Проходят обучение программированию нейронных сетей. Выдающийся преподаватель иностранного языка и автор собственной методики обучения рассказала о том, как искусственный интеллект меняет образование.
Андрей Комиссаров: Нужно держать глаза открытыми
Они отвечают за то, чтобы как можно лучше обучать сеть генерировать картинки, видео и другой контент. А есть команда, которая занимается приложением. Она следит за тем, чтобы всё классно работало, было красиво, придумывает продуктовое развитие — это команда Николая. Недавно Шедеврум научился генерировать короткие видеоролики! Нейросеть создаёт видео длиной четыре секунды с частотой 24 кадра в секунду. После публикации ими можно поделиться с друзьями или сохранить в формате MP4. Чтобы получился ролик, сперва нужно описать текстом то, что хочется увидеть.
В ответ приложение предложит четыре варианта первого кадра и набор анимационных эффектов для создания движения. Нейронка берёт за основу выбранное пользователем изображение, создаёт набор его изменённых версий и объединяет всё выбранным эффектом. Сейчас их семь: зум приближение , таймлапс ускоренная перемотка , полёт, панорама, вращение, подъём и морфинг постепенное изменение. А какие сотрудники тебе всегда нужны в команду? И где их найти? Вот три группы специалистов, которых я всегда жду.
Machine learning research инженеры, чтобы выдвигать гипотезы, писать код по их имплементации, проверять их, читать статьи и генерировать свои идеи по улучшению нейросетей. Их главная задача — развивать область генеративных моделей, проводить нетривиальные эксперименты и исследовать новые подходы в диффузионных моделях. Их задача — писать код, чтобы всё работало. В то время как ML-инженеры разрабатывают модели обучения машин, MLOps-инженеры программируют весь цикл машинного обучения: от разработки до внедрения и поддержки. Этим специалистам должно быть интересно работать над высоконагруженными сервисами, использующими нейросети, а также развивать экосистему инструментов вокруг новейшей и динамично развивающейся области генеративных моделей. Аналитики, поскольку работа с данными критически важна.
Мы ищем специалистов, чтобы улучшить данные для обучения: мы комбинируем ML- и DS-методы с ручной разметкой, пробуем разные подходы для файнтюна финальной модели, создаём инструменты для оценки качества, сравнения с конкурентами и поиска точек роста. В чём конкретно заключается твоя работа над нейросетью? Я сейчас собираю команду, которая будет работать над улучшением модели генерации. Но в основном задачи разработчиков, обучающих сеть, это: Собрать данные. Написать код, который будет это делать. Проверить, что всё верно.
Принять решения исходя из знаний и интуиции. Запустить обучение. Проанализировать графики, которые показывают, хорошо работает сеть или нет.
Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Новые технологии упрощают задачу и сокращают время поиска.
ИИ плотно проникает в сферу образования и начинает ее менять. В России уже есть примеры успешной реализации нейросетей в этой сфере. Например, платформа "Высшая математика" использует алгоритмы ИИ для создания индивидуальных программ обучения по математике. Также в университетах внедряются системы онлайн-обучения, которые используют ИИ для повышения эффективности обучения и оценки успеваемости студентов. Нейросеть способна анализировать данные, автоматизировать процессы и прогнозировать - все это делает ее ценным инструментом для управления образовательными траекториями, персонализации, обучения, выявлении проблем и минимизации рисков, поддержки учеников и педагогов. Генеративные нейросети уже несколько лет активно используют в разработке учебных материалов и виртуальных ассистентов. Сейчас в мире существует множество примеров использования сервисов и платформ на основе ИИ в системе образования: Сервисы прогнозирования успешности оценки рисков.
На основе данных о прошлой академической деятельности учащегося, нейросети могут предсказывать его будущую успеваемость, оценивать возможные риски и предлагать соответствующие меры для улучшения результатов. Такие решения внедрены во многие зарубежные школы и вузы. Интеллектуальные учебные материалы. Фактически речь идет об учебниках нового поколения. Это цифровые образовательные платформы, которые позволяют организовать персонализированный учебный процесс, оценивать прогресс, выявлять пробелы в знаниях, и формировать предложения для педагогов по организации учебного процесса. Инструменты автоматизированной проверки и оценки. Автоматическая оценка заданий и тестов может значительно ускорить процесс проверки, уменьшить нагрузку на преподавателей и дать быструю обратную связь ученику.
Существуют инструменты, с помощью которых можно просто сфотографировать на смартфон тетрадь с выполненным домашним заданием, и система распознает написанное, проверит, даст обратную связь о правильности выполнения и ошибках.
