Сила притяжения не такая, как в случае с углеродистой сталью, чтобы почувствовать притяжение потребуется неодимовый магнит. Поскольку мы регулярно подвергаемся воздействию магнитов, которые, как мы знаем, притягивают железо, возникает вопрос: можно ли извлечь железо из крови с помощью мощного магнита? Но раз к магниту притягиваются все вещества, то исходный вопрос можно переформулировать так: «Почему же тогда именно железо так сильно притягивается магнитом, что проявления этого легко заметить в повседневной жизни?».
Магнит. 4. Почему к постоянному магниту притягиваются и другой магнит, и кусок железа?
Наука - 24 декабря 2020 - Новости Новосибирска - Марикур указывает, что в каждом куске магнита имеются две области, особенно сильно притягивающие железо. Особенность железа в том, что в магнитном поле внешние электроны его атомов ориентируются определенным образом. Какое железо притягивает магнит. 1) Магниты притягивают и захватывают небольшие кусочки железа. Почему магнит не притягивает органические вещества? «У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно».
Почему магнит притягивает железо? — точный ответ!
Почему магнит притягивает металл? Магниты привлекают любые металлы, которые сделаны из железа или металлов с железом в них. это явление, при котором магнит притягивает к себе предметы, содержащие железо. Но это – иллюзия, ибо ряд магнитных эффектов до сих пор не понят, и ни один учебник не объяснит вам толком, почему магнит притягивает железо. После эксперимента с лягушкой стало ясно, что магнит способен притягивать все, но почему сильнее всего он притягивает железо? Любой магнит, любого размера, даже самый маленький имеет северный и южный полюса.
Являются ли магниты металлом? Правда, объясненная любителям науки
Что это за интересное явление? Конечно же это магнит. Любой магнит, любого размера, даже самый маленький имеет северный и южный полюса. Разные полюса притягиваются друг к другу, а одинаковые полюса отталкиваются друг от друга.
Искусственные магниты можно сделать любой формы и размеров. Примечание 1 Интересный факт: наша планета Земля представляет собой огромный магнит. Раскаленная масса, состоящая из смеси заряженных частиц, вращается вместе с Землей. В результате чего возникают непрерывно циркулирующие потоки и вихри, являющиеся главной причиной появления магнитного поля Земли.
Начались исследования обнаруженного феномена. Для начала Эрстед повторил условия своего лекционного опыта. Опыты Эрстеда 1. Магнитные стрелки располагаются на подставке с иглой и могут свободно вращаться.
В свободном состоянии они ориентируются по меридиану Земли, однако, поскольку все они обладают магнитными свойствами, они влияют друг на друга и ориентированы хаотично. Между стрелками расположим проводник из немагнитного материала медь, алюминий. Проводник соединим через ключ с источником постоянного тока. Пока цепь разомкнута и в проводнике нет тока, стрелки не реагируют на присутствие провода.
При замыкании цепи стрелки стремятся развернуться таким образом, чтобы быть ориентированными по касательной к окружности, центром которой является проводник рис. Опыт Эрстеда Изменим полярность подключения провода. При смене направления тока в проводнике мы увидим, что стрелки опять стремятся развернуться таким образом, чтобы быть ориентированными по касательной к окружности, центром которой является проводник, но при этом их полюса меняются местами. Далее Эрстед проверяет действие проводников из различных металлов на стрелку.
Для этого берутся проволоки из платины, золота, серебра, латуни, свинца, железа. Оказывается, что металлы, которые никогда не обнаруживали магнитных свойств, приобретают их, когда через них протекает электрический ток. Когда Эрстед ставил провод вертикально, то магнитная стрелка совсем не указывала на него, а располагалась как бы по касательной к окружности, центром которой является проводник. При этом стрелки, которые находились в диаметрально противоположных точках окружности, были ориентированы противоположно друг другу рис.
