Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». Чем термоядерная бомба отличается от атомной?
Поражающие факторы взрыва водородной бомбы. Водородная бомба
Сахарова было проведено в Советском Союзе на полигоне под Семипалатинском. Термоядерная реакция Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры порядка 15 млн градусов Кельвина. При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии. Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. Изотопы водорода Самым простым из всех существующих атомов является атом водорода.
В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды H2O , было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода.
Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе.
Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление.
В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов.
Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер.
Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов.
Однако самое опасное хотя и вторичное последствие взрыва — это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч.
В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости.
Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи , включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90.
Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания.
Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека.
Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого.
Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество , которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба.
Взрыв сопровождается резким ростом температуры, электромагнитным излучением , а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий. Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы. Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы.
Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки.
Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.
Любые неожиданности были исключены. Маршрутные документы несколько раз менялись для того, чтобы невозможно было определить ни станцию отправления, ни пункт назначения. На станции Оленьей бомба прошла тщательный контроль и была приведена в боевое положение.
Испытание "Царь-бомбы" Для испытания "Царь-бомбы" подготовили специальную парашютную систему и самолет. Габариты изделия поражали воображение: длина — около 8 метров, диаметр — 2,1 метра, вес — 26 тонн. Для того чтобы поместить бомбу в Ту-95, конструкторам пришлось вырезать часть корпуса стратегического бомбардировщика и установить в нем специальное крепление. Но даже при этом "Царь-бомба" наполовину торчала из самолета. Самолет-носитель сопровождал самолет-лаборатория Ту-16А. Через два часа после вылета бомбу сбросили с парашютом на высоте примерно 10 тысяч метров в пределах ядерного полигона "Сухой Нос". Парашютная система была крайне необходима — она позволила экипажу самолета-носителя удалиться на относительно безопасное расстояние.
Грибообразное облако взметнулось на 67 километров, а диаметр его купола составил 20 километров. Зрелище было ужасным", — рассказывал впоследствии участник испытания Юрий Лысенко. Последствия испытания "Царь-бомбы" Сейсмическая волна от взрыва три раза обогнула земной шар. Несмотря на густую облачность, вспышку света от взрыва можно было увидеть за тысячу километров.
Этот процесс освобождает огромное количество энергии по сравнению с ядерным расщеплением, которое используется в атомных бомбах. Детонатор: Для инициирования термоядерной реакции в водородной бомбе используется атомная бомба в качестве детонатора. Взрыв атомной бомбы создает необходимые условия высокую температуру и давление , чтобы запустить термоядерную реакцию во второй ступени водородной бомбы.
Размер и мощность: Водородная бомба может быть значительно более мощной, чем атомная бомба. Мощность водородной бомбы измеряется в мегатоннах TNT и может достигать нескольких сотен мегатонн. Это означает, что одна водородная бомба способна создать разрушения на огромной площади. Воздействие и радиационная опасность: Взрыв водородной бомбы вызывает огромный огненный шар, ударную волну и радиационное излучение. Радиационное излучение включает гамма-излучение и нейтронное излучение, что делает водородные бомбы особенно опасными для здоровья людей и окружающей среды из-за возможного радиоактивного загрязнения.
Презентация по физике на тему: "Термоядерные реакции. Водородная бомба"
Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения. Водородная бомба, известная также как Hydrogen Bomb или HB, — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Но испытанная водородная «царь-бомба» смогла остановить наращивание их ядерного потенциала.
Последние материалы
- Об Атомном оружиии
- Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР
- Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы ::
- Последние материалы
- Как это устроено: все секреты термоядерной бомбы
- Изотопы водорода.
Угроза №1. История создания водородной бомбы в СССР
По инициативе Андрея Сахарова мощность заряда была снижена вдвое. Самолет-носитель из списанных возвратили в строй. На нем срочно заменили все разъемы в системе электроавтоматики сброса, сняли створки грузоотсека, так как реальная бомба по габаритам и массе оказалась несколько больше макета длина бомбы — 8,5 метра, ее масса — 24 тонны, парашютной системы — 800 килограмм. Особое внимание было уделено специальной подготовке экипажа самолета-носителя. Никто не мог дать летчикам гарантию благополучного возвращения после сброса бомбы. Специалисты опасались, что после взрыва может возникнуть неконтролируемая термоядерная реакция в атмосфере. Руководила испытаниями Государственная комиссия. Следом взлетел самолет-лаборатория Ту-16 для записи явлений взрыва и полетел ведомым за самолетом-носителем. Весь ход полета и сам взрыв снимались с борта Ту-95В, с сопровождавшего Ту-16 и с различных точек на Земле. Фото: www.