Например, в навигаторе: искусственный интеллект строит маршрут и учитывает внезапно возникшие ситуации на дороге, а также их влияние на скорость прохождения маршрута. Также известно об испытаниях автомобилей, управляемых ИИ. По этой причине я постоянно повышаю свою квалификацию, осваиваю новые технологии. В программе ИИ меня привлекла возможность ознакомиться с алгоритмами искусственного интеллекта и научиться с ними работать. ИИ используется для анализа табличных данных, в анализе текстов, голосовых помощниках и других процессах. ИИ может значительно быстрее, чем человек, проанализировать, например, текущую дорожную ситуацию и принять решение», — поделилась Елена Жоголева. Выпускник Саратовского государственного аграрного университета Павел Никитин прошел программу переподготовки по курсу «Банковское дело», а затем окончил курс «Аналитик данных» в Финансовом университете при Правительстве РФ. В беседе с ИА REGNUM он пояснил: поскольку в настоящее время банковский бизнес строится на сборе, хранении и обработке клиентских данных, полученные знания уже дают положительные результаты в части принятия правильных решений, способствующих скорейшему достижению поставленных целей. Больше всего понравилась поддержка со стороны организаторов обучения в наших чатах.
Впечатлила возможность побывать в Совете Федерации на вручении документов о прохождении обучения — было интересно познакомиться лично с коллегами.
Курсы по нейронным сетям
практика обучения основам искусственного интеллекта в российских образовательных организациях общего образования и организациях дополнительного профессионального образования. Узнаете, что такое искусственный интеллект и нейросети. Поймете, почему их нужно осваивать именно сейчас. Составите список дел, которые сможете им делегировать уже сейчас. Лаборатория «Искусственный интеллект в биоинформатике и медицине» работает над созданием нейросети, способной объединять знания из разных публикаций. Онлайн-курс по нейросетям и искусственному интеллекту для новичков, желающих использовать возможности ИИ для генерирования текстов, анимаций графики и обработки последней с уроками по UX-исследованиям. нейронные сети, искусственный интеллект.
Искусственный интеллект
Под присмотром искусственного интеллекта: как школы столицы используют нейросети | получат уникальную возможность погрузиться в мир искусственного интеллекта, освоить навыки промт-инжиниринга и научиться эффективно взаимодействовать с нейросетями в повседневной жизни. |
🤖 8 лучших бесплатных курсов по ИИ и глубокому обучению | Такой показатель предусмотрен в указе президента, который вносит изменения в действующую Национальную стратегию развития искусственного интеллекта (ИИ) до 2030 г. В 2022 г. только 5% россиян владели подобными компетенциями, говорится в документе. |
Neural University. Data science и нейронные сети | Искусственный интеллект будут использовать в области диагностики психологического состояния, поддержки одиноких людей — в отличие от существующих голосовых помощников нейросеть является полноценным собеседником. |
Let AI be | Онлайн-журнал про искусственный интеллект | Арлазаров В.В., Лимонова Е.Е. (ФИЦ ИУ РАН) Вопросы устойчивости искусственного интеллекта на основе нейронных сетей: теория и практика ведущая Михеенкова М.А. Смотрите видео онлайн «Семинар Проблемы ИИ 25.10.2023» на канале «Семинар "Проблемы. |
Бесплатные нейросети и курсы по ИИ | Дополнительное профессиональное образование в области искусственного интеллекта и в смежных областях при финансовой поддержке от государства. |
«Сириус», Яндекс и ВШЭ запустили бесплатный курс по искусственному интеллекту для школьников
Благодаря системе можно также подключиться к сети здравоохранения, чтобы получить помощь и передать данные лечащему врачу. Используется сеть для связи учреждений, граждан и поставщиков. Через систему можно как получать услуги, так и оказывать их. Как создается THIS. Разрабатываются стандарты, строятся системы поддержки, сервисы по поддержке с ИИ, управлению визуализации, операционный стандарт. Также создается собственная цифровая система, которая позволяет обеспечить интеллектуальный надзор.
Если приходит пациент из другой больницы, то его данные будут приходить из прикрепленного медучреждения. Из разных записей генерируются конкретные рекомендации. Создан инструментарий для обучения специалистов в области здравоохранения. Они могут помочь врачам в больницах управлять процессами в учреждении и пациентам в пределах и за пределами больницы. Существуют два основных метода решения этой задачи.
Первый - поведенческий, когда воссоздается манера поведения человека. Второй метод - это интернализм, когда основной движущей силой исследования становится эволюция интеллектуальных традиций и исследовательских программ. В частности, на первом этапе развития ИИ представлял собой символизм на основе знаний, главным образом имеется в виду симуляция человеческого поведения. На этом этапе используются экспертные знания для формирования общей базы знаний. Второе поколение ИИ работает на основе анализа данных.
Классический пример второго поколения ИИ, когда в 1997 году программа Deep Blue играла в шахматы против Гарри Каспарова и выиграла у него. Залогом успеха программы стали знания, опыт, алгоритмы и вычислительная мощность. Сегодня самый расхожий пример - программа для отслеживания динамики цен на акции, в которой собраны сведения о 40 ведущих компаниях стоимостью больше 1 миллиарда долларов по отраслям. Если мы говорим о применении ИИ на базе данных, то нельзя не упомянуть робототехнику. Например, гибкая искусственная рука, которая может двигать пальцами, делать жесты, играть на пианино, помогает людям, лишенным кисти.
