"В катодах батарей для электромобилей, как правило, используются слоистые оксиды переходных металлов, в том числе богатые никелем. Известно, что многослойные катоды LMR подвержены явлению, известному как «утечка напряжения», которое влечет за собой быстрый износ катодов и потерю заряда в батарее. Это заставляет катод становиться положительно заряженным (по сравнению с анодом), что, в свою очередь, притягивает к катоду больше отрицательно заряженных электронов.
Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
Натрий-ионный аккумулятор работает по аналогии с литий-ионным: когда устройство заряжается и разряжается, ионы перемещаются между катодом и анодом. Катод будет иметь чистый отрицательный заряд в электролитических элементах, таких как одноразовая батарея, и положительный заряд. В электрохимии катод — электрод, на котором происходят реакции восстановления. Плотность энергии литий-ионных аккумуляторов может быть улучшена за счет сохранения заряда при высоких напряжениях за счет окисления оксидных ионов в материале катода. У аккумуляторов полярность на аноде и катоде изменяется от того, работает он как гальванический элемент (при разряде) или как электролизёр (при заряде). Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО.
Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
Ученые ЮФУ предложили метод получения катодного материала на основе фторида железа с использованием уникальных нанопористых веществ — метал-органических каркасных структур MIL-88. Сейчас исследования в области разработки новых, обладающих уникальными характеристиками, материалов для электрохимических систем становятся еще более актуальными в связи с лавинообразным началом замены бензиновых автомобильных двигателей на электрические, и повсеместным распространением электронных гаджетов. Александр Солдатов — научный руководитель направления ЮФУ, профессор МИИ ИМ ЮФУ Ученые Международного исследовательского института интеллектуальных материалов ЮФУ провели исследование, в ходе которого предложили новый, простой и масштабируемый метод производства конверсионного катодного материала на основе фторида железа. Благодаря конверсионной электрохимической реакции удается получить ту же величину емкости электрической энергии для значительно меньшей массы катодного материала. В отличие от ранее известных способов получения подобных материалов, разработанный в ЮФУ метод подразумевает, что один из компонентов для производства катода — металл-органический каркас MIL-88A фумарат железа — синтезируется в водной среде без каких-либо токсичных добавок, что говорит о минимальном вреде окружающей среде.
Такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. Также с применением новых катодов могут быть созданы калиевые двухионные аккумуляторы, не использующие дорогостоящий литий. Человечество производит и потребляет всё больше электричества, и вместе с этим растёт спрос на энергонакопители, потому что многие устройства часто работают в автономном режиме. Литий-ионные аккумуляторы могут давать большую мощность, обеспечивая при этом сравнительно высокие скорости разряда и заряда, а также хранят достаточно много энергии в расчете на единицу своей массы. Поэтому их применяют в качестве накопителей энергии не только в электронике и электротранспорте, но уже и в масштабах глобальных энергосетей.
Например, в Австралии построят сеть огромных энергонакопителей на основе литий-ионных аккумуляторов, чтобы запасать излишки энергии, произведенной солнечными и ветровыми электростанциями. Но если литий-ионных аккумуляторов будет становиться больше, то рано или поздно закончится сырье для их производства.
Подпишитесь , чтобы быть в курсе. Команда ученых из Университета Гонконга сосредоточилась на решении этой задачи.
Они разработали новый тип молекулы-акцептора Y6, которая в случае полимеризации проявляет свойства, необходимые для получения стабильных органических фотоэлементов. Статья об открытии была опубликована в журнале Nature Communications, пишет Science Daily. Что умеют программные роботы Исследуя сверхбыструю динамику заряда при помощи фемтосекундных лазерных импульсов, ученые обнаружили, что критическую роль в усилении выработки электроэнергии играет контроль уровня агрегации полимеризированных акцепторов Y6 Y6-PAs.