Огненный шар при взрыве превысил радиус четыре километра, достичь поверхности земли ему помешала мощная отраженная ударная волна, отбросившая огненный шар от земли. Огромное облако, образовавшееся в результате взрыва, достигло высоты 67 километров, а диаметр купола из раскаленных продуктов — 20 километров. Взрыв был такой силы, что сейсмическая волна в земной коре, порожденная ударной волной, три раза обошла вокруг Земли. Вспышка была видна на расстоянии более 1000 километров. В брошенном поселке, расположенном на расстоянии 400 километров от эпицентра, были вырваны деревья, выбиты стекла и снесены крыши домов. Ударной волной самолет-носитель, который к тому времени находился на расстоянии 45 километров от точки сброса, скинуло до высоты 8000 метров, и в течение некоторого времени после взрыва Ту-95В был неуправляем. Экипаж получил некоторую дозу радиации. За счет ионизации, на 40 мин была потеряна связь с Ту-95В и Ту-16. Что случилось с самолетами и экипажами, все это время никто не знал.
Через какое-то время оба самолета вернулись на базу, на фюзеляже Ту-95В виднелись подпалы. Фото: defence. Участники испытаний прибыли в точку, над которой произошел термоядерный взрыв, уже через два часа; уровень радиации в этом месте большой опасности не представлял. В этом сказались конструктивные особенности советской бомбы, а также то, что взрыв произошел на достаточно большом удалении от поверхности. По итогам самолетных и наземных измерений энерговыделение взрыва было оценено в 50 мегатонн тротилового эквивалента, что совпало с ожидаемым по расчетам значением. Испытание 30 октября 1961 года показало, что разработки в области ядерного оружия могут быстро перешагнуть критический предел. Основной целью, которая ставилась и была достигнута этим испытанием, стала демонстрация возможности создания СССР неограниченных по мощности термоядерных зарядов. Данное событие сыграло ключевую роль в установлении ядерного паритета в мире и предотвращении использования атомного оружия. Материал подготовлен на основе информации РИА Новости и открытых источников МОСКВА, РИА Новости 12 Оригинал Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала.
Ученый и гуманист Судьба Андрея Сахарова была исключительной: он вошел в историю дважды, как великий ученый и не менее великий политик. Обычная двухкомнатная квартира в Нижнем Новгороде, где жил в ссылке опальный академик, превращена в музей. По словам его сотрудников, посетителей много, но гостей, особенно молодых, больше интересует создание водородной бомбы, чем Сахаров-правозащитник. Советская пропаганда любила обвинять диссидентов, помимо прочего, и в том, что они-де ничтожества и неудачники, ищущие дешевой популярности. Про светило мировой физики, трижды Героя Социалистического Труда, осыпанного всеми мыслимыми благами, этого нельзя было сказать даже при сильном желании. По словам самого Сахарова, в молодости он был бесконечно далек от политики и думал только о воплощении научных идей.
После разрушения структуры атомов происходит ядерное возбуждение энергии с момента, когда ядерный заряд достигнет критической отметки. Это и приводит к ядерному взрыву. Водородная бомба основана на совершенно ином процессе высвобождения энергии. Для начала в водородной бомбе начинается процесс расщепления тяжелых ядер дейтерида лития-6, который распадается на тритий и гелий. И только потом происходит процесс термоядерного синтеза, что приводит к резкому нагреву боевого заряда с последующим мощнейшим взрывом. Теоретически максимальный верхний предел мощности атомной бомбы, которую люди в настоящий момент могут изготовить, составляет около 800 000 тонн в тротиловом эквиваленте. Но такую бомбу никто не делает, так как мощность в 500 000 тонн — уже вершина безумия. Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235. Но успешному делению подверглось только 700 граммов топлива. Поэтому, если вы хотите создать крупную ядерную бомбу с большой мощностью и оснастить ею боеголовку управляемой ракеты, вы должны овладеть технологией водородной бомбы. Водородная бомба более сложная для изготовления. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. Отсюда у водородных бомб есть альтернативное название — термоядерное оружие.