О сферах применения ИИ В Стенфордском университете в свое время ученые сформулировали основные сферы применения ИИ с 2015 до 2030 года. Среди них - управление транспортным потоком, домашние роботы, здравоохранение, образование, охрана, организация рабочего пространства, а также туризм, финансы, промышленность. Помимо этого, все еще остается много нерешенных задач, поскольку при текущих ресурсах способности ограничены, так что необходимо их постоянно совершенствовать. Следующее поколение ИИ - мультимодальные модели, которые способны обрабатывать одновременно в режиме реального времени текст, изображение, голос, видео, код и получать достойный результат. Например, наши студенты разработали программу, позволяющую идентифицировать каждого человека на видео, где танцует много людей.
Повышение эффективности и качества обучения больших нейросетевых моделей Иван Оселедец, генеральный директор компании AIRI, профессор Сколтеха: О текущем состоянии работы нейросистемных моделей Работа с текстами и изображениями - это уже практически решенные задачи. Но следующий шаг - мультимодальные модели, работа с ними только началась. Нами разработана первая мультимодальная модель в России OmniFusion.
Копирайтинг С помощью AI копирайтеры уже пишут тексты: точнее, «добывают» заготовки для них по несколько абзацев, которые потом связывают между собой человеческим языком в статью. Эта статья, которую вы читаете, тоже использует фрагменты текстов, написанных ChatGPT. Крупные бренды, которые уже используют искусственный интеллект в рекламе и маркетинге Большинство крупных брендов активно применяют искусственный интеллект в разработке креативных кампаний и не только.
Coca-Cola использует AI для персонализированных рекламных кампаний, а Sephora — для индивидуальных рекомендаций по макияжу и уходу за кожей. Toyota с помощью AI в маркетинге создает уникальные дизайны своих автомобилей. А вот пример из России: некоторые логотипы для клиентов студии Артемия Лебедева делает нейросеть, которую назвали «Николай Иронов». Демоверсия искусственного интеллекта «Николай Иронов» студии Артемия Лебедева. Сервис генерирует 999 логотипов и позволяет скачать 6 дизайн-паков Из свежих примеров — поздравление с 8 марта 2023 года от нейросети Сбер. В видеоролике современные девушки превращаются в персонажей на картинах известных художников.
Есть мнение, что скоро нейросеть заменит креаторов во всем мире и кардинально поменяет маркетинг. Так ли это? Чат-бот появился в ноябре 2022 года. Сама технология разработана в 2021 году компанией OpenAI, одним из ведущих игроков в области искусственного интеллекта. Что может ChatGPT Нейросеть в формате живого диалога с пользователем может отвечать на вопросы, помогать в исследованиях, в том числе маркетинговых, написать рассылку или статью, подготовить SEO-оптимизированный текст и даже написать программный код или найти баги в нем. Он дает ответ на нужном языке и знает русский.
Нейросеть учится на своих ошибках. Она может работать с большими массивами данных. Искусственный интеллект признает свои ошибки и отклоняет неуместные запросы. Сервис пока бесплатный. Нейросеть ChatGPT может переводить тексты и использоваться в качестве диалогового агента для разных приложений, включая обучение, развлечения и автоматизацию задач. OpenAI предоставляет API для разработчиков, которые хотят использовать технологии в своих приложениях и проектах.
Так, российский сервис Grammarly уже встроил алгоритмы OpenAI в свой код. OpenAI разрабатывала его несколько лет. Новая модель более продвинутая. Нейронной сети можно дать изображение, например фото продуктов, и попросить рецепты блюд, которые из них можно приготовить. Эта нейронная сеть более надежная и креативная, может обрабатывать изображения, в отличие от предшественников, ограниченных текстом. Она предоставляет информацию об изображении.
Однако она все еще придумывает некоторые факты, нужен фактчекинг. Знания все так же ограничены 2021 годом.
Базовые методы машинного обучения: линейная регрессия, логистическая регрессия, деревья решений, метод ближайших соседей. Машинное обучение для задач классификации и кластеризации данных. Основы теории вероятностей и математической статистики, необходимые для понимания алгоритмов. Принцип работы и обучение нейронных сетей, их применение в компьютерном зрении.
Визуализация данных и построение инфографики. Другие актуальные задачи ИИ: рекомендательные системы, поиск ассоциативных правил в данных. По итогам прохождения курса слушатели смогут: Самостоятельно обучать простые модели машинного обучения на готовых данных с использованием инструментов визуального программирования. Анализировать и интерпретировать статистические данные, проводить первичный анализ и подготовку данных для моделей ИИ. Избегать типичных ошибок при принятии решений на основе данных, критически оценивать результаты анализа.