Эти линии говорят о существовании магнитного поля, которое, разумеется, останется и после того, как мы уберем все наши магниты. Обследовав всю поверхность Земли, мы увидим, что линии сходятся на севере Канады, а также в некоторой области в Австралии. Почти повсюду эти линии идут не горизонтально, а наклонены к земной поверхности[67]. Их направление указывает на то, что Земля похожа на огромный магнит с магнитной осью, слегка повернутой относительно географической оси вращения фиг. Именно это слабое земное магнитное поле используется для навигации с помощью компаса, несмотря на то, что стальные корабли обладают собственным магнитным полем, которое частично имеет переменный характер, что сильно затрудняет навигационное дело. Эквивалентный магнит для внешнего магнитного поля Земли. Северный полюс стрелки компаса указывает на север Канады. Следовательно, там должен находиться южный магнитный полюс Земли.
Этот полюс, однако, называют Северным магнитным полюсом. Если это будет вас затруднять, то избегайте таких сокращений, как «северный полюс», и называйте все полюсы их полными именами, т. Это избавит от путаницы. Когда же вы полностью уясните себе этот вопрос, вам, возможно, снова захочется вернуться ради экономии времени к сокращенным наименованиям. Магнитное поле Земли на значительных пространствах однородно, т. Поэтому с его помощью можно провести очень важный опыт — проверить равноправность северного и южного полюсов магнита. Положим магнит на пробку и пустим его плавать в воду. Земное магнитное поле повернет магнит в направлении N-S.
Будет ли оно также перемещать его в каком-либо определенном направлении, например на север? Если северный и южный полюсы плавающего магнита обладают равной силой хотя создаваемые ими поля противоположны по направлению , можно ожидать, что магнитное поле Земли будет притягивать их одинаково. Под действием такого притяжения магнит повернется вокруг своей оси, но не будет двигаться по поверхности воды ни на север, ни в каком-либо другом направлении. Если же полюсы плавающего магнита неодинаковы, то можно ожидать, что магнитное поле Земли будет действовать на них с различной силой и заставит магнит перемещаться в некотором направлении. Проведите этот важный опыт сами. Хотя земное магнитное поле довольно слабое, оно способно заметно искривить путь электронного пучка. В следующих разделах мы увидим, как магнитное поле может выталкивать проводник с электрическим током, действуя подобно катапульте. Потоки заряженных частиц космического излучения, приходящие из мирового пространства, также заворачиваются земным магнитным полем.
Это позволяет использовать Землю во многих современных экспериментах с космическими лучами как гигантский анализирующий магнит. Как намагничивают магниты В современной практике намагничивание магнитов производится с помощью электрического тока. Для этого ток пропускается не через намагничиваемый металлический брусок, а через намотанную вокруг него проволочную катушку. Магнитное поле внутри длинной цилиндрической катушки соленоида однородно, а напряженность его легко менять, регулируя ток. Поэтому такая катушка чрезвычайно удобна для опытов по намагничиванию. Если мы поместим стальной брусок внутрь соленоида и подадим в катушку ток, то увидим, что при включенном токе брусок намагничивается. После выключения тока брусок по-прежнему остается магнитом, хотя и несколько более слабым. Для намагничивания бруска достаточно пропускать ток через катушку в течение всего лишь доли секунды.
Существует несколько материалов, пригодных для получения таких «постоянных магнитов». Для этой цели подходит большинство сортов закаленной стали. Еще лучше специальные стали, содержащие вольфрам или кобальт. Некоторые новые сплавы, в состав которых входит алюминий, например «алнико», позволяют создавать еще более сильные магниты, однако требуют больших полей для намагничивания. Все эти материалы также можно намагнитить, помещая их на короткое время в магнитное поле. Обращение магнитного поля путем перемены направления тока в катушке меняет и направление намагничивания. Как размагничивают магниты Намагниченный стальной брусок можно полностью размагнитить, помещая его внутрь катушки, через которую пропущен переменный ток, и затем медленно вынимая оттуда. Другой способ — постепенно уменьшать силу переменного тока до нуля с помощью реостата.
