Учёные из Университета Дьюка разработали многокамерный матричный микроскоп (MCAM), состоящий из 54 различных линз, которые захватывают объект под разными углами. Представлены результаты проекта по созданию нового поколения цифровых микроскопов с расширенными функциональными возможностями, в том числе цифрового микроскопа с. Электронный микроскоп позволяет отследить динамику формирования металлической связи между атомами. Цифровой микроскоп Levenhuk D95L LCD обеспечивает увеличение в диапазоне от 40 до 2000 крат.
Сейчас на главной
- Революционный гигапиксельный 3D-микроскоп запечатлел жизнь в потрясающих деталях
- Из чего состоит цифровой микроскоп
- Сеченовский Университет презентовал роботизированный микроскоп RoboScope
- Микроскопы Микромед оптом от производителя
- Революционный гигапиксельный 3D-микроскоп запечатлел жизнь в потрясающих деталях
Вы точно человек?
Программное обеспечение Микроанализа для визуализации микроскопов объединяет микроскоп, цифровую камеру и аксессуары в одно полностью интегрированное решение. Специалистами холдинга “Швабе” госкорпорации “Ростех” разработан новый цифровой микроскоп. Очень удобно то, что цифровой USB микроскоп легко подключить к ПК, ноутбуку или планшету, и сохранить на жестком диске снимки проводимых наблюдений. Увидеть, как вирус проникает в клетку, узнать химический состав вещества, найти дефект кристаллической решетки — все это могут электронные микроскопы. Компания Системы для Микроскопии и Анализа (СМА) – одна из ведущих научно-технических и инжиниринговых компаний в России, проводник последних достижений в области систем.
Применение цифрового микроскопа Keyence в микроэлектронике
Для удобства работы с частными лицами в Санкт-Петербурге открыт магазин оптики «Галилей» на улице Саблинской д. Для москвичей открыто представительство в столице, которое поставляет оборудование по Москве и Московской области, Салон Veber, Остаповский проезд, д. Программное обеспечение для микроскопов Микромед ИмэджПрос-программа для обработки и анализа потоковых и статических цифровых изображений Программа позволяет проводить следующие основные операции: осуществлять работу с различными типами цифровых камер , включая настройку параметров камер и запись потока изображения осуществлять работу с основными форматами цифровых изображений bmp, jpeg, tif и другими измерять размеры и площадь объектов произвольной формы на цифровом изображении измерять углы между элементами изображения осуществлять бинарную обработку пороговая обработка, оконтуривание, дифференцирование применять линейные и нелинейные фильтры для улучшения качества изображения производить автоматический поиск объектов и определение их размеров на изображении проводить статистическую обработку измерений и строить гистограммы.
Всего здесь учится 127 человек, поэтому классы очень небольшие, в некоторых из них даже меньше 10 детей. Но малокомплектность не отменяет качества образования, поэтому в помощь учителям школа приобрела самую современную технику. О том, как работают приобретения на уроках, рассказывает учитель биологии Елена Булатова: - Занятия с использованием микроскопа можно проводить в любых средних и старших классах. Раньше мы обходились световым микроскопом, но технологии не стоят на месте, и раз такая возможность появилась, осваиваемся с новой техникой. Тем более что навыки практической работы с ней требует иметь государственная итоговая аттестация.
Например, в ОГЭ для 9 класса есть задания на проектирование экспериментов с использованием микроскопом. Поэтому в планах у нас уже есть небольшие исследовательские работы с ребятами. Одно из главных преимуществ новой техники — это наличие видеоокуляра у микроскопа, который позволяет выводить изображение на экран и использовать его для одновременного просмотра не кем-то одним, а всем классом. То есть все ребята сразу могут в режиме реального времени изучать движение какой-нибудь инфузории-туфельки. Кроме того, в этом процессе можно сделать скриншот изображения, который затем по необходимости вставляется в презентации и другие визуальные материалы к уроку. В классах, где преподает Елена Ивановна, в среднем 10-11 учеников.