Вот почему вместо этого люди пытаются использовать твердотельный электролит. Однако трудно добиться хорошего контакта между электродами и твердыми электролитами. Любая шероховатость поверхности с обеих сторон приводит к высокому межфазному сопротивлению, что снижает производительность батареи. Была проведена некоторая работа по изучению конструкции твердого электролита , но конструкция катода остается открытым вопросом. Группа под руководством профессора Киёси Канамура из Токийского столичного университета занимается разработкой новых способов улучшения контакта между катодом и твердотельным электролитом в твердотельных литий-металлических батареях. Теперь им удалось создать квазитвердый катод из оксида лития-кобальта LiCoO 2 , который содержит ионную жидкость при комнатной температуре.
Ионные жидкости состоят из положительных и отрицательных ионов; они также могут транспортировать ионы.
3D-модель катода: о чём нам она говорит
- Новые материалы для катодов ускорят зарядку в 3-4 раза
- Архив материалов
- Заказать звонок
- КАТОД, сеть магазинов и СТО 2024 | ВКонтакте
- Катод — Википедия
Подпишитесь на ежемесячную рассылку новостей и событий российской науки!
- Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях • ПРОМИА
- катод - Ассоциация "Глобальная энергия"
- Новости | Проект Заряд
- Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
- Аккумуляторы будущего
Читайте также:
- Аккумуляторы будущего
- Подпишитесь на ежемесячную рассылку новостей и событий российской науки!
- Последние комментарии
- Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях • ПРОМИА
- Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов - Eham
- Подписка на дайджест
Долговечные литий-металлические аккумуляторы разработали в KIT
Трещины приводят к уменьшению притом серьёзному средней длины диффузии лития. Простыми словами площадь поверхности частицы катода с такими растрескиваниями будет больше, чем у правильной сферической частицы с той же объёмной долей. Почему эти формы и трещины так важны? Со временем любая батарея деградирует, как известно, и выходит из строя — эдакий расходник. И как раз трещины на частицах катода связаны с таким старением. Трещины и хаотичные формы мешают переносу лития внутри частиц, как проектировали инженеры узнайте , что происходит внутри и как устроен аккумулятор смартфона. То есть в любом совершенно новом литий-ионном аккумуляторе с кобальтовым катодом оказываются проблемные частицы. Они препятствуют эффективному переносу лития, плохо воздействуют на напряжения внутри частиц и тем самым ускоряют процесс деградации.
Когда литий-ионные батареи заряжаются, происходит тот же процесс, но в обратном направлении, восстанавливая батарею для разряда. В твердотельных Ssbt-батареях используется твердый электролит, а не жидкий. Этот твердый электролит имеет тенденцию действовать как разделитель аккумулятора. В остальном, процесс очень похож на процесс с литий-ионными батареями, но варьируется в зависимости от типа рассматриваемого твердотельного аккумулятора например, натрий-ионный и т. Преимущества твердотельных батарей перед традиционными Одно из главных преимуществ — безопасность.
Жидким электролитам присущи некоторые проблемы. При более высоком напряжении внутри электролитов образуются нити металлического лития, что со временем увеличивает риск короткого замыкания батареи. Поэтому, электролиты в современных литий-ионных батареях легко воспламеняются. Именно здесь твердотельные батареи обеспечивают гораздо больший уровень безопасности, чем литий-ионные батареи. Например, использование альтернативных керамических электролитов имеет гораздо меньшую вероятность возгорания.
Керамические материалы также помогают предотвратить образование литиевых нитей, которые теоретически могут позволить таким батареям работать при гораздо более высоких напряжениях. Однако керамика достаточно хрупкий материал и может оказаться проблематичным при эксплуатации и производстве. Существуют решения, позволяющие упредить эту проблему, к примеру, пропитка керамики наночастицами графена. Это не только увеличивает долговечность керамических электролитов, но помогает усиливать их ионную проводимость. Помните, что электролиты проводят ионы, а не электричество?
