Вместе с парасимпатической нервной системой она регулирует работу внутренних органов, действуя во многом независимо от головного мозга (отчего симпатическую и парасимпатическую нервную систему объединяют под общим названием автономной нервной системы). Онколог Ирина Олейникова из ФНКЦ ФМБА назвала 7 часто встречающихся вирусов, которые могут спровоцировать развитие рака. Злокачественные опухоли периферической нервной системы опасны тем, что 5-летняя выживаемость является достаточно низкой. Онкологи из РФ намерены лечить рак при помощи нервной системы. Российские ученые намерены бороться с раком через нервную систему.
Жизнь Захара сейчас висит на волоске.
Рак заставляет работать на себя соединительные ткани и нервную систему, которую можно использовать для борьбы с недугом, пишет РИА Новости со ссылкой на последние исследования ученых. Новый коронавирус, согласно предположению зарубежных ученых, способен вызвать опухоль мозга и ускорить развитие уже имеющейся. Особенность рака в том, что больные клетки подчиняют себе работу сосудов, соединительной ткани и даже нервной системы. Головная боль, тошнота, нарушение слуха или зрения могут указывать на наличие рака мозга. развитие нейрофиброматоза 2-го типа (это заболевание, связанное с поломками генов, при котором формируются множественные опухоли – шванномы либо менингеомы в области нервов и нервной системы).
Рак нервной системы. Опухоли ЦНС: причины, симптомы, диагностика и лечение
К наследственным и семейным опухолям нервной системы относятся нейрофиброматоз (болезнь Реклингхаузена), ангиоретикуломатоз головного мозга, диффузный глиобластоматоз и др. Питание для тканей не исключение, поэтому скрытая роль нервной системы в развитии рака может быть очень значительной. Опухоли центральной нервной системы – взгляд клинического патолога.
1. Общие сведения о происхождении опухолей ЦНС
- В Москве врачи удалили опухоль центральной нервной системы у беременной пациентки
- В UC смогли вернуть в норму клетки злокачественной опухоли нервной системы
- Ученые нашли новый способ бороться с раком через нервную систему — 07.02.2024 — Здоровье на РЕН ТВ
- Рак мозга: симптомы, статистика и шансы на выздоровление // Новости НТВ
Рак нервной системы. Опухоли ЦНС: причины, симптомы, диагностика и лечение
Классификация опухолей спинного мозга у взрослых Существует достаточно много вариантов классификации опухолей, локализованных в области спинного мозга. Возможно разделение на группы по ряду признаков — расположение опухолевого очага относительно спинного мозга, позвоночника или мозговых оболочек, особенности гистологической картины, а также конкретная локализация поражения. Если делить опухоли по происхождению, их можно отнести к двум группам: первичные — это ткань опухоли, которая развилась из клеток самого спинного мозга, его корешков или оболочек; вторичные — это опухоли иной локализации, поражающие спинной мозг в том числе — метастатические. По расположению опухоли можно разделить их на несколько групп: экстрадуральная опухоль — очаг над областью твердой мозговой оболочки; интрадуральная — опухоль под твердой оболочкой; интрамедуллярная — растет внутри спинного мозга, происходя из его клеток.
Опухоли могут располагаться сзади от спинного мозга, спереди, по бокам, поражая шейный или грудной, поясничный или крестцовый отделы. По происхождению и типу клеток классификация очень большая, опухоли определяют по данным биопсии. Лечение опухоли спинного мозга у взрослых Для того, чтобы определить тактику лечения и возможности радикального удаления опухоли, необходимо обратиться к врачу, который проведет полное обследование, определение типа и стадии опухоли.
Диагностика Проведение диагностики — это поэтапный процесс, который позволяет определить размеры, тип опухоли и составить план её лечения. Прежде всего, врачу важны жалобы пациента, имеющиеся у него симптомы, история болезни. Важно, когда развились симптомы, как они изменялись со временем.
Также проводится полное неврологическое обследование — определение тонуса мышц, рефлексов, силы мышц, подвижности позвоночника, чувствительности.
Для этого она проанализировала истории болезни всех мужчин с герминогенными опухолями в Швеции за период с 1992 по 2014 год. Всего в исследование попало 6166 пациентов, из которых у 3575 диагностирована семинома, а у 2591 — любая другая герминогенная опухоль. В контрольную группу включили 61660 человек. Крипторхизм в анамнезе чаще встречался у пациентов исследуемой группы. У 8,8 процента участников из группы опухоли яичек и у 8,3 процента участников контрольной группы были какие-либо психические отклонения. Разница оказалась статистически незначимой, следовательно психические отклонения не влияли на риск развития опухоли.
Современные технологии в Крыму выявляют опухоли и нарушения нервной системы Современные технологии в Крыму выявляют опухоли и нарушения нервной системы 15 июня 2023 в 19:59 612 Фото: «Вести Крым» Диагностическая лаборатория Медицинской академии Крымского федерального университета имени В. Вернадского выявляет опасные заболевания на ранних стадиях. Об этом в эфире передачи «Гость.
Длительное время считалось, что нервы выступают проводником боли и опорой для раковых клеток. Но со временем учёные пришли к выводу, что нейроны бросают к ним тонкие нити нейритов.
Таким образом, создается своеобразный мост к здоровым клеткам.
Биологи выявили белок, скрывающий клетки нейробластомы от внимания иммунитета
Так, ученые начали перепрограммировать определенные ткани, чтобы при росте опухоли те окрашивались в красный цвет. Это позволяет отлавливать отдельные раковые клетки, если они отделились от общей массы и потенциально могут привести к образованию метастазов. В последние годы исследователи все чаще уделяют внимание роли нервной системы в развитии опухоли. Все химические процессы, происходящие в тканях, поддерживаются мозгом. Питание для тканей не исключение, поэтому скрытая роль нервной системы в развитии рака может быть очень значительной. Ее поддержка нужна онкоцитам из-за их высокой скорости роста. Например, рак предстательной железы, который сразу прогрессирует в направлении нервных окончаний, задействуя их в своем распространении.
Как приготовить мясо без вреда для здоровья и с чем его есть, рассказала врач-диетолог и эксперт в области здорового питания сервиса Level Kitchen Татьяна Мещерякова.
Сырое мясо несет опасность заражения гельминтами. Чтобы избежать опасной горелой корочки, шашлык лучше готовить не на шампурах и открытом огне, а в фольге. Благодаря такой обработке, он получается более нежным, сочным, без зажаристой корочки, что намного полезнее», — рассказала Мещерякова в интервью «Известиям».
