Астрономы, работающие на Телескопе горизонта событий собрали все данные наблюдений за черной дырой M87 и смогли увидеть движение ее тени на протяжении лет. The event horizon is a team of programmers and specialists in the field of cryptocurrencies. и миллиметровых обсерваторий «Телескоп горизонт событий» (EHT) и Европейская южная обсерватория (ESO) получили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный путь, в которой расположена Земля. Международная коллаборация Event Horizon Telescope, которая сделала историческое первое в истории изображение черной дыры, снова вызвала удивление в научном сообществе.
Search code, repositories, users, issues, pull requests...
Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) показали первую в истории фотографию сверхмассивной черной дыры в центре Млечного Пути. В качестве наземного плеча интерферометра рассматривались все телескопы, входящие в коллаборацию «Телескопа горизонта событий» на данный момент. Международная группа учёных, работающая в рамках проекта «Телескоп горизонта событий» (Event Horizon Telescope — EHT), получила изображения квазара NRAO 530, который находится на расстоянии 7,5 млрд световых лет от Земли. 20 мая сотрудники Европейской южной обсерватории (ESO) и команда, занимающаяся исследованиями на Телескопе горизонта событий (EHT, Event Horizon Telescope), провели пресс-конференцию, на которой показали фото черной дыры в центре нашей Галактики. The Event Horizon Telescope (EHT) is a network of synchronized observatories around the world and is famed for capturing the first image of a black hole.
Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры
Это стало возможным благодаря модернизации проекта EHT и применения новых методов обработки получаемых данных. Таким образом, у астрономов появилось окончательное доказательство существования столь массивного компактного объекта в центральной зоне нашей галактики. На изображении видна яркая кольцеобразная область, за свечение которой ответственен горячий газ, падающий на черную дыру. О том, как благодаря EHT астрономам удалось увидеть тень черной дыры, и что это дало науке можно узнать из материалов «Взгляд в бездну» и «Заглянуть за горизонт».
Такой «виртуальный телескоп» позволил взглянуть на объект с разных углов зрения. За объектом наблюдала команда из 200 человек в течение нескольких дней в апреле 2017 года. Ученым понадобилось два года, чтобы обработать весь массив данных, полученных от телескопов. Однако ученые остановились на черной дыре из галактики М87.
Однако светящийся газ вокруг нее складывается в характерную картинку: темную центральную область, которую называют «тенью», и окружающую ее яркую кольцеобразную структуру. Эти беспрецедентные наблюдения значительно улучшили наше понимание процессов, которые происходят в центре нашей галактики, и дали новые ключи к пониманию того, как черные дыры взаимодействуют со своим окружением», — сказал ученый Джеффри Бауэр из коллаборации ЕНТ. Впрочем, из-за большого удаления от Земли черная дыра, по словам ученых EHT, предстает на небосклоне крошечной точкой — словно пончик, который пытаешься разглядеть на поверхности Луны. Чтобы получить изображение этого объекта, астрофизики использовали сеть из восьми обсерваторий в разных частях Земли, которые и образуют все вместе виртуальный телескоп размером с планету, носящий название Телескопа горизонта событий. Сбор данных велся в течение «множества ночей» по много часов подряд, что можно сравнить с фотосъемкой с длинной экспозицией, говорят ученые.
Проект EVT был создан специально для исследования чёрных дыр. Для совместной работы объединились астрофизики из почти 40 стран.
Также по теме Космическая столовая: учёные рассказали о внезапно «проснувшейся» чёрной дыре Учёные обнаружили чёрную дыру, которая внезапно «проснулась» и начала ускоренно «поедать» окружающий её газ. За короткий промежуток... В апреле 2017 года восемь радиотелескопов по всему земному шару в США, Испании, Мексике, Чили и на Южном полюсе были объединены в один виртуальный телескоп диаметром 12 тыс. В течение нескольких дней астрономы одновременно наблюдали за двумя чёрными дырами в центре Млечного Пути и в галактике Messier 87. Данные с каждой обсерватории в течение нескольких лет поступали в единый информационный центр и обрабатывались суперкомпьютером. До настоящего времени оставалось загадкой, изображение какой из двух чёрных дыр будет представлено. Презентация изображения была запланирована на 2018 год.