Временное намагничивание мягкого железа Пытаясь намагнитить кусок мягкого железа, т. Если ток выключить, брусок почти полностью потеряет магнитные свойства. Мягкое железо оказывается прекрасным материалом для временного намагничивания, поэтому оно используется для изготовления сердечников электромагнитов в электромоторах и других электромагнитных устройствах. Мы можем временно намагнитить брусок из мягкого железа, поднося к нему магнит. Если N-полюс магнита находится около конца А бруска АВ, то стрелка компаса покажет, что брусок приобрел магнитные свойства, причем его южный полюс оказывается в А, т. Если же мы унесем магнит, эти полюсы сразу исчезнут. Теперь вы можете понять, почему ненамагниченные железные опилки притягиваются к магниту. Он намагничивает эти небольшие кусочки железа, но неоднородное магнитное поле оказывает неодинаковое воздействие на их полюсы.
Кусочки железа, близкие к северному полюсу магнита, будут иметь на краю, обращенном к магниту, южный полюс, и этот полюс будет сильно притягиваться к магниту. Их северный полюс будет находиться дальше от магнита, т. Таким образом, опилки будут сильнее притягиваться к магниту, чем отталкиваться от него[68]. Обобщая эти рассуждения, можно сказать, что магнит притягивает любой ненамагниченный кусок железа, создавая в нем временное намагничивание. Даже маленькая компасная стрелка будет временно намагничивать железный брусок. Будучи более подвижной, чем тяжелый брусок, стрелка будет сама поворачиваться и указывать в его сторону. Ее вращение говорит нам только о том, что как стрелка, так и железный брусок могут намагничиваться и что по крайней мере один из них уже намагничен. Следовательно, наблюдая притяжение, нельзя сказать, являются ли магнитами оба тела.
Однако такое заключение легко сделать, если мы увидим, что они отталкиваются. Магнитные и немагнитные материалы Если попытаться намагнитить образцы из меди, железа, стекла и других материалов, помещая их в соленоид с током, то выяснится, что лишь некоторые из этих образцов обнаруживают магнитные свойства. Такие материалы мы называем магнитными. К ним принадлежат железо, многие железные сплавы, никель. Ряд веществ, как, например, жидкий кислород и некоторые соединения железа, тоже в слабой степени проявляют магнитные свойства, но большинство веществ немагнитно. Основываясь на этом, мы говорим, что немагнитные вещества невозможно намагнитить в противоположность магнитным, и последние, если они намагничены, мы называем магнитами. Более тонкие опыты опровергают это простое правило. Многие вещества при помещении их в магнитное поле обнаруживают слабые временные магнитные эффекты, и мы можем проследить их магнитные свойства вплоть до атомного уровня.
Более того, мы в состоянии показать, что некоторые атомы, сами являются магнитами, и знаем способ который будет описан далее , как измерить их магнитные свойства. Даже те немногие металлы, как, например, железо, которым свойственны значительные магнитные эффекты и которые могут служить материалом для постоянных магнитов, также обязаны своими свойствами атомному магнетизму. Их атомы обладают специфической способностью объединяться, при этом атомные магнитики выстраиваются-особым образом, создавая прочные постоянные группы. Атомная теория предсказывает также и другие магнитные свойства атомов. Весьма забавно, что результатом этих предсказаний является отрицательный магнетизм, совсем не похожий на тот, с которым мы всегда встречаемся, и теория утверждает, что им, хотя и в очень слабой степени, обладают все вещества. На чем основаны эти предсказания? Достаточно ли они правдоподобны? Наблюдался ли этот отрицательный магнетизм на опыте?
