Что это такое? Квантовая физика, космос, Вселенная 02.10.2017.
Пульсар — что это?
Иллюстрация пульсара J1023, высасывающего вещество из звезды-компаньона. Это всего лишь пульсар с миллисекундным периодом пульсации — время между импульсами примерно такое же короткое. Что такое Пульсара (SARA)? Pulsara — это собственный токен экосистемы Pulsara, целью которого является создание децентрализованной платформы, управляемой сообществом. Пульсары были открыты в рамках оригинальной исследовательской программы, которая была задумана Хьюишем и выполнялась под его руководством.
Нестандартный пульсар
Сами заряженные частицы прихотливо движутся в галактических магнитных полях, под влиянием которых их первоначальная траектория искажается, что не позволяет отыскать их источник, а вот гамма-лучи, невосприимчивые к магнитным полям, дают возможность не только отследить место их собственного происхождения, но и выяснить, где рождаются первоначальные космические лучи. В новом исследовании Эмма де Онья Вильгельми, работающая на Немецком электронном синхротроне DESY в Гамбурге, и ее коллеги из других европейских стран с помощью расчетов показали, что источником экстремальных частиц, зарегистрированных LHAASO, являются турбулентные облака и заряженные частицы, окружающие пульсары. Молодые пульсары в центрах планетарных туманностей, возраст которых не превышает 200 тыс.
С помощью детекторов на Земле физики рассчитывают обнаружить смятия пространства-времени — фирменный знак проходящих гравитационных волн, но эти наблюдения невероятно сложны. Любые колебания на Земле, от сейсмической дрожи до вибраций от океанических волн, могут помешать чувствительному сенсору.
В будущих миссиях собираются применять сразу несколько соединенных лазерами космических аппаратов на больших расстояниях друг от друга и с их помощью улавливать гравитационные волны, проходящие через нашу Солнечную систему. Гравитационные волны Миллисекундные пульсары В 1982 году был обнаружен новый вид пульсаров — с периодом обращения в миллисекунды тысячные доли секунды. Его открыл американский радиоастроном Дон Бэкер. Удивительный пульсар вращался со скоростью 641 оборот в секунду.
Астрономы считают, что такие пульсары возникают в двойных системах, где нейтронная звезда раскручивается волчком, втягивая материю от своей напарницы. Миллисекундные пульсары — очень точные часы, и астрономы пытаются, задействуя их, напрямую обнаруживать гравитационные волны, проходящие перед ними. Пульсары — несомненно полезные инструменты в арсенале астрономов. Пульсары будут одной из основных целей радиотелескопа нового поколения, SKA Квадратной километровой решетки — огромной решетки связанных между собой антенн, которые начнут наблюдения в следующем десятилетии.
Открытие десятков тысяч пульсаров, в том числе — большей части расположенных в нашей Галактике, даст радиоастрономам возможность проверить общую теорию относительности и изучить гравитационные волны. Звездотрясения Звездотрясения Когда кора плотной нейтронной звезды внезапно трескается, это вызывает «звездотрясение», аналогичное землетрясениям на нашей планете. Растрескивание звездной коры случается из-за того, что со временем нейтронная звезда сжимается и замедляется, и ее поверхность меняет форму. Кора твердая и потому вибрирует.
Такие «трясения» наблюдались как случайные пропуски или перебои в скорости вращения пульсаров. Крупные звездотрясения могут вызывать выброс из пульсаров гамма-лучей, которые можно уловить спутниками — например, обсерваторией Ферми НАСА. Поделиться ссылкой.
Астрономы разработали план по выяснению причин происходящего. Эти телескопы охватывали гамму электромагнитных длин волн, и с их помощью астрономы смогли собрать воедино всё происходящее». Вот что они обнаружили. Аккреционный диск состоит из вещества, стянутого со звезды—соседа пульсара.
Эта материя, приближаясь к пульсару и накапливаясь, нагревается солнечным ветром. Материя начинает светиться в рентгеновском, ультрафиолетовом и видимом свете, и это горячее светящееся вещество соответствует режиму высокой энергии пульсара.
Их регулярные сигналы сначала принимали за морзянку от инопланетян. Пульсары — точные часы, и потому с их помощью можно проверять общую теорию относительности и обнаруживать гравитационные волны. В 1967 году двое британских астрономов поймали необъяснимый космический сигнал. Радиотелескоп у них был довольно примитивный, и тем не менее им удалось сделать новый шаг в науке. Их телескоп состоял примерно из 120 миль проволоки и 2000 детекторов, развешенных между 1000 деревянных столбов, как гигантская бельевая сушилка, растянувшаяся на четыре акра поля в Кембриджшире. Когда в июле 1967-го этот телескоп был направлен на небо, его самописец выдавал по 30 метров графиков в день. Аспирантка Джослин Белл под руководством физика Тони Хьюиша прочесывала эти графики в поисках квазаров, мерцающих из-за возмущений в нашей атмосфере.