Вдохновленная конструкцией космического телескопа Джеймса Вебба JWST , новейшая разработка использует зеркальные сегменты для сортировки и сбора света в масштабах микроскопа и позволяет получать трехмерные положения и 3D ориентацию одиночных молекул. Азимутально- и радиально-поляризованный многоракурсный отражатель raMVR. Washington University in St. Louis Микроскопический мир реклама Объекты нашего мира, начиная от мельчайших субатомных частиц и заканчивая Вселенной, отличаются просто невероятным разнообразием размеров. С помощью микроскопов мы можем непосредственно наблюдать за некоторыми объектами и процессами, которые слишком малы, чтобы их можно было увидеть невооруженным глазом. Благодаря микроскопам мы смогли совершить большой рывок в познании мира. Однако размер биологических молекул так ничтожен, что только самые мощные электронные микроскопы могут получить нечеткие, зернистые изображения.
Питание — только от сети переменного тока. Отличный выбор для учебы, хобби и работы в лаборатории. Обе модели обеспечены пожизненной гарантией производителя. Сеть магазинов оптической техники.
Микроскопы, измерительное оборудование, камеры — ООО «Д-микро»
Под эпископическим осветителем понимается свет, падающий на исследуемую поверхность объекта и отражающийся от него. В прямых микроскопах, этот осветитель расположен сверху. Несколько быстросменных методов контраста поддерживают и легко сменяют все исследовательские микроскопы, можно сказать, что это их отличительная черта. Это довольно серьёзная проблема, как сделать универсальную систему под макрообъективы с увеличением 0-50х с микрообъективами, масштабирующими изображение до 7000х. Это совершенно разные подходы к получению изображения. В макрообъективах ценится большое рабочее расстояние и широкое поле зрения, соответственно и сами объективы широкие. В микрообъективах особое значение придаётся разрешению и светосиле. Универсальное крепление разработала компания Olympus, сделав смену объективов таким же лёгким, как застёгивание молнии.
Высокую точность и повторяемость результатов измерений гарантирует программное обеспечение, настроенное на конкретную оптическую систему и учитывающую все особенности этой системы аберрации, смещения, рабочие расстояния, глубину резкости и прочее. Разностороннее продвинутое программное обеспечение обязательно должно быть простым в обращении, интуитивно понятным. Можно сказать, что сейчас происходит унификация для идентичного пользовательского опыта на разных устройствах. Основные функции доступные в Olympus Stream: создание отчёта, выявление включений на окрашенной поверхности для определения источника загрязнения, сшивка нескольких маленьких изображений в одно большое, получение полнофокусного изображения и 3D модели объекта, автоматический подсчёт численности повторяющихся структур, диагностика контаминации, измерение толщины слоя, автоматическое определение контура и другие. Измерительные цифровые микроскопы для метрологии Любой видеоизмерительный микроскоп принципиально отличается от вышеназванных - методикой поверки. В большинстве своём, такие устройства поставляются на утяжелённых штативах и комплектуются большими предметными столиками с высокоточными энкодерами считывателями перемещений. Поверка точных профессиональных зарубежных микроскопов учитывает возможность неточного позиционирования образца, поэтому не обязательно при каждом измерении выравнивать координатную сетку и начало координат по объекту.
Методика поверки NLEC британских микроскопов Vision Engineering, таких как Swift и Hawk производится по двум осям, без использования дополнительных тисков и зажимных механизмов стола, это означает, что заявленная заводом-изготовителем погрешность, будет соблюдаться при любом сценарии использования. Зачастую, высокие значения точности достигаются именно за счёт использования дополнительных приспособлений, не используемых при рутинных измерениях. Важнейшая составляющая таких видеомикроскопов — программное обеспечение.
Ведущий университетский исследователь Роарк Хорстмайер говорит, что Стандартный микроскоп освещает образец одинаковым количеством света со всех сторон, и это освещение было оптимизировано для человеческого глаза в течение многих лет. Но компьютеры могут видеть то, что не могут видеть люди. Таким образом, мы не только изменили конструкцию аппаратного обеспечения для обеспечения широкого диапазона вариантов освещения, но и позволили микроскопу самому оптимизировать освещение для себя. Алгоритмы компьютерного зрения, которые могут классифицировать клетки, инфицированные паразитом P. Несмотря на свою эффективность, они все еще не имеют постоянной точности, необходимой для клинической диагностики.