Однако российские учёные из проекта «Радиоастрон», параллельно наблюдавшие за чёрной дырой с помощью космического радиотелескопа, указали иностранным коллегам на искажения, вызываемые межзвёздной средой.
A VLBI receiving system for the South Pole Telescope
- На фото показали магнитное поле вокруг сверхмассивной чёрной дыры нашей Галактики
- Первый взгляд на чёрную дыру в центре Млечного пути
- Астрономы впервые получили фото черной дыры в центре Млечного Пути
- Получен первый в истории снимок сверхмассивной черной дыры
- Event Horizon Telescope releases first ever black hole image
- A story of overcoming differences between people and telescopes
Stories from those working behind the scenes on the biggest discovery of the year
- В погоне за «кротовыми норами»
- Телескоп горизонта событий
- Поделиться
- Event Horizon Telescope - today's latest news and major events - Sputnik International
- Телескоп горизонта событий получил изображения квазара в 7,5 млрд световых годах от Земли
- Астрономы впервые зафиксировали фотонное кольцо у черной дыры
Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры
#Event Horizon Telescope | По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» (Event Horizon Telescope) — телескопы восьми обсерваторий на разных. |
Первый снимок чёрной дыры в центре нашей Галактики | Изображение было получено международной исследовательской группой – Коллаборацией «Телескоп Горизонта Событий» («Event Horizon Telescope» EHT), которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов. |
Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры | Диаметр горизонта событий дыры в галактике М87 в полторы тысячи раз превышает диаметр горизонта нашей «домашней» дыры. |
Телескоп горизонта событий — Википедия | Результаты 11 новостей. |
Черную дыру впервые разглядели в телескоп | Как предполагают теоретики, "Телескоп горизонта событий" (Event Horizon Telescope) сможет зарегистрировать изображение тени сверхмассивной черной дыры, находящейся в центре нашей Галактики, а также и. |
Черную дыру впервые разглядели в телескоп
Но предполагать недостаточно, необходимо было доказать это. Черная дыра в центре нашей галактики гораздо меньше в размерах, чем в Мессье 87: она легче в тысячу раз — составляет примерно 4 млн масс Солнца. Но и расстояние до нее гораздо ближе — 27 тыс. По заверениям астрономов, наблюдать ее гораздо сложнее, так как на пути до нее много мешающих объектов. Тем не менее 12 мая этого года было обнародовано ее изображение, подтвердившее теоретические изыскания.
Просмотров 82 Опубликовано 28. Это стало возможным благодаря реализации крупного проекта The Event Horizon Telescope. Ряд мощных радиотелескопов специалисты объединили в единую сеть.
Посредством этого им удалось получить невероятно мощный массив. Который в свою очередь способен заглянуть в глубины космоса и приоткрыть тайны черных дыр.
Учёные уже изучили это явление и поделились результатами исследования с журналом The Astrophysical Journal Letters.
Это позволяет предположить, что такое явление общее для таких объектов в космосе. Изображение: EHT Для визуализации астрономы использовали поляризацию света — когда свет создаётся колеблющимися в определённом направлении электромагнитными волнами. Именно так работают 3D-очки — две линзы имеют разную поляризацию, пропускающую только часть света, поэтому наш мозг может создавать в голове объёмное изображение.
Поляризованный свет помогает уменьшить блики от ярких источников света, что и позволило команде учёных получить более чёткое представление о краях черной дыры и составить карту линий магнитного поля.
На этом этапе он сможет пробиться взглядом к очень слабым объектам, например, самым первым галактикам. Исследуя жизнь Что касается астробиологических задач, они присутствовали в концепции проекта с самого начала и со временем все глубже прорабатывались. Их наблюдения, в том числе спектральные, нужны, чтобы понять состав их поверхностей, атмосфер, изучать их льды и понять, из чего они состоят. Такие спектральные исследования как раз сможет проводить наша обсерватория».
Особенно привлекает возможность изучить окрестности Сатурна, к которому в ближайшие годы не планируется направлять автоматические межпланетные миссии с Земли. С помощью телескопа ученые смогут оценить астробиологический потенциал Энцелада и Титана, под поверхностью которых предположительно есть океаны с условиями, пригодными для живых организмов. Анализ химического состава этих миров поможет ученым исследовать особенности взаимодействия океана с поверхностью спутника и ответить на вопрос, есть ли там жизнь. В погоне за «кротовыми норами» В объектив «Миллиметрона» попадут также центральные области активных ядер галактик. По всей видимости, это сверхмассивные черные дыры, но нельзя исключать, что некоторые из них окажутся «кротовыми норами».