Забрюшинная нейробластома, 4 стадия. Сумма сбора: 1 400 000 руб. После долгих и тяжёлых месяцев лечения Амин в начале лета дождался такой желанной и необходимой в его состоянии "фиесты". У мальчика уже не выдерживал организм, поэтому врачи решили сделать короткий перерыв в лечении. Вынужденные каникулы закончились, пора снова подключать терапию. Амин сейчас на лекарствах, ему нельзя находиться в местах, где много народу, иммунитет мальчика для этого слишком слаб. Даже малейший вирус может спровоцировать очередной удар РАКа.
Поэтому вынужденные каникулы у мальчика прошли в жёстких ограничениях. Но даже этому Амин был рад, ведь он увидел любимых сестрёнок, обнимал их, учил чему-то и поддерживал. С того момента, как от них из-за болезни сына ушёл папа, мальчик чувствует за маму и сестёр свою мужскую ответственность.
Операция может продлиться несколько часов: к опухоли сложно подобраться. Это опухоль центральной нервной системы, размером примерно с яблоко. Сложность в крайне редком ее расположении — в позабрюшинном пространстве, совсем близко жизненно важные органы. Образование идет от спинного мозга прямо к аорте.
Руководит операцией Иван Стилиди — директор центра имени Блохина. Хирургам предстоит удалить опухоль, практически до нее не дотрагиваясь. С этой точки зрения нам на помощь анестезиологи, которые медикаментозно влияют на ситуацию, контролируют ее. Мы же работаем атравматично, без контакта, для того чтобы все притоки и отток от опухоли по венам, куда и выбрасываются эти гормоны, прекратить, ликвидировать и таким образом радикально удалить образование», — рассказал директор НМИЦ онкологии им. Блохина Иван Стилиди.
Главный онколог «СМ-Клиника» об опухолях спинного мозга
Опыты доказали, что у обычных мышей раковая опухоль быстро начала расти, пока у генно-модифицированных животных онкология не прижилась. «В нашем реабилитационном центре создана диагностическая лаборатория, которая позволяет с помощью компьютерных технологий и специальных аппаратов выявить у больного ранние нарушения опорно-двигательного аппарата и нервной системы», — сказал директор. Как правило, это связано с химиотерапией и некоторыми видами рака, которые поражают центральную нервную систему и оставляют метастазы в головном мозгу. Рак заставляет работать на себя соединительные ткани, кровеносные сосуды и даже, согласно последним данным, нервную систему. Выживаемость зависит от успешного хирургического удаления опухоли, реакции на традиционную химиотерапию и степени распространения рака. Медики использовали вирус Зика для лечения мышей с нейробластомой — агрессивной формой рака симпатической нервной системы.
Микробиом, нервная система и канцерогенез
Правильные уровни нейротрансмиттера могут зависеть от правильных популяций бактерий в кишечнике, поскольку у мышей, свободных от микробов, уровень норадреналина значительно ниже [135]. В дополнение к дофамину, стимулирующему дофаминергические нейроны, они активируют врожденные и адаптивные иммунные клетки [136]. Последствия активации иммунной системы в развитии рака уже обсуждались. Дофамин также синтезируется и секретируется различными бактериями [137]. Было обнаружено, что ГАМК уменьшает миграцию раковых клеток толстой кишки в культуре за счет модуляции активности норадреналина [134]. Ацетилхолин Было обнаружено, что нейромедиатор ацетилхолин играет определенную роль во многих различных видах рака. Он индуцирует рост и деление клеток в эпителиальных клетках [139], а повышенная экспрессия ацетилхолиновых рецепторов была выявлена при нескольких типах рака на мышиных моделях, включая ацетилхолиновый рецептор 3 M3R3 при раке желудка [140] и мускариновые рецепторы ацетилхолинового рецептора M Chrm1 при раке предстательной железы на стромальных клетках [141].
Подвид лактобацилл может вырабатывать ацетилхолин [137]. Ганглии как в симпатической нервной системе СНС , состоящей из ганглиев, которые параллельны спинному мозгу, так и в парасимпатической нервной системе ПНС , состоящей из блуждающего нерва и некоторых спинномозговых нервов, реагируют на стимуляцию ацетилхолином. Однако только ПНС производит и выделяет его рассмотрено в [142]. Это важно, так как блуждающий нерв является одним из основных связующих звеньев между мозгом и микробиотой кишечника. Нейрогенез и регуляция микро-РНК микробиотой. Создание новой нервной ткани нейрогенез - важный процесс для прогрессирования большинства видов рака.
Опухолевые клетки продуцируют факторы, которые приводят к образованию новой нервной ткани [143]. Эти новообразованные нервы выделяют нейротрансмиттеры, которые стимулируют рост и миграцию опухоли [144]. Рак может проникать в новую ткань и мигрировать по нервам или нервной ткани. Подобно ангиогенезу и лимфогенезу, эти новые нервы также поддерживают новую опухоль, ведущую к росту рака вокруг этих новых нервов в процессе, известном как периневральная инвазия PNI [145]. Микробиом также способен инициировать сигнальные каскады, которые стимулируют нейрогенез, активируя TLR2. Процесс нейрогенеза можно подавить, отсрочить или даже противодействовать, если скармливать животным смесь определенных бактерий, которая изменяет популяции их кишечной микробиоты [146, 147].
Известно, что регуляция экспрессии генов посредством действия миРНК играет роль в пролиферации нейронов, нейрогенезе и передаче сигналов нейротрофического фактора мозга BDNF. Эти процессы, а также экспрессия некоторых миРНК изменены у стерильных мышей [148]. Исследования, включающие секвенирование следующего поколения миРНК от нормальных, свободных от микробов и обработанных антибиотиками мышей, показывают, что экспрессия миРНК в миндалине и префронтальной коре регулируется микробиотой, а изменения в популяциях микробиоты приводят к изменениям экспрессии миРНК. Характер экспрессии миРНК у мышей без микробов был изменен еще раз после бактериальной колонизации мышей без микробов [149]. Одной из миРНК, экспрессия которой нацелена на кишечную микробиоту, является miR-206-3p. Известно, что BDNF стимулирует рост нейронов и важен для нейрогенеза, связанного с раком, который также участвует в инвазии, метастазировании и поддержке развития и роста рака см.
Обзор [142]. Лечение рака на основе нейронных взаимодействий микробиома. В настоящее время известно, что вакцинация пациентов специфической комменсальной микробиотой оказывает благотворное воздействие при различных видах рака [151,152]. Например, когда добавление в рацион мышей бактерий рода Bifidobacterium является частью стратегии лечения, которая также включает блокаду PD-L1 , это усиливает ингибирование противоракового роста, вызываемое PD-L1. Бактерии Bifidobacterium longum оказывали ингибирующее действие на развитие и прогрессирование рака толстой кишки. Исследования показали, что использование добавок B.