Компьютерный микроскоп на базе DVD-привода, включающий в себя источник светового излучения, оптическую линзу, поворотное зеркало, светоделительную призму, прибор с зарядовой связью ПЗС-матрица , лазерный диод и прозрачный диск, отличающийся тем, что в верхней части DVD-привода установлен направленный источник света - светодиод с регулируемым током питания, а под прозрачным диском расположена по движная линза, которая снабжена электромагнитной системой позиционирования ее оси перпендикулярно к плоскости прозрачного диска с возможностью перемещения линзы в горизонтальном и вертикальном направлениях, при этом система позиционирования линзы представляет собой электромагнитную систему из постоянных закрепленных на корпусе DVD-привода магнитов и двух пар электрических катушек с выводом проводников на пульт управления. Компьютерный микроскоп по п.
ИИ здесь выполняет роль помощника. Микроскопы, позволяющие реконструировать поверхности и определять недочеты Появившиеся в 80-х годах трехмерные оптические микроскопы, в том числе профилометры для измерения микрошероховатостей на прецизионных поверхностях, продолжают развиваться и сейчас. Bruker, производитель научных инструментов, является одним из лидеров отрасли в этой области: в 2018 году компания приобрела Alicona, поставщика оптических метрологических решений. Именно Alicona разработала новую технологию для трехмерных оптических микроскопов. Речь идет о вариации фокуса, которая позволяет вычислить изображение повышенной резкости и измеряет глубину неровностей с помощью оптики с очень ограниченной глубиной резкости. Так, оптический профилограф Contour LS-K 3D дает возможность получать изображения с высоким разрешением, предоставляя исследователю поддающиеся количественной оценке данные. Это важно для OEM-производителей, которым требуются измерения с более высокой частотой кадров и более высокая пропускная способность для повышения точности и контроля качества. Здесь вступают в игру автоматизация и самонастраивающиеся системы, в которые встроены самоадаптирующиеся алгоритмы. Система выполняет измерения на поверхности, а затем на основе имеющихся у нее критериев для анализа частот и амплитуд решает, какой алгоритм лучше всего использовать для воссоздания топографии поверхности. Инженеры заставляют менять подход к микроскопии Умное управление данными стало частью микроскопии — в этом направлении развиваются такие компании, как ZEISS. Производитель повышает интеллектуальность систем промышленных микроскопов, чтобы получать наилучшие результаты вне зависимости от человеческого фактора, то есть оператора. Это необходимо для современного обеспечения контроля качества там, где производительность и надежность данных являются ключевым. Вместо этого люди начнут более гибко использовать автоматизированные системы. Диджитал-микроскопист: что делают умные системы в медицине Машинное обучение, которое сегодня производители микроскопов используют для сегментации изображений, находит применение не только в промышленности — анализ отказов и контроль качества. Используются эти технологии и в медицине, где они уже стали важной частью автоматизации обработки лабораторных анализов, создания массивов данных и освобождения медперсонала от рутинных процессов. В задачи современного микроскописта входит не только подсчет тех или иных клеток на взятой у пациента пробе, но и целый спектр вопросов, требующих внимательности и усидчивости. В первую очередь это правильное определение типов клеток, предварительная интерпретация результатов и передача данных медицинскому специалисту, в чьи компетенции уже входит постановка диагноза и дальнейшее лечение пациента.
Цифровые технологии для медицины: телематические комплексы и автоматизированные микроскопы
Ближнепольные СВЧ-микроскопы в том числе можно использовать для изучения паразитных двухуровневых систем в подложках. Основной рабочий элемент – это цифровой микроскоп, подключенный к компьютеру со специализированным программным обеспечением. У компьютера должен быть USB вход.
Цифровые микроскопы
Новый микроскоп «Швабе» будет востребован на промышленных предприятиях для технического контроля на различных стадиях производственных процессов. Ученые Калифорнийского университета в Лос-Анджелесе фактически изобрели микроскоп заново: их прибор лишен линз, умещается на ладони. Чтобы еще больше улучшить адаптируемость микроскопа, ученые добавили возможность переключения на механизм лазерного сканирования на основе гальванометра. Цифровой USB микроскоп — возможность получения качественного изображения на экране компьютера. Особенности школьного цифрового микроскопа. или видеокамеры, которая отвечает за вывод изображения.