Поиск «кротовых нор» — одна из самых интересных и захватывающих задач «Миллиметрона». В отличие от черных дыр, эти таинственные объекты в космосе наблюдателями пока не обнаружены. На сегодняшний день «кротовая нора» — это гипотетическое явление, существование которого допускается общей теорией относительности. Она предположительно состоит из двух входов, своеобразных порталов, которые могут располагаться на значительном удалении друг от друга, возможно, даже в разных Вселенных. Открытие этих объектов произвело бы революцию в наших представлениях о пространстве и окружающем мире.
Благодаря своим параметрам «Миллиметрон» сможет приблизиться к разгадке этой тайны. Статус проекта Как рассказали Сергей Лихачев и Евгений Голубев, в настоящее время создается ряд опытных образцов различных составных частей космической обсерватории. Один из самых высокотехнологичных образцов — система раскрытия главного зеркала. Помимо раскрытия лепестков и их фиксации в рабочем положении с высокой точностью, она выполняет функции силовой конструкции главного зеркала для восприятия нагрузок выведения на ракете-носителе.
Photographing a black hole
Ученые коллаборации Телескопа горизонта событий EHT показали первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути. Телескоп горизонта событий EHT улавливает излучение, испускаемое частицами внутри аккреционного диска черной дыры: пятнистое гало на полученных изображениях показывает свет, искривляемый мощной гравитацией черной дыры. Коллаборация Телескопа горизонта событий (EHT) показала первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути. Исследователи проекта Телескоп горизонта событий (Event Horizon Telescope, EHT) представили результаты наблюдения за квазаром NRAO 530, свет от которого двигался до Земли 7,5 млрд лет. Об этом в ходе пресс-конференции объявили участники "Телескопа горизонта событий" (Event Horizon Telescope, или EHT). Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT (Телескоп горизонта событий).
Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры
Структура ядра оказалась сложнее, чем предполагалось ранее, в нем наблюдаются два ярких компонента. Джет демонстрирует признаки изгиба, в нем тоже наблюдаются две отдельные структуры, с взаимно ортогональными направлениями поляризации излучения параллельными и перпендикулярными джету , что говорит о спиральной структуре магнитного поля в джете. Самая внешняя наблюдаемая часть джета имеет особенно высокую степень линейной поляризации излучения, что свидетельствует о почти однородном магнитном поле. О том, как было получено первое изображение тени черной дыры и что это принесло науке, читайте в материалах «Взгляд в бездну» и «Заглянуть за горизонт». Нашли опечатку?
Скриншот из «Твиттера» Массачусетского технологического института. В 2018 году было записано 3500 ТБ данных, большая часть которых посвящена одному объекту — черной дыре из галактики M87. Чтобы отправить этот массив информации в вычислительные лаборатории, решили использовать не Интернет, а обычную почту и множество жестких дисков, потому что с помощью Интернета за сутки получится передать только 1 ТБ. Данные послали в Массачусетский Технологический институт и Радиоастрономический институт Макса Планка, чтобы получить два независимых результата. В апреле 2019 года человечеству показали первую живую фотографию черной дыры, которая находится в 55 млн световых лет от нас. Первая презентация изображения черной дыры в галактике M87. Фото: www. Messier 87 — более чистый объект. В фоновом режиме ТГС наблюдает и за ними. Дальше — больше. На это делаются большие ставки, ведь живого видео никто никогда не делал. Как, впрочем, и фотографий черной дыры до недавнего времени. Вообще работы у Телескопа Горизонта Событий хватит на несколько лет вперед.
Это один из самых массивных объектов, известных науке, — масса этой сверхмассивной черной дыры составляет примерно 3,5 млрд масс Солнца. К настоящему времени известны лишь две сверхмассивные черные дыры с большим размером. Полученная учеными картинка воображение не поражает — оранжевый бублик, словно снятый на некачественную камеру телефона. Масса газа, падающего в черную дыру, достигает примерно одной массы Солнца каждые десять лет. Возможность увидеть это при помощи гигантского виртуального интерферометра стала одним из наиболее интересных достижений в астрофизике в течение последних десятилетий.