В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника. Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или "Сияпе", расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане. Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы "Толстяк", сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне. Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне "Сухой Нос" на архипелаге Новая земля. Измеренная мощность взрыва составила 58,6 мегатонны, что многократно превышало все опытные взрывы, произведенные на территории СССР или США.
Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода.
Состоялось испытание первой Советской водородной бомбы
Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап.
Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6.
Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба.
На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах.
Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода — дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.
И это очередной повод вспомнить о масштабах ее разрушительных последствий и о том, какую угрозу представляет собой оружие массового поражения. Карибский кризис 1962 года показал, насколько хрупким и беззащитным может быть мир на фоне ядерной угрозы, поэтому в бессмысленной гонке на уничтожение друг друга СССР и США смогли прийти к компромиссу и подписать первый договор, регламентировавший разработку ядерного оружия, — Договор о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой, к которому впоследствии подключились многие страны мира. Теоретическая возможность получения энергии путем термоядерного синтеза была известна еще до Второй мировой войны. Также известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путем сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества, но они не увенчались успехом, так как не удалось получить необходимых температур и давления. Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии. Именно эта реакция протекает в недрах звезд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжелые ядра гелия. Полученного количества энергии достаточно для того, чтобы запустить цепную реакцию, вовлекая в нее весь возможный водород. Именно поэтому звезды не гаснут, а взрыв водородной бомбы обладает такой разрушительной силой.
Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода. Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более «чистым», чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались «слойками». Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется «гриб»? На самом деле облако грибовидной формы — обыкновенное физическое явление.
Такие облака образуются при обычных взрывах достаточной мощности, при извержениях вулканов, сильных пожарах и падениях метеоритов. Горячий воздух всегда поднимается выше холодного, однако тут его нагрев происходит настолько быстро и так мощно, что он видимым столбом поднимается вверх, закручивается в кольцеобразный вихрь и тянет за собой «ножку» — столб пыли и дыма с поверхности земли. Поднимаясь, воздух постепенно охлаждается, становясь похожим на обычное облако из-за конденсации паров воды. Однако это еще не все. Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака. В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника. Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или «Сияпе», расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане.
Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы «Толстяк», сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне. Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне «Сухой Нос» на архипелаге Новая земля. Измеренная мощность взрыва составила 58,6 мегатонны, что многократно превышало все опытные взрывы, произведенные на территории СССР или США.
Изначально планировалось, что бомба будет еще больше и мощнее, однако не существовало ни одного самолета, который мог бы поднять больший вес в воздух. Огненный шар взрыва достиг радиуса примерно 4,6 километра. Теоретически он мог бы вырасти до поверхности земли, однако этому воспрепятствовала отраженная ударная волна, поднявшая низ шара и отбросившая его от поверхности. Ядерный гриб взрыва поднялся на высоту 67 километров для сравнения: современные пассажирские самолеты летают на высоте 8-11 километров. Ощутимая волна атмосферного давления, возникшая в результате взрыва, три раза обогнула земной шар, распространившись всего за несколько секунд, а звуковая волна докатилась до острова Диксон на расстоянии около 800 километров от эпицентра взрыва расстояние от Москвы до Санкт-Петербурга. Радиацией было заражено все на расстоянии двух-трех километров. Немного истории После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16.
Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек.