Но нашла она кое-что другое. Она была не похожа на остальные данные и исходила из одной точки в небе. Приглядевшись, Белл увидела, что полоса распадалась на повторяющиеся серии коротких радиоимпульсов через каждые 1,3 секунды. Белл и Хьюиш попытались вычислить, откуда приходит загадочный сигнал. Хотя из-за его точности можно было бы заподозрить, что источник — искусственный, ученые не смогли найти никакого излучателя. Принятые сигналы не походили ни на какие известные звезды или квазары. Нобелевские противоречия За открытия пульсаров была вручена не одна Нобелевская премия. Тони Хьюиш получил ее в 1974 году, вместе с коллегой-радиоастрономом Мартином Райлом. Джослин Белл, как ни странно, не учли, хотя именно в ее диссертационном исследовании был открыт первый пульсар.
В 1993-м Джо Тейлор и Рассел Халс получили еще одну Нобелевскую премию за открытие первой двойной системы пульсаров.
Что такое пульсар: определение, особенности и интересные факты
Они различаются по спектру излучения и методам обнаружения. Строение пульсаров Пульсары образуются в результате сверхновых взрывов, когда звезда, превышающая в 1,4—3 раза массу Солнца, исчерпывает свой ядерный топливный ресурс и рушится под действием гравитационной силы. В результате происходит симватический коллапс, и звезда превращается в нейтронную звезду. Нейтронная звезда представляет собой сверхплотное тело, размером примерно с город, но с массой в несколько раз большей, чем у Солнца. Она состоит из нейтронов, атомных ядер и электронов, сильно сжатых под действием гравитации. Силовое поле и радиоизлучение Источником радиоизлучения пульсаров является их сильное магнитное поле и быстрое вращение. Пульсары вращаются с невероятной скоростью, от нескольких оборотов в секунду до нескольких сотен оборотов в секунду.
Ландау и Р. Оппенгеймером в 1939. В этом веществе ядра атомов вплотную прижаты друг к другу. Сжать вещество до такой степени может только гигантская сила тяжести, которой обладают лишь очень массивные тела, такие, как звезды.
При огромной плотности ядерные реакции превращают большинство частиц в нейтроны, поэтому такие тела называют нейтронными звездами. Обычные звезды, такие, как Солнце, состоят из газа со средней плотностью чуть больше, чем у воды. Белый карлик с такой же массой, но диаметром около 10 000 км имеет в центре плотность ок. У нейтронной звезды масса тоже близка к солнечной, но ее диаметр всего ок. Если бы до такой плотности сжать Землю, то ее диаметр составил бы ок. По-видимому, нейтронная звезда может образоваться из центральной части массивной звезды в момент ее взрыва как сверхновой. При таком взрыве оболочка массивной звезды сбрасывается, а ядро сжимается в нейтронную звезду. Эта нейтронная звезда делает 30 оборотов в секунду и ее вращающееся магнитное поле с индукцией 1012 Гс «работает» как гигантский ускоритель заряженных частиц, сообщая им энергию до 1020 эВ, что в 100 млн. Полная мощность излучения этого пульсара в 100 000 раз выше, чем у Солнца. Оставшаяся мощность, вероятно, приходится на низкочастотное радиоизлучение и высокоэнергичные элементарные частицы — космические лучи.
Последовательно приходящие импульсы сильно отличаются друг от друга, но средняя обобщенная форма импульса у каждого пульсара своя и сохраняется в течение многих лет. Анализ формы импульсов показал много интересного. Обычно каждый импульс состоит из нескольких субимпульсов, которые «дрейфуют» вдоль среднего профиля импульса. У некоторых пульсаров форма среднего профиля может внезапно меняться, переходя от одной устойчивой формы к другой; каждая из них сохраняется в течение многих сотен импульсов. Иногда мощность импульсов падает, а затем восстанавливается.
Впрочем, об всем по порядку.
Для начала вспомним информацию, известную земным астрономам о гибели звезд в несколько раз больших, чем Солнце. После невиданного по силе взрыва звезда в доли секунды сбрасывает газовое одеяние в мертвый вакуум, а ее ядро мгновенно коллапсирует в небольшой по размеру мизерный, если сравнивать с изначальными параметрами объект, состоящий из склеенных между собой протонов и электронов.
