Плазменный пиролиз, по мнению разработчиков, поможет сделать переработку тяжелой нефти более экономичной и экологически чистой. Результаты данной работы позволят внедрить российские реакторы в создаваемые новые линии производства чипов в России. Специалисты Национального исследовательского университета «МЭИ» запустили плазменную установку, которая позволит испытать облицовку камеры будущего термоядерного реактора.
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
НИУ «МЭИ» также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе. Установка ПЛМ представляет собой магнитную ловушку для получения и нагрева плазмы. Системы термоядерных реакторов и технологии диагностики плазмофизических процессов - предмет исследований специалистов кафедры «Общая физика и ядерный синтез», действующей в НИУ «МЭИ».
Москва, ул. Полковая, дом 3 строение 1, помещение I, этаж 2, комната 21.
Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте. Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки.
В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции. Однако исследователи подчеркивают, что воспроизвести тот же эксперимент на реакторе такого размера может быть очень сложно. По их словам, небольшое изменение начальных условий может привести к кардинально иным результатам.
Александр Емельяненков Какие у термоядерной энергетики преимущества и когда, наконец, человек сумеет ее "приручить"? Что такое токамак с реакторными технологиями? Где уже сейчас способны зажечь мини-Солнце на Земле? На эти и другие вопросы в День работника атомной промышленности отвечает директор направления научно-технических исследований и разработок госкорпорации "Росатом", вице-председатель международного Совета ИТЭР, член-корреспондент РАН Виктор Ильгисонис. Фото: ГК "Росатом" К словам "Росатом" - корпорация знаний" успели привыкнуть не только поклонники известной ТВ-программы, но и те, кто предпочитает телеэкрану смартфон или ноутбук. С историей Атомного проекта понятно. А что сегодня определяет передний край науки в отрасли?
Виктор Ильгисонис: Если кратко - то значение для страны и экономическая эффективность. Критерием служит потребность страны в решении конкретной проблемы, чтобы сосредоточить на ней мощь "Росатома" - техническую и интеллектуальную. Но браться стоит только за высокотехнологичные и наукоемкие направления. Наши профессиональные компетенции слишком дороги, чтобы расходовать их на обычные бизнесы, как бы прибыльны они ни были. Одно из таких направлений - термоядерные исследования и плазменные технологии. Это третий федеральный проект внутри РТТН - комплексной программы развития техники, технологий и научных исследований в области использования атомной энергии. Он третий по важности, срочности, ожиданиям? Виктор Ильгисонис: Он просто один из пяти, по порядку. Не следует придавать нумерации какое-либо значение. Но если говорить о числе вовлеченных в проект организаций вне контура "Росатома", то термоядерный проект - однозначно первый.
Его масштабность, широта охвата, многообразие ожидаемых результатов и их применений в значительной степени обусловили причисление всей программы РТТН к числу национальных проектов. Самой дорогостоящей частью "термоядерного" федерального проекта, как и всей программы РТТН, принято считать модернизацию существующей инфраструктуры и создание новых экспериментальных установок. Что тут в приоритетах? Где и на каких площадках уже ведутся такие работы? Виктор Ильгисонис: В действующей версии программы главный приоритет - это вывод на рабочие режимы токамака Т-15МД в Национальном исследовательском центре "Курчатовский институт", который должен быть оснащен различными системами дополнительного нагрева плазмы, диагностики, сбора и обработки данных, генерации тока и другими современными элементами.
Выбор сделан - токамак плюс
Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик» | Снизить издержки переработки такого сырья можно за счет использования плазменных реакторов, в которых химические реакции осуществляются с участием низкотемпературной. |
Выбор сделан - токамак плюс - Российская газета | При плазменной обработке, в частности, образуется угарный газ, который надо тщательно дожигать или пускать в переработку в химическую промышленность», — объяснил ученый. |
Telegram: Contact @plazma_station | В настоящее время уже существуют различные проекты гибридных реакторов, в которых плазменным источником нейтронов служит токамак. |
🤖 В Верхней Пышме готовят к запуску плазменный реактор | Кубок Жизни 1, CO2, CuO2, CH3, ZnO, MgO. |
Компактный термоядерный реактор американского стартапа разогрел плазму до 37 млн °С
Кроме нейтронного блок излучателя генерирует другие виды ионизирующего излучения: мягкий и жесткий рентген, плазменные струи, электронные и ионные пучки. Для создания такого устройства необходимы усилия физиков-ядерщиков, электрофизиков очень сложные системы коммутации и обеспечения питания , инженеров-электронщиков, инженеров-испытателей и многих других специалистов. Очень надеемся применить такой источник в радиационных испытаниях объектов на импульсное воздействие. Студенты и аспиранты имеют возможность поработать с уникальным источником ионизирующего излучения разных типов и проанализировать различие в системах регистрации импульсного и непрерывного излучения, что очень важно для понимания процессов в фундаментальной и прикладной физике.