Если да, то почему же не для всех веществ? На эти вопросы мы кратко ответим в гл. Магнитное поле электрического тока Опыты говорят нам о том, что всякий электрический ток создает вокруг себя магнитное поле. Магнитное поле, окружающее длинную катушку из проволоки, которую часто называют соленоидом, очень похоже на поле намагниченного стержня. При детальном сравнении оказывается, что конфигурации внешних магнитных полей такого стержня и соленоида, имеющего ту же форму и размеры, попросту одинаковы. Можно показать, что внутри полой катушки магнитные силовые линии идут плотным параллельным пучком, образуя сильное однородное магнитное поле. Задача 2 Почему лучше намагничивать стальной стержень, помещая его внутри соленоида с током, а не снаружи? Задача 3 На чертеже а фиг.
Если уменьшать длину соленоида, сжимая его, как гармошку;, конфигурация поля будет меняться, как показано на чертеже б. Представим себе, что катушка сжата до предела чертеж в , так что превратилась в один виток. Можете ли вы предсказать, как будет выглядеть магнитное поле витка с током, представив себе характер сжатия силовых линий? Изобразите ожидаемую конфигурацию поля. Согласуется ли она с опытом? Задача 4 Внешнее магнитное поле соленоида совпадает с полем намагниченного стержня одинаковых размеров и формы. Какую же форму имел бы магнит, создающий такое же поле, как и виток с током в? Нарисуйте или опишите этот эквивалентный магнит.
Если ее подвесить, она будет поворачиваться до тех пор, пока ее ось не укажет в направлении N-S. Она ведет себя так, как будто имеет на концах «полюсы», которые притягивают или отталкивают полюсы других магнитов. Небольшая катушка с током, помещенная в магнитное поле Земли, магнита или другой катушки, будет поворачиваться наподобие стрелки компаса, пока ее магнитная ось не станет параллельной внешнему полю. Магнитное поле прямого провода с током Есть один особый очень важный случай проводника с током, когда нельзя подобрать эквивалентного магнита одинакового размера и формы. Это случай длинного прямого провода с током. С помощью железных опилок или крошечного компаса можно показать, что магнитные силовые линии такого проводника представляют собой опоясывающие его окружности, расположенные, разумеется, не в одной плоскости, а повсюду вокруг него. Магнитное поле сильнее вблизи провода и ослабевает вдали от него. Этот первый эффект магнитного действия электрического тока был открыт следующим образом.
В конце своей лекции о свойствах электрического тока датский ученый Эрстед поместил токонесущий провод около компасной стрелки и был до глубины души изумлен, увидев, что стрелка повернулась. Когда известие об этом открытии распространилось по Европе, оно породило целую лавину исследований. Ампер и другие ученые, пытаясь объяснить эти опыты, вскоре ввели в физику понятие электромагнитного поля. Явление, обнаруженное Эрстедом, представлялось крайне удивительным. Таким образом, силы действовали на компасную стрелку не в направлении прямой, соединяющей ее полюс с проводником, а в перпендикулярном направлении. Последующие опыты подтвердили это заключение и показали, что сила, действующая со стороны магнита на ток, перпендикулярна как направлению магнитного поля, так и направлению тока — проводник с током, помещенный в магнитное поле, испытывает боковое усилие. Эти новые силы полностью отличались от уже известных обычных сил, таких, как, например, силы тяготения направленные по прямой от одной массы к другой или силы, возникающие при столкновении упругих шаров или молекул которые отбрасывают их в противоположные стороны , а также силы притяжения или отталкивания , действующие по прямой между электрическими зарядами и между магнитными полюсами. До открытия Эрстеда были известны только такие силы, которые действуют вдоль прямой, соединяющей взаимодействующие тела.
Незадолго до Великой Французской Революции школа мыслителей, включая Вольтера и других, создала механистическую философию полностью предсказуемой Вселенной, основываясь на концепции таких простых сил. Когда обнаружилось, что новые электромагнитные силы зависят от скорости движения электрических зарядов тока , они стали казаться еще более странными. Это были силы, которые увеличивались с ростом скорости и действовали перпендикулярно ей! Однако именно такие силы заставляют работать электрический двигатель. Мы можем проиллюстрировать происхождение этих сил с помощью карты магнитного поля. Круговое магнитное поле, окружающее прямолинейный проводник с током, само по себе несколько необычно, но и только. Однако в комбинации с однородным магнитным полем оно создает отклоняющие силы, без которых невозможна работа электродвигателей, измерительных приборов, телевизионных трубок и некоторых гигантских ускорителей заряженных частиц. Чтобы продемонстрировать, откуда возникают эти силы, изобразим магнитные силовые линии с помощью векторов.