Тем более, если учесть, что автор располагал далеко не всей возможной информацией. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Именно тогда, вскоре после появления атомных бомб, Э. Подобно тому как от капсюля-детонатора провоцируется волна горения детонации в химическом взрывчатом веществе, в водородной бомбе Э. Теллера распространяется термоядерная волна по дейтерию, инициированная атомным взрывом. Если устойчивое незатухающее горение возможно, то оно, вызванное относительно скромной энергией атомного взрыва, затем при распространении выделяет произвольно большую энергию. Захватывающая перспектива, не правда ли? В 1951 году, когда я после окончания Московского университета оказался в группе Я. Зельдовича в КБ amp;ndash;11 , там с большим энтузиазмом занимались сходной проблемой отставая , по-видимому, на год-два от Лос-Аламоса. Сейчас, когда узнаёшь у тех же Д. Например, для нас с самого начала представлялась очевидной невозможность разжигания чистого дейтерия — это могло осуществиться только через промежуточную область, насыщенную тритием. Но трития требуется так много, что его производство вступает в острую конкуренцию с производством военного плутония на промышленных реакторах. Нет ответа и на главный принципиальный вопрос: осуществим ли стационарный режим горения? Дело в том, что при любой детонации существует некоторый минимальный размер радиус детонационного шнура , ниже которого устойчивого режима не существует. Вещество вследствие собственного энерговыделения разлетается быстрее, чем успевает сгореть. Особенностью же высокотемпературной термоядерной плазмы является наличие не только нижнего, но и верхнего радиуса. Всякое вещество, предоставленное самому себе, стремится к термодинамическому равновесию, выравниванию температуры между веществом и излучением. Нетрудно подсчитать, что при рассматриваемых параметрах плазмы подавляющая часть энергии приходится на излучение. Образуется, таким образом, паразитный сток энергии от вещества, то есть от горячих материальных частиц, вступающих в ядерную реакцию, в излучение. Этим объясняется наличие двух радиусов — разлётного и радиационного, причём первый должен быть больше некоторого значения, а второй — меньше некоторого другого. Трудность задачи состояла в том, что радиусы эти оказались близкими. До сих пор осталось невыясненным, есть ли между ними щель, необходимая для существования устойчивого распространения. Это, скажем так, теоретическая сторона вопроса. А вот как развивались события в плоскости политической. В 1951 году президент США Г. Трумэн направил комиссии по атомной энергии директиву о возобновлении работы по созданию водородной бомбы. К аналогичному выводу в группе Я. Зельдовича пришли к концу 1953 года. То, что вещество горит тем полней и быстрей, чем выше его плотность, следует из самых общих соображений. Задача состояла в том, чтобы понять, как достичь высокой степени сжатия. У него возникла идея о фокусировке на дейтерии механической энергии, высвобождаемой при взрыве обычной атомной бомбы. Чтобы осуществить такую фокусировку, необходимо надлежащим образом направить ударную волну по окружающему материалу. Этот способ сулил колоссальное сжатие дейтерия. Когда Улам сообщил Теллеру о своей схеме сжатия дейтерия, во время их исторической встречи в начале 1951 года, Теллер предложил вариант, согласно которому не ударные волны сжатия от взрыва атомного устройства, а радиация от этого первичного взрыва должна вызвать так называемую имплозию, приводящую к сильнейшему сжатию дейтерия. Как развивались события дальше? В 1954 году США испытали боевую водородную бомбу, осуществив тем самым окончательный поворот к новой технологии, уцелевшей в основных чертах до наших дней. Но уже в ноябре 1955 года на Семипалатинском полигоне взорвали нашу водородную бомбу новейшего образца. Стало ясно, что в споре с американскими учёными русские сумели ликвидировать разрыв. Притом в столь короткие сроки, что это не поддавалось, с точки зрения американцев, какому-либо разумному объяснению, кроме одного — шпионаж. Было выдвинуто немало и других версий, так или иначе объясняющих успех советских учёных, но спор и по сей день не закончен. Виднейший теоретик Лос-Аламоса Г. Бете считает, что открытие Улама-Теллера имело случайный характер. И потому признать, что русский проект развивался по аналогичному пути без американского влияния, — значит уверовать в совершенно невероятное совпадение.
Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров.
Опасная «слойка»: как советская водородная бомба потрясла мир
Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек.
Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли.
Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров.
После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом.
Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны.
Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода — дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.
И это очередной повод вспомнить о масштабах ее разрушительных последствий и о том, какую угрозу представляет собой оружие массового поражения. Карибский кризис 1962 года показал, насколько хрупким и беззащитным может быть мир на фоне ядерной угрозы, поэтому в бессмысленной гонке на уничтожение друг друга СССР и США смогли прийти к компромиссу и подписать первый договор, регламентировавший разработку ядерного оружия, — Договор о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой, к которому впоследствии подключились многие страны мира. Теоретическая возможность получения энергии путем термоядерного синтеза была известна еще до Второй мировой войны. Также известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путем сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества, но они не увенчались успехом, так как не удалось получить необходимых температур и давления.
Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии. Именно эта реакция протекает в недрах звезд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжелые ядра гелия. Полученного количества энергии достаточно для того, чтобы запустить цепную реакцию, вовлекая в нее весь возможный водород. Именно поэтому звезды не гаснут, а взрыв водородной бомбы обладает такой разрушительной силой.
Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода. Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более «чистым», чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд.
А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались «слойками». Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется «гриб»? На самом деле облако грибовидной формы — обыкновенное физическое явление.
Такие облака образуются при обычных взрывах достаточной мощности, при извержениях вулканов, сильных пожарах и падениях метеоритов. Горячий воздух всегда поднимается выше холодного, однако тут его нагрев происходит настолько быстро и так мощно, что он видимым столбом поднимается вверх, закручивается в кольцеобразный вихрь и тянет за собой «ножку» — столб пыли и дыма с поверхности земли. Поднимаясь, воздух постепенно охлаждается, становясь похожим на обычное облако из-за конденсации паров воды. Однако это еще не все.
Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака. В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника. Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го. Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или «Сияпе», расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане.
Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы «Толстяк», сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне.
Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне «Сухой Нос» на архипелаге Новая земля. Измеренная мощность взрыва составила 58,6 мегатонны, что многократно превышало все опытные взрывы, произведенные на территории СССР или США.
Изначально планировалось, что бомба будет еще больше и мощнее, однако не существовало ни одного самолета, который мог бы поднять больший вес в воздух. Огненный шар взрыва достиг радиуса примерно 4,6 километра. Теоретически он мог бы вырасти до поверхности земли, однако этому воспрепятствовала отраженная ударная волна, поднявшая низ шара и отбросившая его от поверхности. Ядерный гриб взрыва поднялся на высоту 67 километров для сравнения: современные пассажирские самолеты летают на высоте 8-11 километров.
Ощутимая волна атмосферного давления, возникшая в результате взрыва, три раза обогнула земной шар, распространившись всего за несколько секунд, а звуковая волна докатилась до острова Диксон на расстоянии около 800 километров от эпицентра взрыва расстояние от Москвы до Санкт-Петербурга. Радиацией было заражено все на расстоянии двух-трех километров. Немного истории После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16.
Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек.
Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна.
Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда.
Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру.
Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву. Световое излучение вспышки взрыва могло вызвать ожоги третьей степени на расстоянии до ста километров. Это фото сделано с расстояния в 160 км. Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы - т. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.
Сейсмическая волна, вызванная взрывом, обогнула земной шар трижды.
Водородная против атомной. Что нужно знать о ядерном оружии
Однако зачастую в составе термоядерной бомбы есть ядерная бомба, которая и приводит к радиационному загрязнению, хоть и меньшему. термоядерные (термоядерные бомбы, водородные бомбы) — более современное оружие, в котором принцип действия «атомной бомбы» усиливается термоядерным синтезом. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как термоядерная бомба, иногда называемой водородной.
Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
Термоядерную бомбу иначе еще называют водородной бомбой. это все те же РДС-6с. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. тэги: водородная бомба, водородное оружие, вооружение россии 2013, стратегические вооружения, термоядерная бомба, термоядерное оружие. термоядерные (термоядерные бомбы, водородные бомбы) — более современное оружие, в котором принцип действия «атомной бомбы» усиливается термоядерным синтезом.
Угроза №1. История создания водородной бомбы в СССР
Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Иллюстрация взрыва водородной бомбы После взрыва в Хиросиме и Нагасаки, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». Водородная бомба — ядерное оружие, которое использует процесс термоядерного синтеза для создания огромного количества энергии. Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как термоядерная бомба, иногда называемой водородной.