Альтернативой может стать использование в качестве источника дополнительных нейтронов длинной магнитной ловушки. О принципах работы длинной магнитной ловушки в качестве источника нейтронов рассказывает главный научный сотрудник ИЯФ СО РАН, доктор физико-математических наук профессор Андрей Аржанников: «На начальном этапе при помощи специальных плазменных пушек создается относительно холодная плазма, количество которой поддерживается дополнительной подпиткой газом из атомов тяжелого водорода — дейтерия. Инжекция в такую плазму нейтральных атомарных пучков с энергией частиц масштаба 100 кэВ обеспечивает образование в ней высокоэнергетичных ионов дейтерия и трития это тяжелые изотопы водорода , а также поддержание необходимой температуры. Сталкиваясь друг с другом, ионы дейтерия и трития соединяются в ядро гелия, при этом происходит выделение высокоэнергетических нейтронов. Такие нейтроны беспрепятственно выходят через стенки вакуумной камеры, где магнитным полем удерживается плазма, и, поступая в область с ядерным топливом, после замедления поддерживают протекание реакции деления тяжелых ядер, которая служит основным источником выделяемой в гибридном реакторе энергии». По словам Андрея Аржанникова, энергия нейтронов настолько высока, что они пронизывают стенки камеры из нержавеющей стали и медную обмотку, которая обеспечивает необходимое магнитное поле в плазме. Эти нейтроны глубоко проникают в топливную сборку бланкет ядерного реактора и попадают на графитовые блоки, где при рассеянии на ядрах углерода происходит их торможение. Замедленные нейтроны хорошо поглощаются ядерным топливом и поддерживают необходимый уровень количества делящихся ядер в единицу времени. Выделившаяся в виде тепла энергия разлетающихся фрагментов ядра, делящегося при поглощении нейтрона, снимается потоками газообразного гелия, который под высоким давлением прокачивается через цилиндрические каналы в топливной сборке. Топливо также размещается в специальных каналах, для этого оно заключено в специальные цилиндрические графитовые стержни.
Однако выбранное Zap топливо — тритий, безумно дорогое. Несмотря на экономию на сверхпроводящих магнитах, этот факт может стать препятствием для коммерциализации технологии, если не будет решена проблема быстрого и дешевого производства трития, или не найдена подходящая замена. Больше статей на Shazoo.
Литий - лёгкий элемент, поэтому ядра лития меньше охлаждают плазму и даже могут участвовать в термоядерных реакциях. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для "потеющей стенки" должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться. Самый тугоплавкий металл - вольфрам, однако его теплопроводности для эффективного охлаждения стенки недостаточно. Медь обладает очень высокой теплопроводностью, но её нельзя применять для стенок реактора из-за легкоплавкости - металл просто атомизируется при взаимодействии с плазмой и попадёт внутрь реактора, что ухудшит качество плазмы. Однако учёные придумали, как объединить свойства обоих металлов в одной конструкции.
Эра термоядерного синтеза
Ровный рез, который получается в ходе работы станка плазменной резки металла с ЧПУ, не потребует дополнительной шлифовки и обработки. Добавим, что стол для раскроя конструктивно отделен от рамы станка, что снижает уровень механического воздействия на конструкцию при обработке заготовок большой массы. Эта портальная машина может комплектоваться плазматроном с различной мощностью исходя из задач поставленных клиентом. Также установка оборудована системой автоматического контроля высоты резака. Это позволяет добиться стабильного и качественного раскроя листового металла. Станки комплектуются источниками плазменной резки известной на рынке компании Hypertherm По осям портальной машины с ЧПУ устанавливаются линейные направляющие Hiwin, которые имеют большой срок эксплуатации, при этом машина не теряет точность позиционирования при работе на больших скоростях. Также добавим, что высокая скорость перемещений на холостом ходу приводит к существенному увеличению производительности оборудования. В плоскости рабочего стола перемещение резака на станке происходит посредством зубчатой передачи, а по вертикальной оси при помощи шарико-винтовой пары. Такое подход обеспечивает точную корректировку высоты резака при проведении раскроя металлического листа. Система ЧПУ нашего станка плазменной...
В 2024—2026 годах на металлургическом предприятии машиностроительного дивизиона в Санкт-Петербурге будут произведены заготовки для реакторов, парогенераторов, компенсаторов давления, емкостей систем безопасности и других изделий первого контура ядерного острова АЭС.
Проект реализуется на основе российско-венгерского межправительственного соглашения от 14 января 2014 года и трех базовых контрактов о сооружении новой станции. Основная лицензия на строительство АЭС «Пакш-2» была выдана венгерским регулятором в августе 2022 года. Получение строительной лицензии подтвердило соответствие проекта венгерским и европейским нормам безопасности. Россия последовательно развивает международные торгово-экономические взаимоотношения с зарубежными партнерами. Продолжается реализация крупных международных проектов в сфере энергетики.