Что мы и сделали, собрав видеозаписи с уже зарегистрированными нарушениями на экзаменах за 2018—2019 годы. Процесс обучения состоял из нескольких этапов: На первом видеозаписи прогонялись через алгоритм детектирования людей с использованием нейросети Yolo. В результате получалось видео с маркированными участками, где люди находились в течение долгого времени. Это было нужно, чтобы отсечь преподавателей, которые ходят по коридорам, например. Каждому региону с человеком присваивался идентификатор, и обработанное видео с отмеченными регионами и идентификаторами сохранялось. Затем это видео просматривал человек, который отмечал как можно более точно моменты начала и конца нарушения если оно, конечно, было , а также идентификаторы «нарушителей». Также сохранялись моменты отсутствия нарушений как примеры нормального поведения, которые тоже нужны для обучения алгоритма. Так мы выявили еще и типичные нарушения — использование шпаргалок и телефонов, фотографирование материалов. Нам очень помогла открытая библиотека OpenPose, которая используется для определения положения людей в кадре, их поз и координат ключевых точек, относящихся к разным частям тела». Первая версия алгоритма базировалась на использовании RandomForest — классификатора, обученного на результатах работы OpenPose. Но у нее был существенный недостаток: большая часть потенциально полезных данных просто выбрасывалась. Например, невозможно было увидеть, что у человека в руке — ручка или шпаргалка. На сегодняшний день технология видеоаналитики отслеживает видеопоток из аудитории в режиме онлайн, а между экзаменами — архивные видео из офлайна. Для сравнения: один наблюдатель может следить максимум за четырьмя аудиториями одновременно, а алгоритм может обрабатывать видео из более чем 2000 аудиторий за один экзаменационный день. В дальнейшем применение искусственного интеллекта во время экзаменов может позволить полностью исключить человеческий фактор и оставить онлайн-наблюдателей только для верификации нарушений, выявленных нейросетью. В 2022 году «машинное зрение» выявило почти 12 тысяч нарушений, но далеко не все были подтверждены после проверки.
Что такое нейросети: на что способны, как работают и кому нужны
Оптимизация кода 29 YandexCloud.
Редактор Нейросети , сюжеты , Чудо техники В последнее время буквально никуда не скрыться от новостей о нейросетях, а прежде всего о ChatGPT — «российский студент успешно защитил написанный ей диплом», «стартапы начали экономить на программистах: задачу, за которую человек просит пять тысяч фунтов и две недели, нейросеть решает за 11 центов и 10 минут», «на телевидении Ставропольского края запустили прогноз погоды, где даже ведущая Снежана Туманова создана искусственным интеллектом», «Билл Гейтс назвал ChatGPT величайшим изобретением за последние 50 лет». Что это такое? Очередная сенсация, которая скоро сдуется, или всё же нечто иное?
ChatGPT — это диалоговая программа на базе искусственного интеллекта, которая обучает сама себя по всей мировой базе знаний, может отвечать текстом почти как живой человек причём на огромном множестве языков, включая русский , решать вопросы любой сложности и из разных областей, делать подборки статей для научных работ, писать эссе, стихотворения и даже компьютерные коды. Нужны ли вообще теперь, например, интернет-поисковики? Даже крупнейшие корпорации забеспокоились и спешно начали разрабатывать свои «умные» чат-боты. Владимир Арлазаров — один из создателей отечественной системы, построенной на искусственном интеллекте.
Она легко и быстро считывает данные платёжных карт, текстовых и личных документов. Разработка успешно применяется банками и даже пограничниками, помогая выявить поддельные паспорта. Чтобы натренировать систему, Владимир с командой создали ещё одну модель, которая сгенерировала образцы для обучения — всё, даже фотографии, личные данные и подписи компьютер выдумал сам. И это не предел возможностей.
Но главная причина успеха именно ChatGPT — универсальность. Ей легко воспользоваться, определённое число запросов в день разработчики предоставляют бесплатно, а дальше просят всего 20 долларов в месяц. Экономить на сотрудниках с помощью нейросети тут же бросились специалисты по соцсетям, рекламщики, программисты. Однако эксперты предупреждают — тут есть опасность.
Впитывая всё как губка, нейросеть постоянно обучается: любую информацию, которую загружает один пользователь, она запоминает, обрабатывает и хранит, а потом может выдать по запросу и другому человеку.
Информацию об этапах поступления, описание курсов и требования к поступающим можно узнать на сайте. В новом выпуске проекта «НаукаPRO» вышло интервью с Константином Воронцовым, руководителем лаборатории «Машинное обучение и семантический анализ». Темой выпуска стал искусственный интеллект: прошлое, настоящее и чего ожидать в будущем? Как развивались технологии искусственного интеллекта с середины 20-го века и до наших дней? Что такое машинное обучение, как оно позволяет заменить эксперта и в каких областях используется? Что собой представляют глубокие нейронные сети и почему они обретают всё большую популярность?
Каковы перспективные направления развития искусственного интеллекта и для чего вообще его стоит развивать? Ответы на эти и другие вопросы можно найти по ссылке. Выпуск был посвящен теме искусственного интеллекта, а ведущие специалисты в этой области дискутировали о тех потенциальных рисках и возможностях, которые приходят в нашу жизнь с развитием технологий. Запись программы можно увидеть по ссылке. Карабулатова Ирина Советовна, доктор филологических наук, профессор, академик РЕАН руководила секцией «Цифровая гуманитаристика, анализ и обработка естественного языка». Выступающие: Шабельская Ника Кирилловна — Возможности формализации персуазивных маркеров «мягкой силы» в этнокультурном ценностном коде: на материале переводного сказочного кинодискурса России и Китая. Околышев Даниил Анатольевич — Коммуникативные типажи муниципальных служащих в публичном информационном пространстве.