Оказалось, что расстояния до известных сейчас П. Наиболее вероятное объяснение П. Согласно данной теории, П. Наблюдатель, попадающий в этот пучок, видит периодически повторяющиеся импульсы радиоизлучения.
В теории «маяка» период П. Модель «маяка» объясняет и многие др. Однако возникли серьёзные затруднения с выбором класса звёзд, который мог бы обеспечить наблюдаемые явления. Для того чтобы обеспечить очень высокую угловую скорость вращения, характерную для П. Белые и красные карлики компактные звёзды не могут иметь таких угловых скоростей вращения: они были бы немедленно разорваны центробежными силами. Единственным приемлемым классом звёзд оказался известный только на основании теоретических исследований класс нейтронных звёзд См.
Нейтронные звёзды.
Раскрыта 10-летняя загадка странного поведения пульсара
(радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма- (гамма-пульсар) излучений. Пульсары также называют нейтронными или вырожденными звёздами. Наблюдаются пульсары двумя различными способами: по радиоизлучению пульсаров и по рентгеновскому излучению двойных рентгеновских источников[3]. Миллисекундные пульсары обладают периодом обращения менее чем 30 миллисекунд. В ходе нового исследования ученые обнаружили пульсар с периодом обращения в 8,39 миллисекунд.
Солнце в диаметре Москвы: Что такое нейтронная звезда?
Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени. Двойные пульсары. Расстояние до пульсаров. ПУЛЬСАР, астрономический объект, испускающий мощные, строго периодические импульсы электромагнитного излучения в основном в радиодиапазоне. Хотите понять, что такое нейтронные звёзды? LIFE разбирался, почему они "нейтронные", почему их ещё называют пульсарами и откуда такие странные звёзды берутся в космосе. Что такое ПУЛЬСАРЫ? (от англ. pulsars, сокр. от pulsating sources of radioenussion — пульсирующие источники радиоизлучения) — космические источники импульсивного электромагнитного излучения, открытые в 1967 г. В ее центральной зоне находится быстровращающаяся нейтронная звезда-пульсар, которая инжектирует в окружающее вещество релятивистские потоки заряженных частиц, что приводит к возникновению ударной волны в виде внутренней кольцеобразной структуры.
Что такое пульсар? Ученый объясняет на пальцах.
Теперь учёные думают , что поняли причину такого поведения: пульсар занялся поглощением соседней звезды. Когда сверхгигантская звезда подходит к концу своего жизненного цикла, она взрывается и превращается в чёрную дыру, если у неё достаточно массы, или в нейтронную звезду, если её нет. Нейтронные звёзды — это оставшиеся сверхплотные ядра старой звезды. Они часто очень быстро вращаются, а некоторые из них становятся пульсарами. Но в 2013 году пульсар прекратил отправлять импульсы в радиодиапазоне, и астрономы засекли внезапный взрыв энергии в различных диапазонах волн: гамма- и рентгеновское излучение увеличилось в пять раз, а в видимом свете звезда стала ярче на 1-2 величины. Астрономы также обнаружили, что у неё, по-видимому, образовался аккреционный диск — горячая вихревая масса вещества, окружающая звезду.
На сегодня теоретическая модель описывает космические пульсары как нейтронные звезды с небольшим и смещенным относительно оси вращения магнитным полем, что приводит к изменению доходящих к нам от них сигналов. Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные промежутки времени. Из-за этой равномерности некоторое время первый открытый пульсар считали искусственным космическим источником, чем-то вроде маяка для инопланетных кораблей, и даже держали его открытие в секрете. Позже стало ясно, что внеземные цивилизации к этому космическому объекту отношения не имеют.
Любая звезда сжалась бы в крошечный комок под действием собственной гравитации, если бы не давление, препятствующее сжатию. Причем решающий вклад в это давление вносит вовсе не вещество, а излучение. Звезду в буквальном смысле спасают от смерти силы света — ее собственного света. На протяжении всей жизни звезда «худеет»: массу уносят и звездный ветер, и излучение. Но все же светило до самого конца остается достаточно массивным. И когда термоядерное топливо заканчивается, остаток звезды остается один на один с гравитацией. Ничем хорошим это для него не заканчивается. Если исходное светило при рождении имело массу более десяти солнц, его гибель сопровождается впечатляющим шоу. Внешние слои звезды, лишенные поддержки излучения, стремительно падают на плотное ядро и отскакивают от него, как мячик. Энергия этого удара такова, что расширяющаяся оболочка звезды вспыхивает, как целая галактика. Это явление известно как вспышка сверхновой. Тем временем ядро звезды стремительно сжимается под действием гравитации. Растущего давления не выдерживают даже атомы. В центре небесного тела электроны объединяются с протонами, и получается сплошная масса нейтронов, более плотная, чем атомное ядро. И только тогда чудовищное давление останавливает сжатие.