Цифровые микроскопы
Поворачивая источник света, образец можно было бы освещать под различными углами. Путем комбинирования полученных изображений система выстраивает трехмерный томографический снимок образца в высоком разрешении.
Процессор с тактовой частотой 3 гигагерца в реальном времени обрабатывает сигнал с интерферометра, выстраивая трёхмерное изображение объекта с частотой 7 кадров в секунду. Главная проблема, с которой столкнулись авторы проекта — минимизация и устранение влияния шума в источнике когерентного света.
Решив их, исследователи продемонстрировали возможности своего прибора, сфотографировав живой мышиный нейрон и его детали с высоким разрешением.
Это снижает шум. Другим микроскопам необходимо увеличивать интенсивность лазера, чтобы улучшить четкость изображений. Снижая шум, можно улучшить четкость без увеличения мощности луча. Ключевой задачей было создание квантовой запутанности, достаточно яркой для лазерного микроскопа. Команда сделала это, сконцентрировав фотоны в лазерных импульсах длительностью всего несколько миллиардных долей секунды. Это привело к запутанности, которая была в 1000 млрд раз ярче, чем ранее использовалась при визуализации. Ученые проверили свой микроскоп, рассмотрев колебания молекул в живой клетке.
Принципиально процесс действия цифрового микроскопа аналогичен функциям оптического устройства. Свет, отражённый от объекта, направлен в фотообъектив. Изменяя качество света, исследуют разные типы поверхностей: Светлое поле — подходящий режим для плоских препаратов; Освещение под углом идеально для шероховатых поверхностей; Темное поле применяет приглушенный свет рассеянный или отраженный для подсветки неровной поверхности; Функция смешанного контраста содержит особенности темного и светлого режимов для выявления мельчайших деталей. В современном мире принято разделение по типу цифровых микроскопов. В первую очередь все модели разделяются на настольные и портативные. Далее, идёт разделение по техническим критериям: По степени кратности увеличения 60, 100, 200, 300, 600, 1000х и далее. Сегодня цифровые микроскопы интегрированы в рабочие процессы многих видов человеческой деятельности, науки и производства: микроэлектроника, материаловедение, криминалистика, фармацевтика и медицина, а также в процессах образования: В учебном процессе, при изучении естественных наук. Многие кабинеты биологии, химии уже оборудованы этой передовой техникой. Отличная возможность подключения микроскопа к внешнему демонстрационному устройству проектору, монитору ПК, экрану ТВ позволяет наглядно и быстро знакомить аудиторию с полученной информацией, проводить лекции и лабораторные работы; В научной лаборатории для проведения осмотра исторических документов и артефактов, изучения образцов материалов в археологии и палеонтологии и пр. Идентификация подлинности банкнот, монет, марок и пр.
Цифровые технологии для медицины: телематические комплексы и автоматизированные микроскопы
С другой стороны, пользователь за относительно небольшие деньги получает полноценное устройство для записи фото- и видеоматериалов, а зачастую и точного измерения объектов на большом увеличении. Подобные USB-микроскопы идеально подойдут для проверки микросхем, ремонта компьютерной техники, любительской нумизматики и филателии, а также в качестве инструмента, способного увлечь ребенка в удивительный мир микроскопии. При выборе цифрового микроскопа рекомендуем обратить внимание на микроскопы Levenhuk DTX , представленную широким ассортиментом различных моделей, начиная от самых простых по конструкции, до оснащенных модулями Wi-Fi, дисплеями и штативами с предметным столиком по подобию обычных механических приборов, а также приближенные к профессиональным микроскопы DTX RC с металлическим корпусом и качественной механикой. Искушенным же профессионалам можно порекомендовать модели от российского бренда Альтами — моновидеомикроскопы из линейки МВ, представляющие собой линзовые блоки с оптическим трансфокатором зум-системой , специально предназначенные для подключения к ним цифровых камер.