В это время его научная аппаратура для поддержания высоких параметров чувствительности и противодействия тепловым помехам будет сильно охлаждаться. Хотя российский и американский аппараты рассчитаны на работу в разных диапазонах электромагнитного излучения «Джеймс Уэбб» будет работать в видимом и среднем инфракрасном cпектре, а «Миллиметрон» — в субмиллиметровом и миллиметровом диапазонах , отечественный телескоп будет иметь несомненное преимущество: он позволит изучать объекты, закрытые межзвездной пылью. Например, активное звездообразование — загадочный и при этом очень «пыльный» процесс. С помощью «Спектра-М» ученые надеются узнать, как именно рождаются звезды и как развивается этот процесс. В отличие от зарубежного коллеги, «Миллиметрон» сможет также проводить быстрые обзоры небольших секторов неба. Если продолжить сравнение с аппаратом «Спектр-Р», то ученые гораздо шире рассматривают потенциал «Миллиметрона» и в рамках второго этапа, когда он будет действовать как единое целое с наземными телескопами. Дело в том, что «Спектр-Р» работал на гораздо большей длине волны, что было не очень удобно для изучения черных дыр из-за межзвездного рассеивания излучения. При уменьшении длины волны сильно снижается и эффект рассеивания, поэтому «Миллиметрон» сможет рассмотреть весьма далекие области, куда взгляд «Спектра-Р» никогда бы не проник. По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» Event Horizon Telescope — телескопы восьми обсерваторий на разных континентах, а также «Атакамская большая [антенная] решетка миллиметрового диапазона» Atacama Large Millimeter Array — комплекс радиотелескопов, расположенный в чилийской пустыне Атакама. Кроме того, в рамках проекта возможно сотрудничество с Международной радиоастрономической обсерваторией «Суффа», строящейся в Республике Узбекистан. Особые надежды возлагаются на совместную работу с «Телескопом горизонта событий». Проведенное учеными моделирование показало, что общими усилиями обсерватории смогут получать изображения, качество которых будет в шесть-десять раз лучше, чем то, что «Телескоп горизонта событий» получает сейчас. Что касается режима одиночной антенны, то прямым предшественником «Миллиметрона» можно считать космический телескоп «Гершель» запущен в 2009 г. Однако зарубежный аппарат имел значительно меньший диаметр зеркала — 3. Иерархия задач Характеристики обсерватории и ее будущее «место работы» позволили ученым сформировать амбициозную научную программу. Основные направления работы: исследования процессов в ранней Вселенной, изучение геометрии пространства-времени вблизи сверхмассивных черных дыр, поиск воды и биомаркеров в нашей галактике. Татьяна Ларченкова объяснила, что при определении приоритетов важно было выявить задачи, которые до запуска «Миллиметрона» не будут решены другими проектами. Строгая иерархия работ оправдана ограниченным временем работы в режиме активного охлаждения порядка трех лет , которое даст «Миллиметрону» особую чувствительность в режиме одиночного телескопа.
Телескоп горизонта событий
Эти поля играют ключевую роль в процессах аккреции и выбросах вещества, непосредственно это повлияет на наблюдение черных дыр и на наше понимание физики, управляющей этими экстремальными объектами». Наблюдение тех же магнитных структур в нашей сверхмассивной черной дыре позволяет предположить, что эти основные механизмы являются общими для всех черных дыр. На заднем плане справа: Коллаборация Планка нанесла на карту поляризованное излучение пыли по всему Млечному Пути. Исследование опубликовано в The Astrophysical Journal Letters.
И, учитывая, что сама по себе черная дыра не излучает свет, ожидаемое изображение представляет собой яркое кольцо, состоящее из всех отклоненных ею лучей. И то, что мы увидели, отлично согласуется с моделями», — добавил Роман Голд из Франкфуртского университета им. Гете, также участник проекта «Event Horizon Telescope». Расположение радиотелескопов глобальной сети. Credit: ESO Всего за 2017 и 2018 года «массив размером с Землю» выполнил около 60 часов наблюдений, собрав в общей сложности примерно 10 петабайт данных. Ученые потратили полтора года, чтобы откалибровать и перепроверить гигантский объем информации и, в итоге, преобразовать его в изображение источника — сверхмассивной черной дыры в галактике Messier 87. Но, разместив телескопы по всему миру для создания телескопа размером с Землю, был достигнут этот беспрецедентный результат, предвещающий новую эпоху в исследовании черных дыр и прокладывающий путь для дальнейших научных прорывов», — прокомментировали событие в Европейской южной обсерватории ESO , чьи телескопы добавляют ощутимую мощь глобальной сети «Event Horizon Telescope». Художественное представление окружения сверхмассивной черной дыры в гигантской эллиптической галактике Messier 87.
