Новости применение искусственного интеллекта в медицине

Технологии искусственного интеллекта для системы здравоохранения.

Содержание

  • Применение искусственного интеллекта в московском здравоохранении
  • Для чего в российских регионах используют ИИ в медицине - Российская газета
  • Вас вылечит… искусственный интеллект. Как ИИ-решения применяются в медицине
  • Первое в истории ИИ-лекарство
  • Комплексный анализ работы сервисов ИИ в медицине провели в Москве

Полная роботизация: как искусственный интеллект помогает врачам

ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.

AI — очень расхваленная, распиаренная история. Так что для меня неудивительно, что приостановлено его использование. У нас это первый, но далеко не последний случай, когда проект в области медицинского ИИ провалится. В мире уже приостановлено использование огромного количества так называемых алгоритмов. Списаны миллиарды долларов инвесторов, которые вкладывались в эти самые алгоритмы, но пока ИИ в здравоохранении толком не взлетает нигде», — говорит Кузнецов. Он объясняет, что провалы данных систем в медицине происходят потому, что на самом деле это никакой не ИИ: «Современный медицинский искусственный интеллект — это «искусственный», но не интеллект вовсе.

Эти алгоритмы напоминают скорее систему распознавания лиц. Соответственно, они не «думают», не анализируют, а лишь сопоставляют данные пациентов с загруженной в них базой. И на основе этого сопоставления делают выводы». В пример собеседник приводит типовой алгоритм, который, как заявлялось, способен выявлять коронавирус по КТ. Однако если на снимке пациента есть какие-то отклонения от нормы, погрешности которые, например, появляются из-за использования разного оборудования или индивидуальных особенностей пациента — врожденных или приобретенных , то точность сопоставления начинает падать. Подобная проблема встречается и при определении алгоритмами онкологических болезней, инсульта, инфаркта и других диагнозов. У распознавания «по аналогии» есть набор всем известных проблем, поясняет эксперт.

Иногда не всегда то, что распознается как болезнь, является болезнью — это «ложноположительный результат». В других случаях наоборот: система это не распознает как болезнь, хотя болезнь есть — это «ложноотрицательный результат». Кроме того, бывает, что медицинская информация не поддается в полной мере алгоритмическому анализу — это так называемые эксквизитные случаи, специфика пациента, орфанные болезни и так далее. Возможно, следующие поколения алгоритмов будут избавлены от этих проблем, но пока надежды на медицинский ИИ, как диагностический философский камень — очевидный самообман», — заключил Кузнецов. По информации местных Telegram-каналов, агрессором является Богдан Ш. На видеороликах, которые сам блогер публикует в социальных сетях, видно, как он нападает на прохожих, бьет их по лицу и издевается над ними. Сообщается, что от его действий уже пострадали около 50 человек.

Мотивы своих поступков он не объясняет. Помимо видео избиений, в блоге Ш. Ранее в петербургском метро пожилой мужчина напал с ножом на серебряного призера чемпионата России по фигурному катанию Владислава Дикиджи. По его данным, тела были найдены со связанными руками и зашитыми животами, что вызывает подозрения в изъятии внутренних органов.

Искусственный интеллект преодолевает препятствия Ассоциация разработчиков и пользователей ИИ в медицине «Национальная база медицинских знаний» НБМЗ , созданная несколько лет назад при поддержке РВК, поставила перед собой цель способствовать внедрению новейших технологий в клиническую практику. Мы встретились с директором по проектной деятельности ассоциации, научным сотрудником НИИ общественного здоровья имени Н. Семашко Андреем Алмазовым, чтобы узнать, что удается сделать для внедрения ИИ в медицинскую практику и что этому мешает.

Сервисы видеоаналитики могут следить за состоянием пациентов с ограничениями по движению, например, в реанимации и при необходимости послать сообщение на пост. Ну и, конечно, стоит отметить чат-боты, которые помогают с первичным сбором данных о пациенте в кол-центрах при записи к врачу. Она позволяет на УЗИ-аппаратах неэкспертного уровня за счет анализа данных получать то же качество, как и на УЗИ-аппаратах более высокого класса", - рассказал Павел Пугачев. Искусственный интеллект имеет большие возможности, но решать с его помощью все задачи сразу не требуется, полагают эксперты. Инвесторы, работающие в сегменте цифровой медицины, считают, что нужно фокусироваться на отдельных ключевых элементах, где ИИ сегодня действительно может помогать, отметил директор по развитию венчурного фонда НТИ под управлением Kama Flow Евгений Борисов. В первую очередь это все, что связано с ассистированием и поддержкой врачебных решений. Второе - это работа с таргетами. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована, - сказал эксперт. Например, когда роботизированный хирургический комплекс дополняется ассистентами, в том числе позволяющими в режиме реального времени распознавать и размечать путь хирургического вмешательства. Это снижает риск врачебной ошибки, облегчает нагрузку на хирурга и ускоряет сам процесс проведения операции". По словам специалиста, сегодня среди инвесторов цифрового здравоохранения и сервисов ИИ доминируют не крупнейшие фармацевтические компании и не производители медицинского оборудования.

Диагностика

  • Искусственный интеллект в медицине. Настоящее и будущее
  • ИИ в медицине: тренды и примеры применения -
  • Искусственный интеллект в медицине
  • Будущее рядом: как нас будет лечить искусственный интеллект? — Реальное время
  • Искусственный интеллект в медицине: применение и перспективы
  • Как работают нейронные сети в медицинской сфере?

Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией

Преимущества применения нейросетей в медицине очевидны – возможность обрабатывать большие массивы данных в короткие сроки, а также точность диагностики. Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM. Области применения искусственного интеллекта в медицине обширны и разнообразны.

Машины лечат людей: как нейросети используют в российской медицине

Обзор Российских систем искусственного интеллекта для здравоохранения Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении.
Национальная база медицинских знаний искусственный интеллект в медицине, искусственный интеллект. Рост применения КТ приводит к выявлению большого количества очагов и округлых образований в легких.

Эксперимент по внедрению технологий искусственного интеллекта

Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции.

Искусственный интеллект в медицине: применение и перспективы

Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии.

Нейросети в качестве врача: как искусственный интеллект влияет на развитие медицины

Это позволяет улучшить точность диагностики и своевременно выявлять заболевания, такие как рак или сердечно-сосудистые заболевания и многое другое. Другим применением искусственного интеллекта является прогнозирование результатов лечения. Системы ИИ могут анализировать исторические данные о лечении пациентов и предсказывать вероятность успеха лечения для конкретного пациента. Это позволяет врачам принимать более обоснованные решения и выбирать оптимальные лечебные стратегии. Еще одной областью применения искусственного интеллекта является персонализированная медицина. Системы ИИ могут анализировать генетические данные пациентов, учитывать их индивидуальные особенности и предлагать персонализированные подходы к диагностике и лечению.

Винер создал свои основополагающие работы по кибернетике. Ляпунова начал свою работу семинар «Автоматы и мышление».

В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине. Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны.

Создатели платформы видят свои перспективы во внедрении технологии в широкую клиническую практику, чтобы пациенты, пришедшие на осмотр в городскую поликлинику, имели доступ к передовым технологиям. РФ , который выделяет специальные гранты на модернизацию программного обеспечения с применением алгоритмов ИИ. Так, резидент «Сколково» и грантополучатель Фонда содействия инновациям — «Платформа третье мнение» «ПТМ» — уже в 19 регионах страны внедряет сервисы искусственного интеллекта, поддерживающие рабочий процесс врача при интерпретации диагностических исследований. Также в ряде регионов запускаются системы для анализа видеопотока в стационарах, отделениях реанимации и интенсивной терапии. При диспансеризации врачи обрабатывают большой поток исследований, не имеющих отклонений от нормы, что создает высокую рутинную нагрузку и повышает риск пропуска редкой патологии.

А решение «ИИ-Мониторинг» от «ПТМ» позволяет в режиме реального времени анализировать видеопоток в стационарах и эффективно наблюдать даже за пациентами в тяжелом состоянии. С помощью алгоритмов компьютерного зрения система отслеживает нежелательные события и уведомляет о них. Благодаря чему скорость реакции на них медперсонала повышается в 50 раз, а число наступивших негативных событий сокращается до нуля. По федеральному проекту «Искусственный интеллект» Фондом содействия инновациям уже профинансировано свыше 850 проектов ИИ-разработчиков. До 13 мая открыт прием заявок на конкурсы для инноваторов в сфере искусственного интеллекта. Гранты до 8 млн рублей могут получить как физические, так и юридические лица.

Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы. А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM.

И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения. А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки. Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени. Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней. Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру.

Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей. Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект. Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным. ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань. Результаты обучения оказались положительными: алгоритм смог продемонстрировать более высокую эффективность, чем другие современные методы распознавания патологий на полноформатных слайдах. На данный момент новый алгоритм планируется внедрить в помощь патологоанатомам, однако при успешном внедрении возможности ИИ могут быть расширены, ведь главное — научиться диагностировать опасные заболевания на самых ранних стадиях, пока сохраняются высокие шансы на полноценное излечение. Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний. Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше. Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака.

Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение». SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото. ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так. Таким образом, пациент сможет вовремя обратиться в клинику за помощью. Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Нейросеть научилась отличать родинки от некоторых видов рака кожи Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей. Работа исследователей опубликована в журнале Nature. На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается.

По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни. Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой. При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому самый распространенный и злокачественный вид опухоли на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов. Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр за которым обычно следует дерматоскопия или биопсия. Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок. Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google. Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному. Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний.

После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США. Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма которая отражает способность корректно определить доброкачественную и злокачественную опухоль не уступает чувствительности и специфичности дерматологов. В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи. Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок. Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет. Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы. В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев.

Применение ИИ в медицине Данные о пациентах Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза. Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных.

Применение искусственного интеллекта в московском здравоохранении

Люди во всем мире лучше осведомлены о потенциальном влиянии ИИ и больше нервничают. Подробнее о результатах исследования мы расскажем подробнее в отдельной статье в ближайшие недели! В условиях быстро меняющейся ситуации в сфере цифровизации сектор здравоохранения переживает глубокую трансформацию, характеризующуюся растущей интеграцией технологий цифрового здравоохранения, телемедицины, единых реестров и ИИ. Этот сдвиг не только предлагает множество преимуществ, но и меняет динамику отношений между пациентами и поставщиками медицинских услуг в рамках системы здравоохранения. Отчет представляет из себя большой обзор всех стран - участников региона по основным показателям. В профилях указаны важнейшие компоненты цифрового здравоохранения на национальном уровне, включая цифровое управление здравоохранением, электронные медицинские карты, порталы пациентов, телемедицину, мобильное здравоохранение, а также большие данные и аналитику. Всего в рамках награды было подано более 100 заявок. Также победителями номинаций стали: Русагро, Авито, Росатом и Роскосмос.

Поделиться Технологии искусственного интеллекта активно внедряют в медицину в РФ Технологии искусственного интеллекта активно внедряют в медицину в РФ "Искусственному интеллекту потребуется всего четыре минуты, чтобы выдать свое заключение по поводу состояния челюсти", — рассказал корреспондент. Нейросеть от российских разработчиков помогает на каждом этапе лечения полости рта. Кариес, пульпит или болезни десен — искусственный интеллект видит все детали. Причем в десять раз быстрее стоматолога. Он просто пишет признаки пародонтита легкой степени. И, соответственно, выставляет процент, на какой процент он уверен, что это признаки пародонтита", — объяснил пародонтолог Константин Наам. Несмотря на проценты, решающее слово в лечении за врачом и пациентом. Нейросеть сегодня — лишь помощник медика. Она выделяет проблемные места на снимках цветами, умеет виртуально корректировать расположение будущих протезов, воссоздавать 3D-модель челюсти. Искусственный интеллект может помнить десятки тысяч диагнозов. Но программная ошибка, как и человеческая, не исключена. С каждым годом все меньше и меньше ошибок и все больше и больше диагнозов.

Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов. Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т. Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта.

В первую очередь это все, что связано с ассистированием и поддержкой врачебных решений. Второе - это работа с таргетами. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована, - сказал эксперт. Например, когда роботизированный хирургический комплекс дополняется ассистентами, в том числе позволяющими в режиме реального времени распознавать и размечать путь хирургического вмешательства. Это снижает риск врачебной ошибки, облегчает нагрузку на хирурга и ускоряет сам процесс проведения операции". По словам специалиста, сегодня среди инвесторов цифрового здравоохранения и сервисов ИИ доминируют не крупнейшие фармацевтические компании и не производители медицинского оборудования. В эту отрасль пришли ИТ-гиганты, телеком и финансовые организации. Еще одна важная сфера применения ИИ - разработка новых лекарственных препаратов. Обычно на этапе ранней разработки в пробирках синтезируют примерно 10 тысяч препаратов, которые прогоняют через серию тестов, чтобы выбрать 250 препаратов, которые затем отправят на доклинические испытания. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована С ИИ синтезировать все препараты вручную не требуется. А дальше другие программы определяют - правильно ли он их сгенерировал.

Читайте также:

  • Применение искусственного интеллекта в московском здравоохранении
  • Роман Душкин: «Медицина — это область доверия»
  • Третье Мнение - искусственный интеллект в здравоохранении
  • ИИ в медицине: тренды и примеры применения

Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли

Сбор данных и искусственный интеллект в медицине. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении.

Искусственный интеллект в медицине: применение и перспективы

Роботы с искусственным интеллектом применяются все чаще в микрохирургических процедурах. Но не следует считать, что скоро будут оперировать только роботы-хирурги. Зато справедливы ожидания, что роботы с ИИ помогут хирургам работать лучше. Роботизированная хирургия — это активно развивающаяся и эффективная технология, которая приобретает все большее значение при различных медицинских процедурах в неврологии, гинекологии, ортопедии, торакальной и общей хирургии, при установке зубных имплантатов, а также трансплантации волос. Роботизированные технологии позволяют врачам с минимальным опытом или практикующим врачам, плохо знакомым с той или иной операционной процедурой, проводить лечение на уровне, которого они не смогли бы достичь даже в результате многолетней практики. Помощь робота во время операции уменьшает последствия тремора рук оперирующего врача, а также устраняет случайные движения. Робот Da Vinci, который считается одним из самых передовых в мире хирургических роботов, предоставляет врачу набор хирургических инструментов, которые можно использовать при проведении минимально инвазивной хирургии, и обеспечивает лучший контроль над обычными процедурами. Приобрел большую популярность и миниатюрный мобильный робот Heartlander. Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции.

Робот входит в грудную клетку через небольшой разрез ниже грудины. Используя это устройство, хирурги теперь могут выполнять стабильное и локализованное картирование, зондирование и лечение всей поверхности сердца. Возможности нейронных сетей помогают трансформировать сферу радиологии, экономя время и деньги медицинских организаций. После того, как медицинское изображение получено с помощью МРТ, компьютерной томографии, ультразвукового или рентгенологического исследования, врач должен проанализировать его на наличие каких-либо отклонений или признаков заболеваний. Для выявления сколько-нибудь серьезного состояния требуется интерпретация нескольких визуализационных исследований. После обучения с использованием больших наборов данных исследований системы на основе ИИ способны анализировать медицинские изображения и сообщать об обнаруженных особенностях, например, небольших опухолях, которые человеческий глаз может упустить. Такие системы выявляют закономерности и предоставляют информацию о характеристиках любых отклонений от нормы, экономя время врача. В тех случаях, когда у пациента есть несколько снимков, сделанных на протяжении некоторого времени, искусственный интеллект также может анализировать динамику заболевания.

Как работает анализ медицинских изображений? А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский. И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь. Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки.

До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях". Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он.

Пока искусственный интеллект применяется в основном для анализа медицинских изображений и электронных медицинских карт Есть и другие технологии ИИ, помогающие повысить эффективность системы здравоохранения. Например, голосовые сервисы ввода данных устной речи - врач может наговаривать то, что он видит, а данные записываются в медицинскую карту уже в виде текстового сообщения. Сервисы видеоаналитики могут следить за состоянием пациентов с ограничениями по движению, например, в реанимации и при необходимости послать сообщение на пост.

Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т.

Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу.

Кроме того, согласно исследованиям, рынок ИИ в медицине будет стремительно расти в ближайшие несколько лет: Источник: McKinsey and Company За искусственным интеллектом будущее, и оно наступает уже сегодня. Мы в Azoft стремимся использовать все возможности новейших технологий. Наш отдел RnD разрабатывает и использует искусственный интеллект, машинное обучение и нейронные сети для решения задач в области медицины и не только. Напишите нам на medtech azoft.

Технология блокчейн — это новый подход в хранении и управлении данными пациентов. Позволяет сегментировать и защитить информацию, быстро обмениваться всеми необходимыми медицинскими данными. В фармацевтике и медицине блокчейн применяют в следующих направлениях: управление цепочками поставок лекарственных препаратов; борьба с контрафактной продукцией; заполнение электронных медкарт и управление ими; анализ результатов обследования; улучшение процессов страхования и выставление счетов; удаленный мониторинг состояния пациентов; проведение исследований разного характера. Приложение от Google Deepmind Health быстро анализирует все симптомы и результаты диагностики, предлагает несколько диагнозов, соответствующих полученным результатам. ИИ помогает диагностировать даже редкие, плохо изученные патологии.

Сервис MedClueRx может не только проанализировать клинические проявления и диагностировать заболевание. Он также ориентирован на подбор эффективных лекарственных препаратов с учетом индивидуальных особенностей пациента. ИИ для автоматизации процессов в медицине Практически во всех странах наблюдается дисбаланс и нехватка квалифицированного медицинского персонала среднего и высшего звена. По статистике ВОЗ, чтобы каждый человек, даже в странах с низким уровнем доходов, к 2030 году имел доступ к услугам здравоохранения, потребуется 18 млн. Перспективы улучшить ситуацию с доступностью медицинского обслуживания ничтожны: население растет, общество стареет.

Проблема усугубляется еще и тем, что многие патогены мутируют, меняется клиническая картина заболеваний. Все эти факторы увеличивают спрос на квалифицированных врачей и медицинский медперсонал, пациентам становится все сложнее быстро получить необходимую медицинскую помощь. ИИ и другие инновационные технологии помогают освободить врачей от многих повседневных рутинных задач. Внедрение технологий ИИ позволяет быстро и правильно вносить данные в медкарту, проводить детальный анализ проведенных исследований, формировать историю болезни, отслеживать и корректировать ход лечения. Это позволит специалисту больше времени уделять каждому пациенту, заниматься решением серьезных диагностических вопросов, сконцентрироваться на поиске причин патологии и эффективной схемы лечения.

Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Удаленные консультации Консультации врачей онлайн — это возможность получить качественную медицинскую помощь большему количеству людей. Удаленные консультации особенно актуальны для жителей малонаселенных пунктов или во время эпидемий и пандемий. Онлайн-консультации — это возможность значительно снизить расходы и здравоохранение, быстро получить еще одно мнение при спорном диагнозе. ИИ делает телемедицину более простой и удобной.

Его применяют для удаленной диагностики, сбора необходимых данных и показателей анализа информации о пациентах. Есть приложения, которые анализируют симптомы и переводят запись приема в текст.

Похожие новости:

Оцените статью
Добавить комментарий