Такое решение полностью заменяет по функционалу стереомикроскоп и позволяет добиться более четкого изображения по сравнению с последним, но доукомплектованным камерой.
Низкая частота сканирования также влияет на общий FPS системы, поскольку определяет, насколько быстро лазер перемещается в другом направлении, т. Вместе они создают компромисс между временным разрешением микроскопа и размером кадра наблюдения. Чтобы решить эту проблему, международная группа исследователей из Китая и Германии разработала мощную установку TPM с беспрецедентно высокой частотой линейного сканирования. Согласно отчету, опубликованному в журнале Neurophotonics, эта система микроскопии была разработана для визуализации быстрых биологических процессов с высоким временным и пространственным разрешением.
Одним из ключевых факторов, отличающих предлагаемые TPM от традиционных, является использование акустооптических дефлекторов acousto-optic deflectors, AOD для управления сканированием возбуждающего лазера. AOD — это особый тип кристалла, показатель преломления которого можно точно контролировать с помощью акустических волн, перенаправляя через него лазерный луч. Также они обеспечивают более быстрое лазерное управление, чем это достигается с помощью гальванометров, используемых в обычных TPM.
Взятие материала, доставка его до лаборатории, анализ, постановка диагноза, транспортировка «стеклышек» до другого специалиста, чтобы получить второе мнение, — сейчас это занимает много времени. RoboScope — отличный выход, когда необходимо срочно узнать, есть ли у пациента тяжелое заболевание или нет. К примеру, в онкологии. Команда наших разработчиков успешно справилась с задачей — создать роботизированный микроскоп, который будет качественным и доступным по цене для региональных клиник, а значит — перспективным с точки зрения импортозамещения», — подчеркнул Георгий Лебедев, директор Института цифровой медицины Сеченовского Университета, заведующий кафедрой информационных и интернет-технологий.
Для этого молодая команда стартапа создала и развивает свою производственную базу — она расположена в Москве и оснащена современными высокотехнологичными станками с числовым программным управлением. Разработка будет востребована среди клиницистов и врачей-патоморфологов и, как я вижу, сократит пропасть между ними — поможет найти общий язык в постановке диагнозов», — сказал Игорь Шадеркин, руководитель лаборатории электронного здравоохранения Института цифровой медицины Сеченовского Университета. Презентацию транслировали онлайн — за ней в режиме реального времени наблюдали клиницисты, патоморфологи, лаборанты, инженеры и студенты-медики со всей России. Руководитель проекта RoboScope Илья Ефремов подробно рассказал о том, как функционирует микроскоп, а руководитель группы разработки Игорь Болтов вживую продемонстрировал полный цикл работы прибора.
В одних моделях на вращающейся головке установлено 2-3 объектива, в других — они навинчиваются на держатель.
Цифровая камера. Обеспечивает высокое разрешение получаемой картинки. USB кабель. С помощью него информация передается на ПК, планшет или другие устройства. Фокусировочный механизм.
Обеспечивает регулировку четкости изображения. Программное обеспечение. Позволяет обработать изображение, сделать замеры и провести другие операции. Принцип работы цифрового микроскопа схож с принципом функционирования оптического прибора. Световые потоки отражаются от образца и направляются в фотообъектив.
Меняя свет, можно исследовать разные поверхности. Например: Светлое поле — идеальный режим для плоских образцов; Косое освещение подойдет для неровных поверхностей; Темное поле использует рассеянный или отраженный свет для подсветки неровностей; Смешанный контраст сочетает возможности темного и светлого режимов, делает заметными мельчайшие детали. Цифровые технологии позволяют увеличить контрастность, детализацию, четкость изображения. Для этого достаточно выбрать желаемую опцию в программе микроскопа. Виды микроскопов Существует несколько типов цифровых микроскопов.
В зависимости от показателей автономности выделяют настольные и портативные устройства. Модели различаются по таким критериям: Степень увеличения 60, 100, 200, 300, 600, 1000 крат и тд ; С цифровой камерой или комбинированной технологией цифровая камера и оптический объектив ; С одной или двумя подсветками. В зависимости от строения и возможностей микроскопа определяется его сфера использования.