Это изображение - долгожданный взгляд на огромный объект в центре нашей галактики. Хотя мы не можем увидеть саму черную дыру, поскольку она абсолютно темная, светящийся газ вокруг нее оставляет заметные следы. Темная центральная область, известная как тень, черной дыры окружена яркой кольцевой структурой. На снимке запечатлен свет, искривленный мощной гравитацией черной дыры, которая в четыре миллиона раз массивнее нашего Солнца. Наблюдения говорят нам об активной сверхмассивной черной дыре, которая притягивает к себе материал и заставляет его погружаться в свою пасть. Изучив ее орбиту, были оценены масса и радиус сверхмассивной черной дыры. Более поздние наблюдения определили массу в 3,7 млн солнечных масс в объеме с радиусом в 6,25 световых часов, или 6,7 млрд км. Ее активность в центре Млечного Пути превращает ее в своего рода двигатель, который, поглощая материю из того, что проходит поблизости, производит энергию в виде интенсивного излучения.
Эта черная дыра имеет массу примерно 4,3 миллиона масс Солнца. Для такой массы радиус горизонта событий составляет около 6 миллионов километров, что примерно в 15 раз больше расстояния от Земли до Луны. На изображении видна яркая кольцеобразная область, за свечение которой ответственен горячий газ, падающий на черную дыру.
«Око» телескопа направили на ярчайший источник света во Вселенной: что увидели ученые
Исследователи полагают, что наблюдение поможет понять сложную физику и необычную яркость этих объектов. Изображение : Jorstad et al. Считается, что это активные ядра галактик , которые находятся на начальном этапе развития. В этот момент сверхмассивная черная дыра в центре такого активного ядра поглощает окружающее вещество, формируя аккреционный диск. Это подтип блазара — активного галактического ядра с мощной релятивистской струей или джетом, направленным в сторону наблюдателя.
Первоначально о существовании компактного объекта ученые узнали в конце прошлого века путем отслеживания движения звезд вблизи черной дыры, за что в 2020 году была вручена Нобелевская премия по физике. Для такой массы радиус горизонта событий составляет около 12 миллионов километров.
Это стало возможным благодаря модернизации проекта EHT и применения новых методов обработки получаемых данных. Таким образом, у астрономов появилось окончательное доказательство существования столь массивного компактного объекта в центральной зоне нашей галактики.
В 2020 году международное сотрудничество над проектом удостоилось медали Альберта Эйнштейна. Оно было сформировано по данным, собранным радиотелескопами в 2017 году [2].
Изображение было получено международной исследовательской группой — Коллаборацией «Телескоп горизонта событий» EHT , которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов. Речь про объект, известный как «Стрелец A» или сокращенно Sgr A. Изображение сформировано световыми лучами, искривленными мощной гравитацией черной дыры, масса которой в четыре миллиона раз превышает массу нашего Солнца», — говорится на сайте Европейской южной обсерватории.
Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры
Event Horizon Telescope Collaboration (testing-general-relativity-with-the-event-horizon).jpg 2,358 × 1,762; 674 KB. Телескоп горизонта событий заметил круговую поляризацию излучения от сверхмассивной черной дыры в галактике М87. Using the Event Horizon Telescope, scientists obtained an image of the black hole at the center of galaxy M87, outlined by emission from hot gas swirling around it under the influence of strong gravity near its event horizon. Event Horizon Telescope Collaboration Stub. Now that the Event Horizon Telescope collaboration has released its image of the Milky Way's black hole, the team is focusing on making movies of the two photographed black holes and finding other distant black holes large enough to study. Изображение было получено международной исследовательской группой – Коллаборацией «Телескоп Горизонта Событий» («Event Horizon Telescope» EHT), которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов.