнер в контейнер такого же цвета. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком.

Похожие новости:

Оцените статью
Добавить комментарий