Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества.
Хочу убедиться, что мне звонил ВЦИОМ
- Видео: Как искусственный интеллект помогает в медицине | Новости России
- Перспективы применения ИИ
- Искусственный интеллект в медицине: пример того, как ИИ улучшает здравоохранение / Skillbox Media
- Искусственный интеллект в медицине: главные тренды в мире
- Собянин: ИИ превратится в базовую медицинскую технологию в Москве // Новости НТВ
- Машины лечат людей: как нейросети используют в российской медицине | Москва | ФедералПресс
Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией
Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. Как присутствие искусственного интеллекта влияет на современную российскую медицину? Преимущества применения нейросетей в медицине очевидны – возможность обрабатывать большие массивы данных в короткие сроки, а также точность диагностики. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов.
Применение искусственного интеллекта в московском здравоохранении
Применение искусственного интеллекта в медицине | ComNews | Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. |
ВЦИОМ. Новости: Прогресс или угроза, или об искусственном интеллекте в медицине | Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. |
Искусственный интеллект в медицине: пример того, как ИИ улучшает здравоохранение / Skillbox Media | Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. |
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
Но проекты уже показывают хорошие результаты. ИИ на службе нутрициологии Успехи искусственного интеллекта в создании вакцин от коронавируса известны всему миру. Компьютерные технологии сократили время разработки результативной вакцины буквально до нескольких месяцев, когда для классических методов исследований требуется минимум год-два. Но на самом деле исследования куда глубже, чем можно представить. И касаются они не только вирусологии, но также профилактической медицины и нутрициологии, для которых анализируют натуральные органические соединения.
Их существует десятки миллиардов, поэтому исследования вручную не слишком эффективны. Клинические испытания требуют крупных инвестиций и могут длиться несколько лет. Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах. Из-за этого все фазы клинических испытаний могут занять несколько лет.
Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний. К примеру, британо-ирландская компания Nuritas использует искусственный интеллект для поиска активных органических соединений, которые в теории можно использовать для лечения и предотвращения болезней. Как утверждают специалисты компании, технология анализа химических соединений с помощью искусственного интеллекта в 600 раз точнее и в десять раз быстрее, чем стандартные методики. Впрочем, без человека пока еще не обойтись.
После того, как нейросеть обнаруживает перспективное соединение, за глубокое исследование берутся биохимики. За восемь лет сотрудники компании зарегистрировали 65 патентов в медицинской отрасли, сейчас компания активно разрабатывает препараты для восстановления мышц, нормализации метаболизма глюкозы и замедления клеточного старения. Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов. А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность.
Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек.
Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства. Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности. В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины. Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень.
Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов.
В это же время Н. Винер создал свои основополагающие работы по кибернетике. Ляпунова начал свою работу семинар «Автоматы и мышление». В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине.
Биохимическая физика — это применение физико-математических методов к биологическим системам. Исследования по большей части имеют прикладной характер Источник: Анастасия Пешкова — Наша лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией — получением и анализом данных работы мозга. Для этого применяются математическое моделирование, методы машинного обучения и искусственного интеллекта. Но в процессе решения прикладных задач часто возникают и фундаментальные, например, касающиеся методов: разработка новых типов нейронных сетей, новых архитектур, подходов к анализу данных. Также мы занимаемся так называемой персонализированной медициной. По каждому человеку можно собрать огромное количество данных: геномные, транскриптомные, МРТ мозга, энцефалограмма, анализы крови и так далее. Суммарно это даст очень информативный индивидуальный портрет человека. А методы машинного обучения ИИ позволяют эти данные объединить и сделать полезный вывод для науки или для лечения человека. Пока это поиск общих тенденций, но мы надеемся, что со временем получится давать конкретные рекомендации. Максим много сотрудничает с зарубежными коллегами Источник: Анастасия Пешкова — Где это может применяться? Тогда берется анализ патологической ткани и проводится ее детальный анализ. Какие-то части этой сложной неоднородной структуры могут откликаться на терапию, какие-то — нет. Если это понять заранее, в теории можно намного более успешно, прицельно и качественно назначать препараты. В идеале это может позволить создать системы поддержки врачебных решений: опираясь на большое число фактов, давать рекомендации доктору, какая терапия в этом случае предпочтительна. А специалист, соединяя их с другими фактами, принимает решение. Расскажите, пожалуйста, об этом проекте. Также эта система позволяет составить карту функциональных зон мозга, отвечающих за движение, зрение, речь и так далее. Бывает форма эпилепсии, когда лекарства не помогают, и таких больных довольно много. Их проблема зачастую заключается в том, что в мозге есть маленькая область, которая вследствие разных причин вызывает поразительную активность и приступ. Если говорить о детях, то они догоняют сверстников, нормально ходят в школу. У взрослых прекращаются приступы, возвращаются когнитивные способности. Но одна из проблем в том, что такие области очень похожи на здоровую ткань и их сложно найти.