Магнитное поле действует как катапульта Мы сможем предсказать направление действия результирующей силы, складывая векторы сил, отвечающих двум различным полям. Конфигурация однородного магнитного поля — это ряд равномерно идущих параллельных силовых линий, как показано на фиг. Мы рисуем эти окружности сгущающимися вблизи проводника, чтобы показать, что поле около него сильнее. Векторное сложение этих двух полей дает примерно ту же картину, что мы получили в гл. Поэтому мы поступим точно так же, как и раньше. Изобразим оба поля вместе, как на фиг. Метод сложения векторов и доказательство выталкивающего действия магнитного поля на проводник с током. В некоторой произвольной точке А нарисуем стрелки-векторы, отмечающие напряженности обоих полей, одну в направлении однородного магнитного поля, а другую по касательной к окружности.
Сложим эти векторы и обозначим результирующее направление короткой стрелкой, выходящей из А. В другой точке В однородное поле не меняется, а поле, создаваемое током, ослабевает. Сложим опять их векторы и снова обозначим результирующее направление короткой стрелкой, исходящей из В чертеж г. Нанесем множество таких стрелок по всей диаграмме. Они покажут нам направление результирующего поля, которое мы хотели найти. Начертим силовые линии этого поля, проходящие через стрелки чертеж д. Здравый смысл подсказывает нам следующие очевидные выводы: а Вблизи проводника преобладает магнитное поле, создаваемое током, и силовые линии суммарного поля практически совпадают с окружностями, в центре которых находится проводник. В этой точке оба поля полностью компенсируют друг друга.
Чтобы правильно начертить конфигурацию результирующего магнитного поля, нужно запастись терпением. К счастью, карту поля можно получить, пользуясь косвенными геометрическими методами основанными на математическом соотношении, которое обычно записывается , и тому, кто их знает, будет легко вычертить ее на нашей диаграмме. Соответствующая картина показана на фиг. Если, следуя Фарадею, мы будем видеть в магнитных силовых линиях графическое изображение реальных сил, которые действуют на магниты и проводники с током, то придем к заключению, что результирующее магнитное поле, изображенное на последнем рисунке, будет тянуть проводник вниз. Таким образом, здесь мы имеем дело с поперечной силой, перпендикулярной как проводнику, так и направлению однородного магнитного поля. Разглядывая эти картинки, мы можем сказать, что результирующее поле действует наподобие катапульты или рогатки фиг. Опыт, демонстрирующий конфигурацию магнитных силовых линий при взаимодействии токов. Поперечная катапультирующая сила[71] Действует ли на самом деле эта сила непосредственно на проводник с током, проходящий поперек магнитного поля?
Проверьте это на опыте, используя гибкий провод, электрическую батарею и подковообразный магнит. Включайте электрический ток при различных положениях проводника в сильном однородном поле между полюсами магнита. Если ток достаточно велик, то, как мы и ожидали, возникает поперечная сила, смещающая провод в сторону см.
Почему у магнита два полюса?
Дак и я не сомневаюсь что магнит притягивает железки и могу померить параметры этого притяжения. И так, магнит притягивает к себе железо потому, что может намагнитить его из-за особых свойств. Расстояние между магнитом и притягиваемым объектом влияет на силу притяжения: сила ослабевает с увеличением расстояния. В данной статье мы рассмотрим, почему магнит притягивает железо и как это можно объяснить.
Почему магнит притягивает железо
Теория поля гласит, что вокруг магнита существует магнитное поле, которое создается движущимися зарядами внутри магнита. Это магнитное поле оказывает воздействие на другие заряды, создавая силу притяжения или отталкивания. В случае с магнитом и железом, внутри железа есть свободные электроны, которые составляют вещество железа. Когда магнитное поле магнита воздействует на эти свободные электроны, они начинают двигаться и ориентироваться вдоль силовых линий магнитного поля. Это создает магнитизацию в железе, которая приводит к притяжению к магниту. Теория доменов объясняет притяжение магнита к железу через ориентацию магнитных доменов. Внутри материала, такого как железо, есть множество микроскопических областей, называемых магнитными доменами. Каждый домен имеет магнитный момент, который может быть ориентирован в одном из двух направлений: вверх или вниз. Когда магнит не подвергается воздействию внешнего магнитного поля, домены ориентированы хаотично и магнитный момент всех доменов взаимно уничтожается, что делает материал немагнитным. Однако, когда магнит подносится к железу, его магнитное поле начинает воздействовать на домены, выстраивая их вдоль силовых линий магнитного поля магнита. Это приводит к тому, что магнитные моменты доменов начинают суммироваться и создают сильное магнитное поле в железе.
Это привлекает магнит к железу и создает притяжение. Однако, важно отметить, что магнитная притяжение между магнитом и железом не является единственным видом притяжения, который может быть наблюдаемым.
Немного истории Происхождение слова «магнит» покрыто тайной. Ученые склоняются к версии названия, произошедшего от имени греческого пастуха Магнеса, пастух нашел минерал и был удивлен его свойствам. Другая неподтвержденная гипотеза: минерал назван так в честь региона Магнесия, находившегося в Малой Азии. В этом районе были открыты залежи магнетита.
Применение Магниты нашли широкое применение в разных областях деятельности человека. В строительстве используются магнитные фиксаторы или намагниченная вода. В нефтепереработке магнитные элементы препятствуют образованию отложений на трубопроводах, в медицине используются для производства приборов МРТ. В транспорте нашли применение в качестве запорных устройств, преобразователей и датчиков. Магнетизм, как научное явление, вызывается перемещением электронов. Вещества и предметы состоят из мельчайших атомов, эта физическая единица представляет собой ядро и движущиеся вокруг него электроны.
Пользоваться мы будем устоявшейся терминологией, не вводя никаких новых понятий. Для единообразного понимания сути излагаемого вопроса я буду конкретизировать, что я понимаю под тем или иным термином. Кроме того, мы не будем пользоваться производными понятиями и величинами высших порядков, только самыми общими, привычными и понятными.
Начнем с понятия магнитное поле МП. Безусловно, никакого физического магнитного поля нет и быть не может. Существует область пространства вокруг магнита проводника с током с измененным, относительно остального пространства, состоянием.
Не имеют значения, для рассмотрения излагаемого вопроса, причины изменения состояние пространства. Достаточно понимать, что некоторая область пространства вокруг магнита имеет особые свойства, отличные от остального пространства. И описывается эта область математическим аппаратом теории поля.
Вот эта область и получила название магнитного поля. Существует множество формулировок этого понятия. От крайне запутанных, до откровенно абсурдных.
Договорились до того, что магнитная проницаемость есть показатель того, во сколько раз усиливается магнитное поле сердечником из ферромагнетика за счет внутренних свойств ферромагнетика. Конечно это не так. Магнитная проницаемость - проницаемость вещества для магнитного потока.
И ничего более. Величина, обратная магнитному сопротивлению. Условно проницаемость окружаемого нас пространства равна единице.
Соответственно, сопротивление также равно единице. Чем выше магнитная проницаемость, тем меньше сопротивление вещества прохождению через него магнитного потока. Полный аналог проводимости и активного сопротивления проводника.