Эксперименты в этой области, проводимые группами, к примеру, из университета Брауна, показали, что этот раствор может удвоить или утроить прочность керамического электролита, сохраняя его полезность в качестве потенциального электролита и сепаратора твердотельной Ssbt-батареи. Другие варианты включают использование органических катодов в сочетании с твердотельными ионно-натриевыми батареями. Это интересно, поскольку существующие натриево-ионные батареи, хоть и являются твердотельными, не обладают плотностью энергии литий-ионных батарей. Другая проблема, связанная с твердотельными батареями solid-state battery такого типа, заключается в том, что слой неактивных кристаллов натрия имеет тенденцию нарастать на катоде, блокируя движение ионов натрия и эффективно разрушая батарею. Так, используя катод из пирен-4, 5, 9, 10-тетраона PTO , исследовательская группа из Хьюстонского университета обнаружила, что этот вид катода имеет много преимуществ, по сравнению с неорганическими, более традиционными катодами.
Например, использование PTO позволяет фактически поменять местами резистивную поверхность раздела между катодом и электролитом. Это имеет большое значение для стабильности и увеличения срока службы таких батарей, а также для повышения плотности энергии. Обеспечивая тесный контакт между жестким катодом и твердым электролитом, независимо от изменения диаметра катода во время цикла батареи, это может изменить правила игры для solid-state battery. Но сбрасывать со счетов натриево-ионные твердотельные батареи пока не стоит. Поскольку другие исследовательские группы работают над поиском решения проблем, присущих именно этой технологии.
Группа из университета штата Вашингтон WSU и Тихоокеанской северо-западной национальной лаборатории PNNL нашла способ предотвращения накопления неактивного натрия на катодах. Они обнаружили, что создание катода из оксида металла, пропитанного дополнительными ионами натрия, позволило беспрепятственно производить электричество. Это также может оказаться революционным шагом, потому что позволит производить натрий-ионные батареи наравне с литий-ионными альтернативами. Это значит, что даже если solid-state battery technology, как упоминалось ранее, считается лучшей альтернативой литий-ионным батареям, могут появиться компромиссные технологии — твердотельные литиевые батареи. Исследовательская группа из Мичиганского университета работает именно над этим проектом.
Им удалось интегрировать твердые керамические электролиты в литий-ионные батареи и продемонстрировать заметное улучшение долговечности и срока службы, по сравнению с более традиционными литий-ионными батареями. Такой подход также позволил увеличить скорость зарядки аккумуляторов. Есть исследователи, совершившие прорыв в производстве твердотельных литиевых батарей для 3D-печати. В случае масштабирования проекта до производства, это нововведение позволит удешевить производство литий-ионных аккумуляторов, которые имеют ряд преимуществ перед другими аккумуляторами SSD например, безопасность, повышенная плотность энергии и т.
Группа под руководством профессора Киёси Канамура из Токийского столичного университета занимается разработкой новых способов улучшения контакта между катодом и твердотельным электролитом в твердотельных литий-металлических батареях. Теперь им удалось создать квазитвердый катод из оксида лития-кобальта LiCoO 2 , который содержит ионную жидкость при комнатной температуре. Ионные жидкости состоят из положительных и отрицательных ионов; они также могут транспортировать ионы. При заполнении пустот межфазное сопротивление значительно уменьшилось. Метод команды имеет и другие преимущества. Ионные жидкости не только обладают ионной проводимостью, но и почти нелетучи и обычно негорючи. Они также оказывают минимальное влияние на суспензию, из которой формируется катод, практически не затрагивая производственный процесс.
Однако, с этим видом аккумуляторов есть серьезная проблема: в состав их катодов входит кобальт, более половины запасов которого находится в одной стране — Демократической республике Конго. В будущем цена на этот элемент и аккумуляторы может сильно вырасти, если не найти ему замену в катодах. Менделеева и Института проблем химической физики РАН разрабатывают новые, так называемые двухионные аккумуляторы. В электрохимических процессах внутри них задействованы и катионы, и анионы электролита, что повышает эффективность работы устройств. В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт. В более ранних работах авторы также пробовали использовать полимерные материалы в качестве катодов, однако тогда они экспериментировали только с линейными молекулами.