В настоящее время известно, что эти бактерии ингибируют пролиферацию клеток, индуцированную азоксиметаном, а также снижают активность онко-белков, таких как ras-p21 и орнитиндекарбоксилаза [153]. Однако существует проблема, связанная с использованием микробной инокуляции в качестве метода лечения рака. Традиционное лечение, такое как химиотерапия и лучевая терапия, может оказывать негативное воздействие на популяцию микроорганизмов. В дополнение к этому, применение антибиотиков может также нарушить микробиоту как ту, которая уже присутствует, так и ту, которая была дана пациенту в качестве лечения. Это было продемонстрировано при лечении мышей с опухолями иммуностимулирующим препаратом циклофосфамидом. В сочетании с антибиотиками препарат был гораздо менее эффективен при лечении рака.
Это было связано с более низкими уровнями клеток Th1 и Th17 [62]. В дополнение к этим терапевтическим методам, включающим микробиоту и функцию нервной системы при раке, были проведены исследования по использованию микробиоты для уменьшения побочных эффектов лечения рака. После химиотерапии пациенты часто испытывают боль в животе после химиотерапии. Эта боль, по-видимому, является результатом микробной токсичности, приводящей к изменениям в микробном воздействии на нервы, способные воспринимать боль. В исследовании сообщалось, что эта боль может быть уменьшена с помощью пробиотического лечения пациента [154]. Это может восстановить микробиоту, которая была утрачена после химиотерапевтического лечения [155].
Еще одно осложнение химиотерапии известно как когнитивные нарушения, вызванные химиотерапией CICI. Это расстройство включает снижение памяти, внимания и концентрации в результате химиотерапии и связано с цитотоксическим воздействием на ЦНС. Это также может усугубляться нейровоспалением и повреждением ГЭБ. Опять же, считается, что это связано с химиотерапией, нарушающей микробиоту желудочно-кишечного тракта. Были проведены исследования, чтобы показать, что пробиотические добавки микробиома могут помочь в лечении CICI [12]. Изменение популяции микробов может быть использовано в качестве диагностического инструмента [27].
Поскольку изменения в микробиоме могут быть специфичными для рака [156], эти изменения могут быть использованы в качестве персонализированного диагностического инструмента. Этим можно воспользоваться, изучив транскриптомные или протеомные профили онкологических больных. Анализ всего транскриптома или протеома был использован для выявления специфичных для рака изменений паттерна [157]. Однако существует ряд проблем с использованием микробных популяций в качестве диагностических биомаркеров. Во-первых, микробная биомасса намного ниже, чем у хозяина, а во-вторых, существует высокий риск загрязнения окружающей средой и другими микробами, не изолированными от пациента. Выводы Концепция микробиома, влияющего на развитие и прогрессирование рака посредством взаимодействий с участием нервов, нейротрансмиттеров, иммунной системы и метаболитов, выделяемых микроорганизмами рис.
Однако это взаимодействие происходит по всему организму и зависит не только от способности микробиома кишечника выделять метаболиты, которые могут стимулировать или подавлять нервную функцию, но и через микробиом, влияющий на иммунную систему и выработку цитокинов, приводящих к изменению нервной функции. В настоящее время эти взаимосвязи исследуются на предмет их способности обеспечивать будущие терапевтические цели за счет использования пробиотиков для изменения микробиоты в организме пациента и, таким образом, повышения уровня определенных видов микроорганизмов, которые выделяют метаболиты с противоопухолевой функцией. Кроме того, эти микробы могут активировать иммунный ответ, позволяя создавать большее количество противоопухолевых иммунных клеток. Изменения в популяциях микробов у пациентов с различными видами рака также изучаются в качестве новых диагностических или прогностических биомаркеров. Рисунок 6. Схема, иллюстрирующая связанный с нервами вклад микробиома в развитие рака.
Микробиом может влиять на синтез нейромедиаторов, а также на некоторые микроорганизмы, обладающие способностью синтезировать собственные нейромедиаторы. Это связано с секрецией специфических метаболитов микроорганизмами, составляющими микробиом, которые обладают способностью стимулировать или подавлять рак различными способами. Присутствие различных микроорганизмов также может изменить иммунный специфический ответ на эти микроорганизмы. Все эти реакции могут быть опосредованы специфической реакцией нервной системы на присутствие нейротрансмиттеров, метаболитов и активацию иммунной системы. К разделу: Роль микробиома в развитии и терапии рака Литература Sender, R. PLoS Biol.
Contribution to the Knowledge of Sarcoma. Dr William Coley and tumour regression: A place in history or in the future. Nature 1992, 357, 11—12. Trends Cancer 2020, 6, 192—204. The microbiome and human cancer. Science 2021, 371, eabc4552.
The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Psychiatry 2018, 9, 44. Role of the gut microbiota in immunity and inflammatory disease.
Подобные эксперименты с нервами приводили к излечиванию от опухоли желудка, печени и кожи. Такой метод получил название нейротерапия и он может стать частью лечения раковых больных и применяться в совокупности с химиотерапией, хирургией и иммунотерапией.
Но эти приёмы срабатывают не всегда. И вот сейчас удалось выяснить, что утомлённые-истощённые Т-лимфоциты остаются в таком состоянии из-за норадреналина — нейромедиатора и гормона, который используют нейроны симпатической нервной системы. На Т-клетках, которые устали от долгой вирусной инфекции или онкозаболевания, появляется много ADRB1-рецепторов к норадреналину.
И чем ближе к симпатическим нервам сидят такие Т-лимфоциты, тем более уставшими они становятся. Понизив количество норадреналиновых рецепторов, Т-клетки можно вернуть в строй: они начнут делиться и активнее воспринимать сигналы, что нужно бороться с болезнью. Того же самого можно добиться, если подавить общение Т-лимфоцитов с симпатическими нервами — например, с помощью вещества адреноблокатора, которое не пустит норадреналин к рецептору на лимфоцитах. В экспериментах с мышами удалось с помощью адреноблокатора заметно повысить эффективность иммунотерапии при раке поджелудочной железы — без норадреналиновых сигналов лимфоциты чувствовали себя лучше и сильнее атаковали опухоль.