Искусственный интеллект в медицине: применение и перспективы
Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. искусственный интеллект в медицине, искусственный интеллект. Рост применения КТ приводит к выявлению большого количества очагов и округлых образований в легких. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника.
Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. Искусственный интеллект (ИИ) помогает врачам ставить верный диагноз и назначать нужные исследования. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи.
Будущее рядом: как нас будет лечить искусственный интеллект?
Эксперт объяснил провал искусственного интеллекта в медицине | Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. |
Для чего в российских регионах используют ИИ в медицине | Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. |
Национальная база медицинских знаний
Медиацентр СМИ о нас Врачам и пациентам: как искусственный интеллект помогает в медицине Врачам и пациентам: как искусственный интеллект помогает в медицине 20 июля 2022 г. За первый квартал 2022 года частные инвестиционные компании вложили миллиарды долларов в здравоохранение. Треть из них была направлена на одно из самых перспективных направлений в медицине — интеграцию и развитие ИИ. О том, насколько перспективна эта технология, чем она может помочь пациентам и врачам, и почему некоторые люди опасаются ИИ в медицине, рассказывает Сергей Воинов, директор по акселерации по направлению «Цифровая медицина» Кластера биологических и медицинских технологий Фонда «Сколково». Успешные проекты с ИИ Главные задачи ИИ — улучшить эффективность системы здравоохранения и снизить нагрузку и объем рутинной работы врачей, позволив им сконцентрироваться на постановке точных диагнозов. Именно поэтому рынок технологий и, в частности, ИИ так активно развивается в сегменте медицины. Первым направлением, где искусственный интеллект получил широкое распространение, стала радиология — в части компьютерных и магнитно-резонансных томограмм, рентгена и флюорографии. Алгоритмы ИИ помогают выявить патологию на ранней стадии, обозначить потенциальные проблемы, на которые стоит обратить внимание, а также собрать воедино данные с анализов. Такой способ диагностики уже доказал свою эффективность, поскольку врач не всегда может заметить мельчайшие изменения — они будут видны только при систематизации огромного массива данных.
Кроме того, ИИ позволяет эффективно контролировать ход заболеваний, например, онкологических, или выявлять его первые симптомы и признаки, свидетельствующие о скором развитии болезни. Дебютной разработкой в этой области стала система Webiomed компания «К-Скай» — резидент «Сколково». Как медицинское изделие платформу прогнозной аналитики и управления рисками в здравоохранении зарегистрировали 3 апреля 2020 года. Это первая система ИИ в России, которая способна обработать большой объем информации о пациенте, выявить на основе данных подозрения на заболевания и спрогнозировать возможное ухудшение здоровья. При этом ИИ изучает не только медицинские показатели, но и социальные данные. Платформа формирует цифровой паспорт пациента. Можно сказать, что система заменяет целый консилиум врачей, что позволяет работать быстрее и точнее. В России этой сфере уделяется особое внимание.
Несколько проектов уже достигли весомых результатов в использовании ИИ в радиологии.
В ближайшие годы ИИ станет базовой медицинской технологией столицы. Специалисты получат надежных цифровых помощников, уйдет в прошлое бумажная рутина, врачи будут пользоваться проактивным подходом, когда нейросети будут подсвечивать риски возникновения у пациентов различных болезней. Также в ближайшем будущем обычной практикой станет телемедицина. Большинство проблем со здоровьем пациенты смогут решать без личного посещения врача.
Для сравнения, в 2020 г. Одним из ключевых направлений стратегии является развитие рынка программных продуктов на основе ИИ для здравоохранения нашей страны. В настоящее время мы нашли информацию о 65 разнообразных ИИ-системах для медицины и здравоохранения, созданных и продвигаемых на рынке нашей страны. Условно существующие продукты можно объединить в несколько основных групп: Анализ медицинских изображений и цифровая диагностика Профилактика и лечение состояний, заболеваний и осложнений Прочие направления.
Компания Profluent считает, что основанный на AI-технологиях генный редактор OpenCRISPR представляет собой мощную альтернативу, которая позволит обойти различные ограничения и даст возможность создавать оптимальные свойства. Используя большие языковые модели LLM , обученные работе с биологическим разнообразием, мы демонстрируем успешное и максимально точное редактирование генома человека с помощью программируемого редактора генов, разработанного с использованием искусственного интеллекта. Это удалось благодаря систематическому анализу 26 терабаз собранных геномов и метагеномов.
С помощью AI появилась возможность генерировать в 4,8 раза больше белковых кластеров, чем существует в природе. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. Компания выложила OpenCRISPR-1 в открытый доступ, чтобы способствовать развитию технологии и её использованию в научных исследованиях и коммерческих проектах. Статью с научным исследованием можно почитать тут.