Сплошная кривая — это модель, предсказанная для системы из двух планет, и точки данных соответствуют модели, доказывая, что планетная система существует. Иногда мы замечаем, что тиканье пульсаров доходит до нас раньше или позже, чем мы ожидали, создавая небольшое колебание в данных, которые мы наблюдаем с течением времени. Это говорит нам о том, что что-то должно притягивать пульсар, и когда мы измеряем это колебание в течение нескольких циклов, мы обнаруживаем, что оно следует регулярной схеме, как будто пульсар движется вокруг центра масс по орбите. Это похоже на нашу Солнечную систему: Юпитер достаточно велик, чтобы заставить Солнце двигаться вокруг центральной точки, известной как барицентр. Таким образом, если бы вы могли измерить данные с Солнца из удаленной точки, вы бы увидели, что оно лишь незначительно колеблется в течение цикла около 12 лет что соответствует длине орбиты Юпитера. Тщательный анализ данных, которые производят эти колебания, позволяет нам узнать о периоде обращения тела и его массе. И еще раз, благодаря чувствительности, которая достигается при измерении импульсов пульсара, мы можем сделать вывод о массах компаньона, которые могут быть меньше, чем у Луны Земли , даже на расстоянии стольких световых лет. Именно это и произошло в 1992 году. Вскоре они поняли, что смотрят на планету, вращающуюся вокруг мертвой звезды. На самом деле они обнаружили не одну, а две планеты, вращающиеся вокруг пульсара! Они стали первыми планетами, обнаруженными за пределами нашей Солнечной системы, или экзопланетами. Жизнь на планете-пульсаре Орбитальное поле обломков вокруг пульсара с материалами, которые могут медленно сливаться, образуя планеты. Итак, какой будет жизнь на одной из этих планет-пульсаров? Пульсары испускают огромное количество радиации от радиоволн до гамма-лучей — настолько сильное, что жизнь в том виде, в каком мы ее знаем не могла бы выжить. Вы бы тоже жили под постоянным стробоскопическим эффектом излучения… некоторые пульсары вращаются со скоростью сотни раз в секунду, так что это было бы неприятно. Магнитные поля пульсаров также создают «ветер» из релятивистских частиц, что звучит как самая экстремальная форма пескоструйной обработки в истории Вселенной. В этих условиях атмосфера ни одной планеты не могла сохраниться нетронутой. Кстати говоря, если бы вы подошли слишком близко, и магнитное поле, и их гравитация действительно нанесли бы некоторый ущерб. Так как же в таких экстремальных условиях формируется планета-пульсар? Во-первых, система-прародитель подвергается вспышке сверхновой, что является одним из самых жестоких событий, которые могут произойти в нашей Вселенной. Массивная звезда, буквально взрывающая сама себя. Планеты-пульсары не могут быть бывшими планетами из этой старой системы, потому что до взрыва сверхновой массивная звезда должна была расшириться до красного гиганта и поглотить внутренние миры. Даже миры, расположенные дальше — когда эта звезда взорвется, внезапное изменение массы вызовет большое изменение гравитации в системе, что приведет к ее дестабилизации и принесет много горя всему, что осталось позади. Так что, возможно, планеты-пульсары выкованы из пепла оставшихся обломков после взрыва сверхновой — измельченных остатков любых бывших планет, смешанных с большим количеством «звездных кишок». Это может быть вариантом, но диск обломков должен двигаться по орбите с постоянной или достаточно высокой скоростью, чтобы избежать его падения обратно на пульсар который все еще имеет довольно сильное локализованное гравитационное поле. Иногда у пульсаров есть звезды-компаньоны, которые со временем сливаются с ними. Во время этого процесса материал компаньона может оставаться на орбите, а после длительных периодов времени от миллионов до миллиардов лет этот обломок может начать сливаться и также становиться маленькими планетами. В этом сценарии поле обломков должно быть достаточно далеко от пульсара, чтобы его не втянуло внутрь. Другой вариант заключается в том, что пульсар может украсть планету у двойной системы или ее спутника. Когда вторичная звезда и ее планеты сближаются, пульсар выбрасывает звездный объект, но захватывает планетарное тело, принимая его как свое собственное. Добро пожаловать в ад, планетарный друг. И, наконец, планеты-пульсары могут быть всем, что осталось от звезды-компаньона, которая отклонилась слишком близко к пульсару. Все это излучение, этот релятивистский ветер и энергия могут медленно испарять спутник на близкой орбите, пока не останется только его маленькое, похожее на планету ядро.