Несколько недавних исследований показали, что глиомы опухоли головного мозга, происходящие из глиальных клеток также могут образовывать сеть возбуждающих глутаматергических синапсов в головном мозге, стимулируя рост опухоли [73, 74]. Аналогичным образом, недавнее исследование показало, что метастазы рака молочной железы в мозге также образуют возбуждающие глутаматергические синапсы, стимулирующие рост опухоли через экспрессируемые ею метаботропные глутаматные рецепторы, известные как N-метил-d-аспартатные рецепторы NMDAR [75]. Экспрессированные опухолью NMDAR также связаны с агрессивностью нескольких новообразований, локализованных вне ЦНС, включая рак поджелудочной железы и яичников [76]. Было показано, что опухоли поджелудочной железы также вырабатывают глутамат, который используется для аутокринной регуляции [76, 77]. Учитывая эти данные, можно предположить, что вегетативная адренергическая, холинергическая и чувствительная передача сигналов влияет на эпителиальные опухоли, тогда как глутаматергическая передача сигналов в ЦНС регулирует первичные и метастатические опухоли в головном мозге. Рисунок 2 Адаптировано из Ali H. Zahalka, et al, 2020 [14]. Реактивация нервно-опосредованных путей роста и регенерации в опухоли. Фаза нервной стимуляции части a — c. Связывание нейротрофина с его родственным рецептором на нервах приводит к образованию импульса, который ретроградно распространяется к соме, влияя на экспрессию генов и рост аксонов. Нервно-опосредованная регуляция фазы роста части d—f. Симпатические нервы способствуют образованию сосудистой сети. Аналогично, в опухоли симпатические нервы способствуют образованию сосудов, кровоснабжающих растущую опухоль, а парасимпатические нервы подают сигналы опухолевым клеткам к митозу и миграции, что, в свою очередь, приводит к увеличению роста и образованию микрометастазов. Реактивация нервно-опосредованных путей Чтобы лучше понять механизмы, с помощью которых нервы взаимодействуют с ТМЕ и влияют на опухоль, нужно получить представление о влиянии нервов на развитие и регенерацию Рис. Во время своего развития железы и эпителиальные органы подвергаются процессу, известному как лобуляция. Было показано, что этот процесс сильно зависит от развития и роста нервов [78—83] Рис. В качестве модели для исследования эмбрионального морфогенеза поднижнечелюстная слюнная железа изучена лучше всего. Это произошло благодаря возможности культивировать ее ex vivo.. Как и многие железы, поднижнечелюстная слюнная железа максимизирует пространство и площадь поверхности благодаря ветвящимся протокам и ацинусам, чтобы произвести необходимый объем секрета [84]. Концевые эпителиальные утолщения и протоки секретируют нейротурин, который вызывает однонаправленный рост аксонов из парасимпатического субмандибулярного ганглия [78]. Эти парасимпатические нервы, в свою очередь, высвобождают ацетилхолин, который передает сигналы через мускариновые рецепторы в SRY-box 2 SOX2 , вызывая разветвление и созревание ацинусов, и высвобождает вазоинтестинальный пептид VIP , который стимулирует тубулогенез [78—80,86] Рис. Адренергические нервы также играют важную роль в развитии желез. В позднем пренатальном периоде адренергические нервы начинают иннервировать слюнные железы, способствуя созреванию железистых ацинусов и формированию сосудистой сети [50,81] Рис. Эта иннервация необходима для органогенеза. Исследования показывают, что симпатэктомия или генетическая делеция основного адренергического нейротрофина NGF ингибирует образование желез [87,88]. NGF играет решающую роль в инициации и дальнейшей иннервации железы. Однако при завершении органогенеза уровни NGF падают, и аксоногенез, соответственно, снижается [89]. Синтезируемый железой NGF, связываясь с родственным рецептором TRKA на нейрональной пресинаптической мембране, влияет на экспрессию генов и аксоногенез [90, 91] Рис. В эмбриональной поджелудочной железе начало адренергической иннервации ассоциировано с фазой быстрого роста и созревания железы, а генетическая делеция NGF или нейрон-специфическая делеция TRKA приводит к неполной адренергической иннервации поджелудочной железы и, как следствие, нарушению её структуры, а симпатэктомия — к фенокопии [82,88,92]. Помимо вклада в органогенез, нервы также необходимы для формирования и роста конечностей. У развивающегося эмбриона один из самых высоких уровней NGF обнаруживается в зачатке конечности, в недифференцированной мезенхиме, примыкающей к апикальному эктодермальному гребню тонкий эпителиальный слой, необходимый для правильного формирования конечности [89]. До дифференцировки и формирования конечности в мезенхиме её зачатка появляются чувствительные нервы [93], и наблюдается конденсация мезенхимы начальный этап дифференцировки структуры конечности в тесной связи с разветвлением и ростом нервов [93]. Подобная роль нервов наблюдается при регенерации конечностей Рис. У саламандр регенерация структур конечностей дистальнее ампутации зависит от наличия нервов, так как денервация слоев проксимальнее места ампутации препятствует восстановлению [95]. Эти нервы передают сигналы вышележащим эпителиальным и мезенхимальным клеткам бластеме , которые обуславливают клеточную миграцию и контролируют пролиферацию клеток [96] Рис. Нервы важны не только для формирования кровеносных сосудов во время органогенеза [97,98], но и для их восстановления в процессе регенерации [99]. Этот феномен формирования сосудов и эпителия был продемонстрирован на Xenopus laevis гладкая шпорцевая лягушка. После ампутации передней конечности и последующего хирургического перенаправления иннервации с задней конечности, в результате наблюдалась гипериннервация и ускоренная регенерация в зоне ампутации [100]. В данном случае влияние нервов на регенерацию реализуется через комбинацию эффектов от действия нейротрансмиттеров и факторов роста, таких как специфичный для саламандры секретируемый белок nAG , который не имеет функционально сходного ортолога у млекопитающих [101]. У млекопитающих включая людей происходит нервно-зависимая регенерация кончика пальца [102], это связано с сигнальным путем WNT Рис. Делеция WNT в эпителиальных клетках кончика пальца снижала экспрессию нейротрофинов и ингибировала рост аксонов и регенерацию у мышей [103]. Зависимость регенерации аксонов от WNT является общим путем для органогенеза во время эмбрионального развития [103—105]. Существуют также другие состояния, при которых нервы поддерживают регенерацию. Во время инициации и на ранних стадиях прогрессирования опухоль реактивирует нервно-зависимые пути, сходные с теми, что задействованы для обеспечения роста Рис. Как уже обсуждалось в предыдущем разделе, плотность нервов увеличивается более чем в два раза во время предраковой стадии развития опухоли. Это подобно тому, что наблюдается при формировании желез во время органогенеза и формирования бластемы в процессе регенерации. При этом увеличение числа нервов сопровождается увеличением образования нейротрофинов [110] Рис. В этом исследовании уровни нейротрофинов продолжали расти по мере того, как заболевание прогрессировало до агрессивной аденокарциномы, превышая в 6 раз уровни в сопоставимых по возрасту контрольных группах. Кроме того, было обнаружено, что у мышей с протоковой аденокарциномой поджелудочной железы имеется десятикратное повышение плотности нервов по сравнению с сопоставимой по возрасту контрольной группой одна треть этих нервов является адренергической [4]. Также в исследовании было обнаружено повышение уровня Ngf в эпителиальном компартменте опухоли поджелудочной железы. Когда авторы селективно повысили экспрессию NGF в эпителии поджелудочной железы с использованием трансгенной Ngf-knock-in модели, наблюдалось увеличение плотности адренергических нервов. И наоборот, снижение экспрессии NGF генетическим путем с использованием небольшой интерферирующей РНК siRNA или путем блокады антителами NGF ингибирует прогрессирование рака поджелудочной железы и метастазирование [112,113]. В отличие от экспрессии NGF в эпителии протоковой аденокарциномы мыши, уровни нейротрофинов в образцах полученных из опухоли человека были повышены в стромальном компартменте, а уровни их родственных рецепторов были повышены в эпителиальном компартменте [4,114]. Поэтому необходимы дальнейшие исследования, чтобы выяснить место образования нейротрофина, способствуещего равитию рака. Повышенная экспрессия нейротрофина ассоциирована с плохим клиническим исходом при различных типах рака. В образцах рака простаты человека повышенная экспрессия pro-NGF — предшественника белка NGF — связана с более агрессивным заболеванием, и наибольшее количество NGF и BDNF было обнаружено в стромальном компартменте этих опухолей [115,116]. Аналогично, повышенная экспрессия NGF была обнаружена в тканях рака молочной железы человека, а повышенные уровни BDNF были обнаружены в опухолях яичников человека и были связаны с более высокой плотностью нервов и повышенной смертностью [117,118]. Сверхэкспрессия NGF в эпителиальных клетках желудка увеличивала иннервацию его слизистой оболочки и индуцировала развитие аденокарциномы желудка у мышей дикого типа [60]. Было также показано, что сигнальный путь WNT является ключевым нейротрофическим фактором стимуляции нервов [3,103]. В клинических образцах рака желудка повышенные уровни WNT коррелировали как с большей плотностью нервов в опухоли, так и стадией опухоли [3]. А денервация желудка на мышиной модели рака желудка снижала уровни WNT и рост опухоли. В органогенезе и регенерации нервы выполняют несколько функций, в том числе стимулируют пролиферацию эпителия, миграцию и формирование стромы. Парасимпатические нервы регулируют экспансию ацинарных клеток через передачу сигналов M1R к SOX2 [80]. Некоторые виды рака могут взаимодействовать с нервами для активации сходных путей Рис. Рак предстательной железы происходит из ацинарных эпителиальных клеток. Недавние исследования показали, что усиление парасимпатических сигналов способствует метастазированию рака предстательной железы. Кроме того, опухоли предстательной железы мыши и человека демонстрируют повышенную экспрессию SOX2 в раковых клетках [119]. Другие доказательства того, что парасимпатические нервы регулируют раковые стволовые клетки РСК в опухолях железистого происхождения, получены в трансгенных мышиных моделях рака. Например, холинергические нервы иннервируют стволовые клетки желудка, экспрессирующие фактор транскрипции MIST1 также известный как bHLHa15 , а условная делеция Chrm3 кодирующая M1R в этих клетках ингибирует рост опухоли желудка in vivo [60]. Поскольку парасимпатические нервы оказывают антагонистическое действие в мышиных моделях рака поджелудочной железы то есть они подавляют рост опухоли , введение агониста мускариновых рецепторов бетанхола снижает количество РСК поджелудочной железы [44]. Необходимы дальнейшие исследования, изучающие иннервацию РСК в различных опухолях, чтобы определить, участвует ли адренергическая иннервация непосредственно в экспансии РСК, а также для определения характеристики рецепторов вегетативных нервов, экспрессируемых РСК. Формирование иннервации зависит от сочетания нейрональной миграции и аксоногенеза. Недавние исследования обнаружили увеличение количества клеток, экспрессирующих даблкортин маркер, связанный с нейрональными предшественниками, а также с конусом роста аксонов [120,121] в трансгенных опухолях предстательной железы мыши [122]. Это открытие предполагает, что нейронные предшественники могут перемещаться по кровотоку от мозга к предстательной железе. Происходит ли подобный процесс при других типах опухолей или в раковых опухолях человека, требуется изучить в дальнейшем. Однако это наблюдение вызывает множество вопросов, например, как нейронные предшественники преодолевают гематоэнцефалический барьер, каковы сигнальные пути от мозга к опухоли простаты и дифференцируются ли эти предшественники в полноценные функциональные вегетативные нервы. Поскольку клетки рака предстательной железы также могут экспрессировать даблкортин [123], потребуются углубленные исследования для определения происхождения новообразованных аксонов в опухолях. Нервная регуляция TME Последние достижения в области генной инженерии привели к большему пониманию молекулярных основ нервной регуляции опухоли. Эксперименты in vitro показали, что нейротрансмиттеры передают сигналы непосредственно опухолевым клеткам, способствуя пролиферации, выживанию и миграции клеток, как было рассмотрено ранее [124]. Следует отметить, что прямая иннервация эпителиального компартмента то есть клеток, из которых происходят солидные опухоли действительно может играть роль в возникновении и прогрессировании опухолей, как это было показано для рака желудка [60]. В некоторых органах, таких как простата, эпителиальные клетки гистологически отделены от нервов барьером из гладких мышц, тогда как в других, например, в слюнных железах, эпителиальные клетки подвергаются прямой иннервации. Таким образом, специфические для эпителиальных клеток нокауты генов, кодирующих вегетативные и сенсорные рецепторы Adrb2, Adrb3, Chrm1 и Chrm3 и ген, кодирующий рецептор субстанции P Nk1r, также известный как Tacr1 в моделях автохтонного рака у мышей, позволяют получить представление о вкладе эпителиального компартмента в нервно-опосредованную регуляцию опухоли. Гистологические исследования показывают, что нервы проходят через стромальный компартмент и непосредственно иннервируют структуры стромы [40,125,126]. Работы на животных in vivo свидетельствуют о взаимодействии в TME между нервами, стромой и эпителиальным компартментом. Например, недавнее исследование показало, что адренергические нервы косвенно регулируют пролиферацию опухолевых клеток, стимулируя ангиогенез и, таким образом, доступность питательных веществ для опухоли [2]. Далее обсудим влияние нервов на отдельные компоненты TME Рис. Zahalka, et al, 2020 [14] Нервная регуляция опухолевого микроокружения Нервы взаимодействуют со множеством стромальных и злокачественных эпителиальных компонентов, способствуя росту и распространению опухоли. Опухоль создает вокруг себя иммуносупрессивное микроокружение. Передача сигналов от адренергических нервов стимулирует секрецию интерлейкина-8 IL-8 , которые в свою очередь привлекают опухоль-ассоциированные макрофаги ТАМ , способствующие ангиогенезу и дальнейшей иммуносупрессии. Ангиогенез, ключевой компонент развития опухоли, напрямую регулируется нервами. Как упоминалось ранее, парасимпатическая передача импульсов через холинергические рецепторы, экспрессируемые опухолевыми клетками, способствует миграции опухолевых клеток и образованию микрометастазов. Ангиогенез и лимфангиогенез Ангиогенез необходим для роста опухоли [127]. В стромальном компоненте тканей адренергические нервы тесно связаны с сосудистой сетью главным образом, с артериолами и капиллярами [128,129]. Недавно было обнаружено, что адренергические нервы регулируют инициацию и ангиогенез на ранних стадиях рака простаты с помощью механизма, называемого «ангиометаболический переключатель» angiometabolic switch [2] Рис. Эндотелиальные клетки обычно регулируются гликолитической метаболической программой при направленной миграции клеток, необходимой для ангиогенеза при нормальном развитии и при раке [130,131]. В TME мышиной модели рака предстательной железы было обнаружено, что эндотелиальные клетки демонстрируют более высокую экспрессию Adrb2, а симпатэктомия или условная делеция Adrb2 в эндотелиальных клетках ингибирует ангиогенез путем смещения метаболизма эндотелиальных клеток от гликолиза к окислительному фосфорилированию за счет активации регуляции цитохром С оксидазы фактора сборки 6 Coa6 [2]. Подобно сосудистой сети, лимфатическая система высоко иннервирована адренергическими нервами [132,133]. В ортотопических и трансгенных моделях рака молочной железы лимфангиогенез и ремоделирование лимфатической системы зависели от адренергической передачи сигналов через рецептор Adrb2 на лимфатическом эндотелии, что способствовало метастазированию опухоли [57]. Было показано, что симпатическая денервация уменьшает образование лимфатических сосудов, что коррелирует с уменьшением агрессивности рака [17]. Иммунитет и воспаление Внутри TME вегетативные нервные волокна иннервируют иммунную сеть. Вырабатываемый T-клетками ацетилхолин, в свою очередь, ингибирует продукцию фактора некроза опухоли TNF в макрофагах, экспрессирующих никотиновый ацетилхолиновый рецептор [135]. Хотя эта нейроиммунная сеть, называемая «воспалительным рефлексом», отвечает за иммуносупрессию в условиях стресса, вегетативная иннервация также напрямую влияет на привлечение и стимуляцию иммунных клеток в TME. Инфильтрация опухоли лимфоцитами и их активация являются ключевыми компонентами противоопухолевого иммунного ответа [136]. Повышенный уровень стресса связан с повышенной активацией лимфоцитов посредством производства провоспалительных цитокинов, таких как интерлейкин-6 IL-6 [137]. Опухоли яичников, резецированные у пациенток, находящихся в состоянии стресса, по сравнению с опухолями яичников, резецированных у пациенток, не испытывающих стресс, но сопоставимых по возрасту и стадии заболевания, имеют повышенный внутриопухолевый уровень норадреналина и IL-6 [138]. Тем не менее, в тканях с высокой степенью иннервации, таких как поджелудочная железа и предстательная железа, были обнаружены низкие уровни T-хелперов 1 TH1 [136, 140—142]. Адренергические нервы вносят свой вклад в это иммуносупрессивное окружение несколькими способами Рис. Лимфатическая система, которая отвечает за транспортировку лимфоцитов, высоко иннервирована адренергическими нервами. На ортотопической мышиной модели рака молочной железы нокаут Adrb2 в MDSC замедляет рост опухоли, снижает экспрессию PDL1 и уровни иммуносупрессивных цитокинов в сыворотке крови [146]. Эти наблюдения, а также тот факт, что опухоли с хорошим ответом на иммунотерапию, по-видимому, обильно инфильтрированы TH1 клетками [136], предполагают, что денервация или прекращение адренергических сигналов может обеспечить новые подходы для улучшения иммунотерапевтического ответа в высокоиннервированных опухолях [147]. TNF является основным хемоаттрактантов для клеток врожденного иммунитета, таких как макрофаги. Стимуляция блуждающего нерва активирует постсинаптические адренергические нервы в чревном ганглии, который иннервирует селезенку, ингибируя высвобождение TNF из макрофагов. А ваготомия устраняет эту иммуносупрессию, повышая тем самым системные уровни TNF [134,148]. Ацетилхолин, в свою очередь, стимулирует никотиновые АХ-рецепторы на макрофагах селезенки, ингибируя высвобождение TNF [148]. В трансгенных моделях рака поджелудочной железы ваготомия существенно увеличивала уровни TNF, приводя к увеличению количества TAM [43,44]. В ортотопической модели рака молочной железы увеличение адренергической передачи сигналов в условиях стресса увеличивало количество внутриопухолевых TAM [58]. Аналогичным образом, при раке предстательной и поджелудочной желез нервно-зависимое увеличение количества ТАМ было ассоциировано с прогрессированием опухоли. Тогда как снижение числа макрофагов ингибировало рост опухоли [19,43,44,46,149]. Суммируя эти данные, можно предположить, что нейроиммунная связь является важным регуляторным компонентом TME, где отдельные ветви вегетативной нервной системы действуют противоположно друг другу, обеспечивая тем самым баланс, который нарушается при возникновении рака. Фибробласты и внеклеточный матрикс Изменения в 3D-структуре и составе TME значительно влияют на прогрессирование опухоли и метастазирование Рис. Например, во многих опухолях плотный внеклеточный матрикс ВКМ действует как физический и химический барьер для инфильтрации иммунных клеток, создавая привилегированную в иммунном отношении среду [150]. В то же время, изменения в составе ВКМ по отношению к среде, богатой коллагеном I типа, приводят к тому, что она действует как ангиогенный суперполимер, способствуя ангио- и нейрогенезу [151—154]. Кроме того, в то время как повышенная плотность ВКМ помогает предотвратить иммунный ответ на ранних стадиях развития опухоли, деградация ВКМ матриксными металлопротеазами MMP способстет миграции и распространению опухолевых клеток метастазов на поздних стадиях развития заболевания [155]. При воспалительных процессах, таких как цирроз печени, наблюдается повышенная адренергическая передача сигналов [156]. В ответ на повышенный уровень норадреналина в печени повышается пролиферация фибробластов и выработка коллагена I типа [152]. На более поздних стадиях онкологического заболевания ремоделирование коллагена необходимо для распространения рака. На ортотопических мышиных моделях протоковой аденокарциномы поджелудочной железы повышенная адренергическая передача сигналов, вызванная стрессом, более чем в 100 раз увеличивала экспрессию