Указ об этом подписал президент Владимир Путин. Одним из направлений этой программы является Федеральный проект "Термоядерные и плазменные технологии".
Полковая, дом 3 строение 1, помещение I, этаж 2, комната 21.
Металлурги Росатома начали изготовление реакторной установки для АЭС «Пакш-2» в Венгрии
Сжать плазму в токамаке на Земле сложнее, здесь она получается на порядки более разреженной, и температуры ей требуются куда выше. Все эти сложности и задерживают появление полноценной термоядерной энергетики, создание которой тянется уже более 70 лет. Российские физики пришли к выводу, что для этого необходимо омывать его потоками жидкого лития, перераспределяя поток падающей мощности на диверторные пластины по большей площади, тем самым уменьшая тепловую нагрузку. Это решение вероятно станет первым в мире термоядерным реактором у которого "получится" удерживать плазму на постоянной основе. Что нам это даст? В теории, страна первой получившей технологии термоядерного реактора в буквальном смысле сможет изменить мир и получить невиданное доселе преимущество.
Уникальную ресурсо- и энергосберегающую технологию переработки твёрдых бытовых, техногенных и медицинских отходов разработали в ВСГУТУ. В плазменном реакторе производится плавление практически любых материалов, после чего из них получаются полезные композиты. На Совете по науке и инновациям учёные предложили использовать передвижной агрегат в местах массового отдыха туристов, где скапливается наибольшее количество пластикового мусора.
Многопробочная ловушка — это набор соединённых пробкотронов, формирующих гофрированное магнитное поле. В такой системе заряженные частицы разбиваются на две группы: захваченные в одиночных пробкотронах и пролётные, попавшие в конус потерь одиночного пробкотрона. Если длина пробега частиц меньше размера ловушки, то при движении пролётных частиц через пробкотроны они начинают испытывать силу трения со стороны захваченных, что резко замедляет скорость разлёта плазмы: вместо прямолинейного разлета движение частиц становится диффузионным. Время удержания плазмы в такой системе значительно возрастает по сравнению с разлетом плазмы в негофрированном соленоиде. В 1972-73 гг. Раньше установка ГОЛ-3 ГОфрированная Ловушка представляла собой систему, состоящую из ускорителя электронов У-2, магнитной системы, создающей гофрированное магнитное поле и системы создания предварительной плазмы. На данной установке, в частности, исследовалось взаимодействия мощного релятивистского пучка электронов с плазмой. Был обнаружен эффект подавления продольной электронной теплопроводности на три порядка величины и их нагрева до нескольких десятков миллионов градусов 1992 год. В многопробочной магнитной конфигурации был также обнаружен эффект быстрого нагрева ионов до температуры, близкой к термоядерной 2003 год. Работы по взаимодействию пучка с плазмой продолжаются, изучается возможность генерации мощного терагерцового излучения в такой системе. Но сейчас программа исследований на комплексе ГОЛ-3 гораздо шире, решается сразу несколько научных задач. Здесь проводятся эксперименты по физике удержания плазмы в открытых магнитных ловушках многопробочного типа в квазистационарном режиме, взаимодействию мощных плазменных потоков с материалами, отработке плазменных технологий для научных исследований. Очертите главные задачи научной программы ГОЛ-3? С точки зрения развития программы управляемого термоядерного синтеза, основная задача плазменного сообщества нашего Института — разработка концепции термоядерного реактора на основе открытых ловушек. Как мы говорили ранее, одной из проблем открытых ловушек являются большие продольные потери. В качестве возможного варианта решения рассматривается использование многопробочных секций. На нашей установке должны быть экспериментально проверены основные положения этой концепции. Текст и фото: Бионышева Елена Хочешь всегда знать и никогда не пропускать лучшие новости о развитии России? Подпишись , и у тебя всегда будет повод для гордости за Россию. Вступай в наши группы и добавляй нас в друзья : Поделись позитивом в своих соцсетях Другие публикации по теме.
Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Волна термоядерных реакций превращает дейтериево-тритиевое топливо в высокоэнергетический гелий и нейтроны, которые можно улавливать для выработки тепла и электричества. Хотя подход Z-пинч тестировался еще в 1950-х, исследователи столкнулись с проблемой быстрого угасания плазмы. Zap заявляет, что решила ее с помощью стабилизации сдвигового потока — инновации, которая теоретически может продлить срок жизни Z-пинч плазмы почти до бесконечности.
Во Франции стартовала последняя фаза сборки крупнейшего в мире термоядерного реактора
Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. Литий - лёгкий элемент, поэтому ядра лития меньше охлаждают плазму и даже могут участвовать в термоядерных реакциях. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для "потеющей стенки" должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться.