Распределение магнитного потока в веществе подчиняется законам Кирхгофа для магнитных цепей, аналогичным законам Кирхгофа для электрических цепей. Магнитная проницаемость большинства веществ находится в районе единицы, то есть имеет почти максимальное сопротивление распространению магнитного потока. У группы веществ, называемых ферромагнетиками, магнитная проницаемость значительно выше, то есть сопротивление распространению магнитного потока на несколько порядков ниже, чем у воздуха, или вакуума.
В частности, у железа, никеля и их различных сплавов магнитная проницаемость составляет 103…106 и более. Иными словами, ферромагнетики оказывают прохождению магнитного потока сопротивление в десятки тысяч…миллионы раз меньшее, чем вакуум, воздух и все другие вещества. Вот этих двух понятий вполне достаточно для наших дальнейших рассуждений.
Для начала возьмем в руку любой магнит и подержим на весу. Что мы ощущаем? Ничего, кроме веса магнита.
Никакие силы на магнит явно не действуют, никуда он не стремится и находится в состоянии покоя. Если поднести к нему железное тело любой формы, то с некоторого расстояния мы ощутим возникшую силу, направленную на сближение магнита и железа.
Взаимодействие магнита происходит практически со всеми веществами, при этом вариантов этих самых взаимодействий намного больше, чем известные нам «притягивание» и «отталкивание». Специфическое строение некоторых металлов и сплавов позволяет им достаточно мощно притягиваться к магниту. Другие металлы и вещества тоже имеют это свойство, однако оно во много раз слабее. Рассмотреть притяжение в данный момент будет крайне сложно, для этого потребуется сильнейшее магнитное поле, которое невозможно создать в домашних условиях. Итак, если свойство притягивания к магниту есть у всех веществ, то почему именно металлические предметы сильно магнитятся, и этот процесс можно увидеть?
Дело в том, что все зависит от внешнего строения атомов и их взаимосвязи именно в металле. Всё, что нас окружает, состоит из атомов, которые связаны между собой. Именно эта связь определяет материала.
Какие металлы магнитятся?
Просмотр темы - Откуда берется почти бесконечная энергия в магните ? • | почему магниты магнитят, смысл магнитов, суть магнитизма, магнитный эффект И так, с самой сутью магнита и его природой действия разобрались. |
Какие металлы притягивает поисковый магнит? — блог Мира Магнитов | А правда, почему кусок железа или ферромагнетика притягивается к магниту? |
Почему кусок железа притягивается к магниту | Если вам понравилась эта статья, почему бы также не прочитать о том, почему магниты притягивают металл или факты о счетах? |
Как сэкономить деньги, нервы и здоровье на магнитах | Пикабу | Пока железо и магнит притянуты друг к другу, их магнитные поля остаются в параллельном направлении. |
Энергоинформ — альтернативная энергетика, энергосбережение, информационно-компьютерные технологии | Любой магнит, любого размера, даже самый маленький имеет северный и южный полюса. |
Энергоинформ — альтернативная энергетика, энергосбережение, информационно-компьютерные технологии
Какие металлы, кроме железа, притягиваются магнитом? | Поля двух магнитов вблизи могут взаимодействовать между собой, и это взаимодействие проявляется как притяжение или отталкивание магнитов. |
«Почему магнитится только железо, а алюминий-нет?» — Яндекс Кью | Как и другие постоянные магниты, неодимовый магнит притягивает только ферромагнетики. |
Движение электронов и магнитное поле
- What Makes a Material Magnetic?
- Суть магнита. Почему магниты магнитят. Природа и принцип действия магнитов и электромагнитов.
- Притягивает ли магнит железо?
- Расплавленное железо и магнит: необычный эксперимент
Что такое магнит и магнетизм?
- Суть магнита. Почему магниты магнитят. Природа и принцип действия магнитов и электромагнитов.
- Притягивает ли магнит железо?
- Расплавленное железо против магнита: увлекательный эксперимент
- Что такое магнит и магнетизм?
- Наиболее распространённые виды поверхности нержавеющих листов
- Почему магнит притягивает и отталкивает