Анумян Карпис Саркисович — К вопросу о выделении эмотикона в языке: на материале эмотикемы удивлении. Ирины Карабулатовой по приглашению университета Циньхуа в Пекин.
Текущее положение AI Artificial Intelligence Нельзя выделить конкретную компанию, которая первой представила технологию использования нейросетей, но значительную роль в продвижении искусственного интеллекта сыграли IBM, Google, Microsoft и Amazon. Маркетинг AI применяют сегодня и в сфере рекламы и коммуникаций. Один из ярких примеров — создание персонализированных рекламных кампаний.
Сначала AI действует по всем принципам маркетинга: разбивает потребителей на группы и определяет, какие продукты и услуги им интересны. Потом на основе этих данных создает индивидуальную рекламную кампанию для каждой целевой группы. Такой подход нейросети не только увеличивает конверсию, но и улучшает взаимодействие клиента с брендом. Дизайн AI используют в дизайне. Например, уже сейчас с помощью нейросетей создают уникальные дизайны, вижуалы, логотипы.
Это существенно экономит время и облегчает работу с контентом. Правда, пока результат, который выдает искусственный интеллект, часто приходится корректировать. Копирайтинг С помощью AI копирайтеры уже пишут тексты: точнее, «добывают» заготовки для них по несколько абзацев, которые потом связывают между собой человеческим языком в статью. Эта статья, которую вы читаете, тоже использует фрагменты текстов, написанных ChatGPT. Крупные бренды, которые уже используют искусственный интеллект в рекламе и маркетинге Большинство крупных брендов активно применяют искусственный интеллект в разработке креативных кампаний и не только.
Coca-Cola использует AI для персонализированных рекламных кампаний, а Sephora — для индивидуальных рекомендаций по макияжу и уходу за кожей. Toyota с помощью AI в маркетинге создает уникальные дизайны своих автомобилей. А вот пример из России: некоторые логотипы для клиентов студии Артемия Лебедева делает нейросеть, которую назвали «Николай Иронов». Демоверсия искусственного интеллекта «Николай Иронов» студии Артемия Лебедева. Сервис генерирует 999 логотипов и позволяет скачать 6 дизайн-паков Из свежих примеров — поздравление с 8 марта 2023 года от нейросети Сбер.
В видеоролике современные девушки превращаются в персонажей на картинах известных художников. Есть мнение, что скоро нейросеть заменит креаторов во всем мире и кардинально поменяет маркетинг. Так ли это? Чат-бот появился в ноябре 2022 года. Сама технология разработана в 2021 году компанией OpenAI, одним из ведущих игроков в области искусственного интеллекта.
Что может ChatGPT Нейросеть в формате живого диалога с пользователем может отвечать на вопросы, помогать в исследованиях, в том числе маркетинговых, написать рассылку или статью, подготовить SEO-оптимизированный текст и даже написать программный код или найти баги в нем. Он дает ответ на нужном языке и знает русский. Нейросеть учится на своих ошибках. Она может работать с большими массивами данных. Искусственный интеллект признает свои ошибки и отклоняет неуместные запросы.
Сервис пока бесплатный.
Первая ступень ракеты SpaceX Falcon 9 утонула после 20-го успешного запуска
Читайте также: Может ли нейросеть заменить художников, писателей и программистов? Растущий разрыв По оценкам Международного союза электросвязи, около 2,6 миллиардов человек — примерно треть населения земного шара — не имеют доступа к Интернету. Этот цифровой разрыв может определить, кто может извлечь выгоду из ИИ. Если мы добавим сюда и цифровое неравенство, то сократить разрыв будет попросту невозможно», — говорит Болор-Эрдене Батценгель, исследователь Оксфордского университета и бывший вице-министр цифрового развития и коммуникаций Монголии. Доступ к Ии-технологиям есть далеко не у всех Даже когда пользователи в развивающихся странах получают доступ к ИИ, он редко разрабатывается с учетом их потребностей.
Однако на данный момент эта проблема не так хорошо освещена как другие и о последствиях этого «цифрового разрыва» говорить рано. Тем не менее, по мере создания более мощных ИИ-систем, неравенство будет расти. Вам будет интересно: Что будет, когда Искусственный интеллект достигнет пика своего развития? Еще больше роботов Переход от использования множества небольших моделей для выполнения разнообразных задач к единым неизбежен.
Это подтверждают такие мультимодальные модели, как GPT-4 и Gemini от Google DeepMind, способные решать как визуальные, так и лингвистические задачи. Исходя из этого можно предположить, что то же самое произойдет и с роботами — зачем обучать одного переворачивать блинчики, а другого открывать двери, если можно создать одну универсальную многозадачную модель? За примерами не нужно далеко ходить — несколько примеров работы в этой области появились в 2023 году. В июне DeepMind выпустила Robocat обновление прошлогоднего Gato , который генерирует собственные данные методом проб и ошибок, чтобы научиться управлять множеством различных роботизированных рук вместо одной конкретной руки.
Умных роботов в 2024 году станет еще больше В октябре компания выпустила еще одну универсальную модель для роботов под названием RT-X и большой новый набор обучающих данных общего назначения в сотрудничестве с 33 университетскими лабораториями. И хотя существует множество проблема в нехватке данных, ученые разрабатывают методы, которые позволяют роботам все лучше обучаться методом проб и ошибок.
Об их существовании слышали, наверное, даже те, кто не имеет прямого отношения к сфере IT. Одни считают, что искусственный интеллект — благо для человечества, поскольку с его помощью можно выполнять рутинную работу, освободив время для творчества. Другие, наоборот, уверены, что это зло, и нейронная сеть может не просто лишить людей рабочих мест, но и стать угрозой для всего человечества.
Какая точка зрения верная? Ищите ответы в статье, которая рассказывает, как работает нейросеть, для чего она используется. Рассмотрим, какую пользу она может принести человеку. Читайте также о самых современных и востребованных нейросетях, которые уже сегодня широко применяются во многих сферах деятельности. Что такое нейронные сети Нейронная сеть neural network — это компьютерный алгоритм, способный обрабатывать большие объемы данных, имитируя деятельность человеческого мозга.
Как и человек, нейросеть изучает новые предметы, делает выводы и в дальнейшем использует полученную информацию. Нейросети представляют собой математические модели, созданные на основе биологических нейронных сетей, существующих в глубинах человеческого мозга. Нейронные сети Нервную систему человека образуют нейроны — клетки, которые получают информацию и транслируют ее в виде импульсов. Основная часть нейрона — аксон, а длинный отросток на его конце носит название дендрит, он выполняет роль своеобразного провода при передаче информации от одного нейрона к другому. Таким образом мозг, транслируя информацию, управляет всеми действиями человека.
На основе соответствующего принципа работают и компьютерные нейронные сети, ставшие цифровой моделью человеческого мозга. Главная же их особенность — способность к обучению. Стандартные компьютерные программы предполагают, что алгоритм для них пишет человек, то есть задает определенный набор действий, которые должны выполнить компьютеры. При использовании нейросети не нужно говорить ей, как решить задачу. Достаточно задать вводные данные, а способам решения задач нейронная сеть на основе искусственного интеллекта обучается сама, выявляя закономерности и обнаруживая на их основе способы решения задач Как появились нейросети Попытки математически описать сеть нейронов предпринимались еще в 1940-е годы.
Идею создания нейронных сетей впервые предложили исследователи из Чикагского университета Уоррен Маккалоу и Уолтер Питтс. В 1950-е годы эта математическая модель была воссоздана психологом Корнеллского университета Фрэнком Розенблаттом с помощью компьютерного кода. Розенблатт был автор перцептрона — прототипа современных нейросетей. Даже такая элементарная структура в те годы могла обучаться и самостоятельно решать простые задачи. Маккалоу и Питтс Однако для создания моделей мощных сетей на тот момент было недостаточно, поэтому их развитие замедлилось.
Оно возобновилось только в 2010-е годы, с развитием компьютерных технологий и появлением мощных компьютеров. Следующим этапом развития стало появление нейросетей с искусственным интеллектом. Структура нейросети Структура Главное отличие нейросетевых моделей от классических заключается в их структуре. Основные элементы, из которых он состоит — искусственные нейроны и связи между ними. Искусственные формальные нейроны Искусственные нейроны также называются словом «узлы» — элементарные вычислительные единицы, связанные между собой.
Они представляют собой нелинейные функции с одним аргументом. Нейрон получает общую информацию, производит вычисления и передает данные дальше. Каждый нейрон имеет два параметра: входные данные input data и выходные данные output data.
Вещи о которых я раньше мог только мечтать, сегодня становятся реальностью. И это именно то чем меня привлекает AI. Поверхностно занимался прошивкой телефонов и автомобилей. AI интересен в плане работы - сейчас занимаюсь финансовыми стратегиями и анализом деятельности строительных компаний, и очень интересует применение нейросетей в этой области.
Но для того чтобы конкурировать на рынке IT - надо постоянно развиваться и получать новые знания. Недавно открыл для себя Python и фреймворк Django. Есть задумки по созданию нейронных сетей для бизнес-процессов в 1С. ИВАН Классе в 9, перед ОГЭ, я задумался, чем же я буду заниматься в жизни, и ответом было IT потому, что это будущее нашего общества, лучшие технологии, передовые подходы и принципы работы. Спустя годы, уже в IT сфере передо мной открылся целый спектр направлений, я изучил их и понял, что хочу заняться AI потому, что это будущее IT, а я как раз и хочу работать над будущем нашего будущего; ДМИТРИЙ AI и нейросети я воспринимаю сейчас, как глоток свежего воздуха в ежедневном рабочем процессе, как элемент творчества в своей повседневной работе. Спустя годы, уже в IT сфере передо мной открылся целый спектр направлений, я изучил их и понял, что хочу заняться AI потому, что это будущее IT, а я как раз и хочу работать над будущем нашего будущего; Интенсив - это 3 дня погружения в фантастический мир AI 3 дня 3 дня обучения по AI 9 нейронок.
Такие алгоритмы искусственного интеллекта используются для участия в играх или управления роботами, в том числе ролями роботов. Когда появились нейросети История появления нейронных сетей насчитывает несколько десятилетий. Все началось с исследований в области биологии и нейрофизиологии. Первыми здесь были американские ученые Уоррен Мак-Каллок и Уолтер Питтс, представившие миру математическую модель под названием «логический нейрон» в 1943 году. Эта нейросеть имитировала с помощью математики функционирование нейронов в головном мозге. В 1960-х годах исследования в области искусственных нейронных сетей стали замедляться из-за ограничений вычислительных возможностей.
Однако к 1980-м годам эта проблема постепенно была преодолена благодаря развитию компьютеров. Так, например, был создан алгоритм обратного распространения ошибки backpropagation , который позволил эффективно обучать нейронные сети. Текущее положение AI Artificial Intelligence Нельзя выделить конкретную компанию, которая первой представила технологию использования нейросетей, но значительную роль в продвижении искусственного интеллекта сыграли IBM, Google, Microsoft и Amazon. Маркетинг AI применяют сегодня и в сфере рекламы и коммуникаций. Один из ярких примеров — создание персонализированных рекламных кампаний. Сначала AI действует по всем принципам маркетинга: разбивает потребителей на группы и определяет, какие продукты и услуги им интересны.
Потом на основе этих данных создает индивидуальную рекламную кампанию для каждой целевой группы. Такой подход нейросети не только увеличивает конверсию, но и улучшает взаимодействие клиента с брендом. Дизайн AI используют в дизайне. Например, уже сейчас с помощью нейросетей создают уникальные дизайны, вижуалы, логотипы. Это существенно экономит время и облегчает работу с контентом. Правда, пока результат, который выдает искусственный интеллект, часто приходится корректировать.
Копирайтинг С помощью AI копирайтеры уже пишут тексты: точнее, «добывают» заготовки для них по несколько абзацев, которые потом связывают между собой человеческим языком в статью. Эта статья, которую вы читаете, тоже использует фрагменты текстов, написанных ChatGPT. Крупные бренды, которые уже используют искусственный интеллект в рекламе и маркетинге Большинство крупных брендов активно применяют искусственный интеллект в разработке креативных кампаний и не только. Coca-Cola использует AI для персонализированных рекламных кампаний, а Sephora — для индивидуальных рекомендаций по макияжу и уходу за кожей. Toyota с помощью AI в маркетинге создает уникальные дизайны своих автомобилей. А вот пример из России: некоторые логотипы для клиентов студии Артемия Лебедева делает нейросеть, которую назвали «Николай Иронов».
Демоверсия искусственного интеллекта «Николай Иронов» студии Артемия Лебедева. Сервис генерирует 999 логотипов и позволяет скачать 6 дизайн-паков Из свежих примеров — поздравление с 8 марта 2023 года от нейросети Сбер. В видеоролике современные девушки превращаются в персонажей на картинах известных художников. Есть мнение, что скоро нейросеть заменит креаторов во всем мире и кардинально поменяет маркетинг. Так ли это?
Нейронные сети и компьютерное зрение
Если вам интересно познакомиться со спецификой технологий обучения нейросетей, а возможно и принять участие в развитии передовых технологий, регистрируйтесь на вебинар «Кто и как обучает искусственный интеллект». Процесс обучения нейросети и представляет собой такую подстройку «нейронов», чтобы научиться решать задачу и давать правильный ответ. В рабочую программу обновлённого модуля по искусственному интеллекту от Минобрнауки входят «Основы программирования на Python», «Математический анализ», «Линейная алгебра» и «Теория вероятностей и математическая статистика». Сезон: искусственный интеллект» — самый масштабный в России проект для ИТ-специалистов. Проблема искусственного интеллекта в образовании. Искусственный интеллект может помочь улучшить качество обучения, ускорить процесс и повысить эффективность.
30 обучающих программ по нейросетям в 2024 году: платные и бесплатные курсы
Искусственный интеллект работает по принципу мозга человека: принцип обучения НС в какой-то степени схож с тем, как обучают человека. Проблема искусственного интеллекта в образовании. Искусственный интеллект может помочь улучшить качество обучения, ускорить процесс и повысить эффективность. Нейросеть — это искусственный интеллект, который может обучаться и принимать решения, используя данные информационных баз, созданных на основе опыта и инструкций.
🤖 8 лучших бесплатных курсов по ИИ и глубокому обучению
Если вам интересно познакомиться со спецификой технологий обучения нейросетей, а возможно и принять участие в развитии передовых технологий, регистрируйтесь на вебинар «Кто и как обучает искусственный интеллект». Кадр из фильма об искусственном интеллекте Ex Machina, пропущенный через нейросеть проекта Dreamscope. сервис Университета искусственного интеллекта, который позволяет создавать нейросети без единой строчки кода. Лаборатория «Искусственный интеллект в биоинформатике и медицине» работает над созданием нейросети, способной объединять знания из разных публикаций. Дополнительное профессиональное образование в области искусственного интеллекта и в смежных областях при финансовой поддержке от государства. нейронные сети, искусственный интеллект.