Самый тугоплавкий металл - вольфрам, однако его теплопроводности для эффективного охлаждения стенки недостаточно. Медь обладает очень высокой теплопроводностью, но её нельзя применять для стенок реактора из-за легкоплавкости - металл просто атомизируется при взаимодействии с плазмой и попадёт внутрь реактора, что ухудшит качество плазмы.
О том, кто и как будет претворять термоядерный синтез в жизнь и когда появятся гибридные реакторы и космические плазменные двигатели в продолжении серии специальных репортажей о проектах РТТН.
На российском токамаке Т-15МД получена первая термоядерная плазма Токамак Т-15МД — первая за последние 20 лет новая термоядерная установка, построенная в России Президент НИЦ «Курчатовский институт» Михаил Ковальчук сообщил об успешном получении первой термоядерной плазмы на токамаке Т-15МД это модифицированная версия комплекса Т-15, работавшего в Курчатовском институте с конца 1980-х годов. Запуск токамака Т-15МД. Он [токамак] с первого момента запустился.
После своего тренировочного окна ИИ перешел на следующий уровень — применяя в реальном мире то, чему он научился в симуляторе. Управляя токамаком SPC с переменной конфигурацией TCV , ИИ преобразовывал плазму в различные формы внутри реактора, в том числе такую, которая никогда ранее не наблюдалась в TCV: стабилизирующие «капли», в которых две плазмы сосуществовали одновременно внутри реактора.
Визуализация управляемых форм плазмы. Каждое из этих проявлений обладает разным потенциалом для сбора энергии в будущем, если мы сможем поддерживать реакции ядерного синтеза.
Эра термоядерного синтеза
Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе – дейтерии и тритии. Главные проблемы в разработке промышленного реактора — нагрев и удержание плазмы с термоядерными параметрами."Идея эксперимента такая. Демонстрационный термоядерный реактор (ДЕМО) станет следующим этапом в подготовке к использованию термоядерной энергии в промышленных масштабах. Чтобы продлить существование плазмы, загрязненный поток направляют на специальный элемент реактора, дивертор. Впервые термоядерный реактор KSTAR Корейского института термоядерной энергетики (KFE) достиг температуры, в семь раз превышающей температуру ядра Солнца. В традиционных конструкциях эта схема разделяет лазерный луч на два потока, один из которых огибает плазму в реакторе, а другой проходит сквозь нее.
В плазменном фокусе: «Росатом» и МИФИ разработали термоядерный мини-реактор
Для реактора на DT нейтронное излучение, уносящее 86% энергии термоядерной реакции будет настоящим бичом, быстро разрушающим и активирующим конструкционные материалы. Красильников заявил, что первую плазму термоядерного реактора ИТЭР зажгут не раньше 2025 года. Специалисты Национального исследовательского университета «МЭИ» запустили плазменную установку, которая позволит испытать облицовку камеры будущего термоядерного реактора. Исследователи использовали метрику под названием H98 (y, 2) для оценки эффективности, с которой реактор токамака удерживает плазму. Компания «АЭМ-Спецсталь» (машиностроительный дивизион Росатома) приступила к ковке партии заготовок для корпуса реактора первого энергоблока АЭС «Пакш-2». Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе – дейтерии и тритии.
Компактный термоядерный реактор американского стартапа разогрел плазму до 37 млн °С
Прототип российского термоядерного реактора: для чего он необходим? | Реактор станет одним из основных источников электроэнергии для завода по производству полипропилена, входящего в состав Уральской горно-металлургической компании. |
Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик» | Благодаря новому процессу — динамическому потоку через плазму, удалось преодолеть проблему кратковременности жизни плазмы, сообщает Physical Review Letters (PRL). |
В России запущена уникальная плазменная установка | Новости электротехники | Элек.ру | Термоядерный реактор основан на реакции синтеза изотопов водорода, поэтому он гораздо более экологичный и безопасный по сравнению с существующими атомными реакторами. |
Российские учёные разработали новый материал для термоядерного реактора | По словам ученых, в практическом смысле управление колебаниями плазмы может упростить работу термоядерных реакторов. |
Впервые в мире термоядерную плазму протестировали в токамаке нового поколения
Это связано с высокой плазменно-тепловой нагрузкой, которая будет оказывать воздействие на стенки камеры будущего реактора-токамака при длительной эксплуатации. В 2024 году Росатом завершит прототип плазменного ракетного двигателя, сообщили на панельной сессии «Атом для лучшей жизни». Плазменный реактор молодости. Дело в том, что давление плазмы в термоядерном реакторе уравновешивается давлением удерживающего магнитного поля. Для реактора на DT нейтронное излучение, уносящее 86% энергии термоядерной реакции будет настоящим бичом, быстро разрушающим и активирующим конструкционные материалы. Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год.