MMP в стромальном компартменте, увеличивая метастазирование. В ортотопической мышиной модели рака молочной железы адренергическая иннервация стромы усиливает ремоделирование коллагена, тем самым стимулируя метастазирование, снижение уровня норадреналина ингибирует этот процесс [159]. Таргетная терапия, направленная на иннервацию опухоли Поскольку передача нервных импульсов тесно связана с возникновением и развитием опухолей, таргетная терапия, нацеленная на иннервацию, стала областью большого клинического интереса [160]. Хирургическая денервация с целью противоопухолевой терапии, включая пересечение крупных нервных стволов, содержащих смешанные двигательные и вегетативные нервные волокна, была описана еще в начала 19 века, однако была неточной, и эта методикаприводила к серьезным побочным эффектам [13]. По мере развития хирургической техники и лучшего понимания вегетативной нейроанатомии были разработаны более точные методы денервации. Например, интраоперационная химическая денервация ложа поджелудочной железы, называемая «спланхникэктомия» для некупируемой боли при неоперабельном раке поджелудочной железы, показала хорошие результаты выживаемости в рандомизированных плацебо-контролируемых клинических исследованиях [161]. Однако химическая денервация была непостоянной, и со временем боль прогрессировала. В тоже время временная денервация ботулиническим токсином ортотопического рака предстательной железы у мышей оказалась эффективной [33], но испытания на людях не имели такого же успеха [162]. Методология временной денервации как терапии все еще требует дальнейшего изучения. Однако эффект хирургической денервации в клинических условиях изучался лишь при некоторых патологиях. При лечении рака желудка у пациентов, перенесших ваготомию в дополнение к гастрэктомии, наблюдалось снижение частоты рецидива опухоли по сравнению с теми, кто перенес только гастрэктомию [3]. Это говорит о том, что денервация может быть дополнительным фактором эффективности хирургического лечения рака. Фармакологическое ингибирование нервной передачи стало перспективной терапевтической мишенью в противоопухолевой терапии. Использование этого класса препаратов, первоначально разработанных для лечения сердечно-сосудистых заболеваний, было описано в ретроспективных исследованиях. Работы были посвящены снижению риска смертности, связанной с множеством видов солидных опухолей, включая рак поджелудочной, молочной и предстательной желез, опухолей яичников, а также меланомы [19,163-166]. Уровень катехоламинов в периоперационном периоде повышается, что, как полагают, частично связано с хирургическими манипуляциями с опухолью или тканями организма, а также с операционным стрессом [169—171]. Ингибирование сигнальных путей нейротрофинов является еще одной новой областью клинического интереса. В то время как нацеливание на передачу сигналов TRKA при раке в доклинических исследованиях на грызунах показало многообещающие результаты, клинические испытания имели смешанные результаты. Теоретически, нацеливание на TRKA у взрослых должно ингибировать инфильтрацию нервов, при этом оказывая минимальное влияние на установленные нервы, поскольку сенсорные и симпатические нейроны теряют трофическую зависимость NGF во взрослом возрасте [179]. Хотя низкомолекулярные ингибиторы рецептора TRKA увеличивают выживаемость при злокачественных новообразованиях, где опухоль экспрессирует аберрантные рецепторы TRKA, они, как было показано, не влияют на выживаемость или прогрессирование заболевания в солидных опухолях с низкой частотой хромосомных перестроек TRK [180—183]. Кроме того, поскольку эти ингибиторы обладают сродством к тирозинкиназам других рецепторов, они имеют множество побочных эффектов, не связанных с основным местом приложения [184]. Таргетирование самого NGF антителами к NGF хорошо переносится пациентами, с минимальными нейрональными или когнитивными побочными эффектами. Было обнаружено, что моноклональное антитело, специфичное к NGF, — танезумаб — эффективно уменьшает боль, вызванную метастазированием в кости [185,186], но его влияние на прогрессирование опухоли еще предстоит оценить. Выводы В этой статье представлены данные, свидетельствующие о том, что реактивация путей развития и регенерации для стимуляции нейрогенеза является важным компонентом при инициации и прогрессирования опухолей. Вклад различных вегетативных и чувствительных нервных волокон отличается в зависимости от типа опухоли и зависит как от типа ткани, из которой образуется злокачественная опухоль, так и от характера иннервации ткани. Несмотря на последние достижения в области генной инженерии, а также технологий визуализации, которые привели к успехам в изучении роли нервной системы в TME, многие вопросы остаются без ответа. Например, было установлено, что на ранних стадиях рака наблюдается увеличение числа нервов, сопровождающееся повышением уровня нейротрофинов, но еще предстоит выяснить, какие клетки в ТМЕ являются источником нейротрофинов, и какова природа стимулов, которые инициируют выработку нейротрофина. И остается открытым вопрос, как мы можем селективно нацеливаться на возможные терапевтические точки, не затрагивая существующие нервные связи в других частях тела? Хотя ингибирование нервных сигнальных путей оказывает существенное влияние на предотвращение прогрессирования рака на доклинических моделях, трансляция этих методов и технологий все еще находится на самых ранних стадиях и потребует междисциплинарного сотрудничества для успешного внедрения их в клинику. Список литературы Hanahan, D. Hallmarks of cancer: the next generation. Cell 144, 646—674 2011. Zahalka, A. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321—326 2017. This article shows that adrenergic nerves regulate the vasculature in the TME to promote tumour growth and cancer progression. Zhao, C. Denervation suppresses gastric tumorigenesis. Transl Med. This article shows that surgical transection of the vagus nerve inhibits development of gastric cancer. Renz, B. Magnon, C. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 2013. This paper showed a role for adrenergic and cholinergic nerves in prostate tumour growth and metastasis. Langley, J. Heffer, W. Erin, N. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res. Kappos, E. Denervation leads to volume regression in breast cancer. Peterson, S.
Актуальность вопроса
- Что нужно знать об опухолях мозга всем?
- Неврологические осложнения у больных раком
- РЕДКАЯ ЭМБРИОНАЛЬНАЯ ОПУХОЛЬ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ - НЕЙРОБЛАСТОМА С АКТИВАЦИЕЙ FOXR2
- Онколог Олейникова назвала 7 провоцирующих развитие рака вирусов » Актуальные новости
Причиной страха оказалась опухоль
- Telegram: Contact @tass_science
- В UC смогли вернуть в норму клетки злокачественной опухоли нервной системы |
- О нейробластоме
- Дарите детям будущее
Онкология и неврология: когда пациенту с диагнозом рак стоит посетить невролога?
Неврологические расстройства у больных злокачественными опухолями (метастатические поражения) | У 17-летнего гражданина Израиля, который в 2001, 2002 и 2004 годах получал в Москве экспериментальное лечение эмбриональными стволовыми клетками по поводу атаксии-телеангиэктазии (АТ), начали образовываться доброкачественные опухоли нервной системы. |
Ученые научились лечить рак с помощью вируса | Поэтому когда нервные волокна проникают в рак простаты, образуя связь со здоровыми клетками, опухоль растёт. |
Онколог Олейникова назвала 7 провоцирующих развитие рака вирусов » Актуальные новости | заявил доцент BUSM Фэн Хуэй, чьи слова приводит пресс-служба медшколы. |
Влияет ли стресс на развитие рака? – Онколог Иванов Д. С. | Опухоли центральной и периферической нервной системы человека составляют 0,8-1,2% от общего числа всех опухолевых заболеваний. |
Стрессовые нервы мешают иммунитету бороться с раком | Наука и жизнь | Ученые обнаружили, что клетки нейробластомы (одной из форм рака нервной системы) используют белок CKLF для того, чтобы подавлять иммунитет и скрывать себя от его внимания. |
Биологи выявили белок, скрывающий клетки нейробластомы от внимания иммунитета
Нервная система становится целью для борьбы с раком: новые открытия ученых | Российские ученые предложили новый подход к борьбе с раком, сосредоточив внимание на взаимодействии опухолей с нервной системой. |
Невролог нашел связь между нервным тиком и раком | Опухоли центральной нервной системы — различные новообразования спинного и головного мозга, их оболочек, ликворных путей, сосудов. |
Ученые научились лечить рак с помощью вируса | Непростая связь между раком и нервами оказалась гораздо глубже, чем предполагалось, недавние исследования показали, что злокачественные опухоли не только используют нервную систему для поддержания своего роста, но и взаимодействуют с ней активно. |
В UC смогли вернуть в норму клетки злокачественной опухоли нервной системы | | Опухоли гемопоэтической и лимфатической системы. Опухоли центральной нервной системы. |
Микробиом, нервная система и канцерогенез
В 2021 году в Воронежской области заболеваемость опухолями центральной нервной системы составила 107 на 100 тысяч населения. Опухоли центральной нервной системы — различные новообразования спинного и головного мозга, их оболочек, ликворных путей, сосудов. Ученые предложили бороться с раком новым способом – через нервную систему. Об этом пишет РИА Новости, ссылаясь на последние исследования ученых.
Влияет ли стресс на развитие рака?
J Clin Oncol. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. What is the advance of extent of resection in glioblastoma surgical treatment-a systematic review. Chin Neurosurg J.
Curr Treat Options Neurol. Adult hippocampal ganglioneuroblastoma: Case report and literature review. Medicine Baltimore. Nakazato Y, Hosaka N. A 32-year-old man with left temporal lobe tumor.
Occipital ganglio-neuroblastoma in an adult. Acta Neurochir Wien. Ganglioneuroblastoma of the anterior skull base with a long-term follow-up. Case Report. Neurol Med Chir Tokyo.
Pineal ganglioneuroblastoma in an adult. J Neurooncol.
Ситуация стала меняться после того, как был установлена связь между хроническим стрессом и вероятностью развития рака — опухоль растет быстрее у лабораторных животных, находящихся под действием стресса из-за ограничения подвижности или социальной изоляции. Основные исследования были посвящены симпатической нервной системе — отделу автономной вегетативной нервной системы, которая, в частности, управляет реакцией на угрозу « бей или беги ». Ключевую роль в работе этой системы играют гормоны адреналин и норадреналин, которые выделяются надпочечниками в кровоток, и симпатическими нервами — в близлежащие ткани. Многие клетки организма, включая раковые, содержат b-адренергические рецепторы, с которыми связываются эти гормоны, и активация этих рецепторов, похоже, стимулирует рост клеток опухоли. В 2006 г.
А когда в 2013 г. Сам факт физического взаимодействия между раковыми клетками и нервными волокнами был замечен много ранее. Так, еще в конце 1990-х гг. А в 2019 г. Также выяснилось, к примеру, что у человека высокая плотность нервных пучков внутри и вокруг опухоли простаты прямо связана с вероятностью рецидива после операции. Подобные корреляции были обнаружены и для опухолей других органов, включая молочную железу, толстый кишечник и легкие.
А проведение экспериментов в конце 1990-х годов доказало, что нейроны играют более активную роль в росте и развитии опухолей. Выяснилось, что нейроны "выкидывают" к раковым клеткам нейриты, что становится своеобразным мостиком к здоровым клеткам. В ходе эксперимента в США в 2013 году ученые перерезали нервные волокна в направлении простаты и тем самым остановили распространение рака. Также это действует и при раке желудка, печени и кожи.
Руководствуясь этим наблюдением, ученые детально исследовали то, как именно молекулы CKLF подавляют работу иммунитета. Для этого они имплантировали культуры клеток нейробластомы в организм мальков рыб-зебр и проследили за тем, как опухолевые клетки взаимодействовали с различными иммунными тельцами в тех случаях, когда выработка белка CKLF подавлялась или стимулировалась. Эти опыты указали на то, что развитие метастаз и появление агрессивных форм нейробластомы у подопытных животных сопровождалось активизацией онкогена MYCN, чья повышенная активность также вела к усилению выработки белка CKLF. Его выделение в окружающую среду привлекало внимание особого класса регуляторных Т-клеток, которые подавляют активность трех других типов иммунных телец - лимфоцитов, NK-клеток и CD8-клеток и мешают им уничтожать опухолевые клетки.
РИА Новости: Ученые предложили бороться с раком через нервную систему
Ученые научились лечить рак с помощью вируса | Врачи совершили научный прорыв в лечении рака. Бороться с онкологией предлагают с помощью нервной системы. Об этом сообщают корреспонденты РИА «Новости». |
Ученые из РФ запустили проект по лечению рака нервной системой | У израильского подростка, получавшего в Москве экспериментальное лечение эмбриональными стволовыми клетками, начали образовываться доброкачественные опухоли нервной системы. |
Жизнь Захара сейчас висит на волоске. | Врач-онколог Алексей Бутенко предупредил, что на развитие рака у человека может повлиять стресс, способный ослабить иммунную систему, которая должна бороться с опухолевыми клетками. |