В России стартовал прием заявок на курсы по искусственному интеллекту
Все это в конечном итоге должно стимулировать работодателей увеличивать долю высококвалифицированных работников и переходить к концепции «экономики высоких зарплат». Общество Указ президента был подписан 15 февраля. Предыдущий вариант стратегии был утвержден в октябре 2019 г. Среди ее целей были разработка и совершенствование профильного программного обеспечения и оборудования, повышение доступности и качества данных, а также создание комплексной системы регулирования в сфере ИИ. В обновленной версии нацстратегии прописаны целевые показатели. Но официальные данные о том, какую роль играет ИИ в современной экономике, разнятся. По его данным, объем российского рынка ИИ в 2022 г.
За время прохождения Базового курса вы: Список занятий базового курса 01 Google-сервисы и Google Colaboratory 02 Python. Линейный слой Dense 08 Обучающая, проверочная и тестовая выборки.
Курсы по ИИ также помогут вам оптимизировать рутинные задачи, чтобы выполнять работу быстрее и эффективнее. Онлайн-курсы по искусственному интеллекту 1. Разработчик искусственного интеллекта GeekBrains В рамках этого онлайн-курса профессиональные разработчики научат пользоваться технологиями искусственного интеллекта и разбираться в принципах работы глубокого машинного обучения. Программа подойдет тем, кто желает не только изучить теорию, но и заставить нейронную сеть самостоятельно обучаться. Курс позволяет вести разработку алгоритмов и анализ данных с учетом возникающих задач. Стоимость: 3464 рублей в месяц на основе платной подписки Длительность: 12 месяцев Формат обучения: вебинары, воркбуки, практические задания Сертификат: есть поэтапное обучение студентов азам искусственного интеллекта, упор на полезные практические знания; программа постоянно обновляется с учетом актуальных изменений в алгоритмах нейронных сетей; поддержка в официальном трудоустройстве после завершения курса; возможность внесения оплаты по частям.
Максим Абаляев, программного решения для программно-аппаратного учебного комплекса: «Мы создаем такую матрешку, то есть учебник в учебнике, где и тесты, и билеты, и учебник, и сценарий урока, и методические пособия для преподавателя все вместе в комплексе». Леона Дружинина, менеджер по маркетингу компании-разработчика программно-аппаратного учебного комплекса: «Учителя с помощью современных технологий получают быстро фидбэк о том, какие вещи они не доработали и над чем нужно еще поработать». Так проходит типичный тест на уроке с использованием системы: ученик передвигает, например, фазы луны на доске, а педагог на учительском планшете видит это в реальном времени и может одним нажатием кнопки проверить правильность выполнения задания. По задумке авторов, такой мультимедийный процесс помогает детям и подросткам лучше воспринимать и запоминать скучную информацию. Евгений Тимаков, главный врач медицинского центра, врач-педиатр : «Например, тот же самый текст мы с вами запомнить можем очень тяжело — приходится читать текст несколько раз.
Вы находитесь здесь: итоги 2023 года в сфере ИИ
Бесплатные нейросети и курсы по ИИ → 1000+ AI нейросетей на одном сайте | Искусственный интеллект помогает продлить жизнь, нейросети учатся воссоздавать 3D-изображения по отражению в глазах и создают игры по текстовому описанию, а диджитал-специалисты дают советы, как лучше общаться с ChatGPT. |
30 лучших курсов обучения по нейросетям в 2024 году | совместно с факультетом компьютерных наук Высшей школы экономики и Яндексом запустили бесплатный курс по искусственному интеллекту для школьников «Глубокое обучение». |
Под присмотром искусственного интеллекта: как школы столицы используют нейросети // Новости НТВ | ChatGPT — это диалоговая программа на базе искусственного интеллекта, которая обучает сама себя по всей мировой базе знаний, может отвечать текстом почти как живой человек (причём на огромном множестве языков, включая русский), решать вопросы любой сложности и. |
Курсы по нейронным сетям | Искусственный интеллект и нейросети: создание текстов и креативов — Инфоурок. |
Нейросеть онлайн [34 режима]
В России стартовал прием заявок на курсы по искусственному интеллекту | Искусственный интеллект и нейросети: создание текстов и креативов — Инфоурок. |
Акулы нейронных сетей | технологии, математика, искусственный интеллект (ии), компьютерные технологии, нейросети. |
Курсы по нейросетям | Программа обучения по искусственному интеллекту ПРОДВИНУТЫЙ УРОВЕНЬ. |
«Сириус», Яндекс и ВШЭ запустили бесплатный курс по искусственному интеллекту для школьников | Известный исследователь машинного разума пришёл к выводу, что разработчики нейросетей очень слабо представляют себе, что они создают. |
Яндекс Образование
Эволюция и стоимость обучения искусственного интеллекта: от Transformers до Gemini Ultra. «Акулы нейронных сетей» — это коллаборация журналистики и искусственного интеллекта. Дмитрий Иванков, эксперт Центра искусственного интеллекта СКБ "Контур", отмечает, что есть ещё множество российских нейросетей, на которые стоит обратить внимание. Поскольку технологии искусственного интеллекта и машинного обучения постоянно меняются и совершенствуются, от специалистов требуется готовность непрерывно учиться и осваивать новые навыки работы с нейронными сетями. сервис Университета искусственного интеллекта, который позволяет создавать нейросети без единой строчки кода.