«Отец» водородной бомбы
Мощность водородной бомбы измеряется в мегатоннах TNT и может достигать нескольких сотен мегатонн. Это означает, что одна водородная бомба способна создать разрушения на огромной площади. Воздействие и радиационная опасность: Взрыв водородной бомбы вызывает огромный огненный шар, ударную волну и радиационное излучение. Радиационное излучение включает гамма-излучение и нейтронное излучение, что делает водородные бомбы особенно опасными для здоровья людей и окружающей среды из-за возможного радиоактивного загрязнения. Испытания и настоящее время: Водородные бомбы были разработаны и испытаны различными ядерными державами в прошлом. В настоящее время большинство стран, включая США и Россию, не проводят ядерные испытания и сосредоточены на ядерном разоружении и нераспространении ядерного оружия. Важно отметить, что водородная бомба представляет собой одно из самых разрушительных и опасных видов ядерного оружия, и ее использование имеет потенциально катастрофические последствия. Международные усилия направлены на контроль распространения ядерного оружия и достижение ядерного разоружения с целью обеспечения мира и безопасности.
В современной а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития — твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород. Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается. Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития — его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости например, вокруг или, наоборот, внутри ядерный заряд. Образовавшиеся при взрыве нейтроны поглощаются литием-6, который в результате распадается с образованием гелия и трития. Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово. Оба компонента термоядерной бомбы. Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. Г Вторая ступень сжимается вследствие абляции испарения под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется… Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они — газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились. Проблема только в том, что ее невозможно доставить «адресату» — размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему. Термоядерная установка Ivy Mike незадолго до испытаний. Атолл Эниветок, 1952 г. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально. Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же — это дейтерид легкого изотопа лития. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было. Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы — это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог. Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом.
Там же разместили образцы военной техники. В центре этого своеобразного макета населенного пункта установили мачту высотой 30 м, откуда и была сброшена бомба. Фото: commons. Эти показатели в 20 раз превзошли мощность атомных бомб, сброшенных на Хиросиму и Нагасаки. Абсолютно все объекты, которые были построены на Семипалатинском полигоне, оказались уничтожены: танки перевернуты, от макетов жилых зданий остались лишь бетонные ошметки, а 100-тонные элементы моста отбросило на 150—200 м. Нервное спокойствие Официально об испытаниях первой водородной бомбы объявили лишь спустя восемь дней — 20 августа 1953 года — в газетах «Правда» и «Известия». Отечественную ядерную триаду ждут большие перемены «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия». В той статье также отметили резонанс в зарубежных СМИ. Многие считали, что обладание СССР таким мощным оружием является угрозой для мирового порядка. The New York Times делала акцент не на самом факте создания Советским Союзом бомбы, а на том, что США всего в течение полугода были безоговорочными лидерами гонки вооружений. Пока Запад переваривал информацию, союзный блок социалистических стран радовался новостям о новом оружии. А СССР сначала разработал атомную бомбу, а потом и водородную. Не стоит забывать и про «мирные» проекты — атомные электростанции, ледоколы и так далее, — рассказал он «Известиям». В 50-х годах люди всего мира боялись новой войны, но, несмотря на рост напряжения, именно равновесие ядерного потенциала защищало Землю от катастрофы, указал эксперт. Для России создание водородной бомбы определило будущее и стало главным гарантом собственной безопасности.
Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. H-bomb А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития тяжелого и сверхтяжелого изотопа водорода энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235. Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. Классический супер К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики. Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США. Чистое термоядерное оружие Основная статья: Чистое термоядерное оружие Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе — в настоящее время создать чистый термоядерный боеприпас разумных размеров и веса не представляется практически возможным. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала.
Принцип действия водородной бомбы
- Последствия взрыва водородной бомбы | Плюсы и минусы
- Что такое реакция слияния ядер?
- Как работает водородная бомба (6 фото + видео)
- Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР
Что такое бомба?
- Угроза №1. История создания водородной бомбы в СССР – Москва 24, 16.01.2018
- RU2477449C1 - ВОДОРОДНАЯ БОМБА - Яндекс.Патенты
- «Дитя не плачет — мать не разумеет»
- Принцип работы водородной бомбы » ЯУстал - Источник Хорошего Настроения
- Что произойдет после взрыва ядерной бомбы? - Hi-Tech
Как это устроено: все секреты термоядерной бомбы
Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения. Возможность использования в качестве детонатора водородной бомбы ядерного заряда обсуждалась ещё физиками работающими в рамках Манхеттенского проекта. Эксперты называют В61-12 одной из наиболее точных термоядерных бомб, а сама она использует корректировку при помощи GPS, где для повышения точности задействуются хвостовые рули.