Создан уникальный катод для металл-ионных аккумуляторов
Германскими учёными из Технологического института Карлсруэ (KIT) достигнуто повышение стабильности катодов литий-металлических аккумуляторов. Что такое Анод и Катод? Новости электроники, справочник радиолюбителя, электронные компоненты, радиодетали.
Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
Петербургская группа "Катод" рассчитывает стать крупнейшим производителем аккумуляторов в России. Они показали, что такие катоды могут выдерживать до 25,000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных. В процессе заряда ионы Li⁺ экстрагируются из материала катода, переносятся через электролит к аноду и внедряются в его структуру. Ученые из Университета префектуры Осака разработали катод из сульфида лития с твердым электролитом, который отличается устойчивостью к окислению.
Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
Описание разработки было опубликовано в журнале Advanced Science 19 мая 2023 года. В связи с ростом использования электромобилей и систем хранения энергии в масштабах энергосистемы, необходимость изучения альтернатив литий-ионным батареям как никогда высока. Одной из таких замен являются металл-кальциевые батареи. Кальций, как пятый по распространённости элемент в земной коре, широко доступен и недорог, а также у него более высокий потенциал плотности энергии, чем у лития.
Литий-ионные аккумуляторы могут давать большую мощность, обеспечивая при этом сравнительно высокие скорости разряда и заряда, а также хранят достаточно много энергии в расчете на единицу своей массы. Поэтому их применяют в качестве накопителей энергии не только в электронике и электротранспорте, но уже и в масштабах глобальных энергосетей. Например, в Австралии построят сеть огромных энергонакопителей на основе литий-ионных аккумуляторов, чтобы запасать излишки энергии, произведенной солнечными и ветровыми электростанциями. Но если литий-ионных аккумуляторов будет становиться больше, то рано или поздно закончится сырье для их производства.
Похожая ситуация и с литием - на его добычу уходит так много воды, что это может стать серьезной экологической проблемой. Поэтому исследователи ищут новые энергонакопители, которые с одной стороны работают по принципу литий-ионных аккумуляторов и сохраняют их преимущества, а с другой используют более доступное сырье. Менделеева и ИПХФ РАН была использована перспективная постлитиевая технология двухионных аккумуляторов,в электрохимических процессах которых задействованы как анионы, так и катионы электролита, что в разы повышает скорости заряда батарей по сравнению с литий-ионными.
Увеличение диапазона электромобилей требует материалов для изготовления аккумуляторов, которые смогут хранить больший заряд при более высоких напряжениях, то есть необходимо достичь высокой «плотности энергии». Существует ограниченное количество способов увеличения плотности энергии литий-ионных катодных материалов. Большинство современных катодных материалов представляют собой слоистые оксиды переходных металлов, включающие, например, кобальт, никель и марганец.
Учёные использовали сканирующий электронный микроскоп. Методом сфокусированного ионного пучка они обследовали положительный электрод просто купленного в магазине аккумулятора. И пришли к весьма интересным выводам. Частицы оказались совершенно неправильной формы и это проблема. Учёные также просят нас обратить внимание, какое значительное внутреннее растрескивание. Трещина на 3D-модели кобальтового катода под увеличением. Трещины приводят к уменьшению притом серьёзному средней длины диффузии лития. Простыми словами площадь поверхности частицы катода с такими растрескиваниями будет больше, чем у правильной сферической частицы с той же объёмной долей.
EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей
Компания намерена во время модернизации и капитального ремонта имеющегося подвижного состава внедрить энергосберегающие технологии в системы освещения вагонов — как светодиоды, так и интеллектуальные системы управления. Планируемые инвестиционные вложения в повышение энергоэффективности составляют в ближайшие три года чуть менее 3 млрд руб.
Теперь им удалось создать квазитвердый катод из оксида лития-кобальта LiCoO 2 , который содержит ионную жидкость при комнатной температуре. Ионные жидкости состоят из положительных и отрицательных ионов; они также могут транспортировать ионы. При заполнении пустот межфазное сопротивление значительно уменьшилось. Метод команды имеет и другие преимущества. Ионные жидкости не только обладают ионной проводимостью, но и почти нелетучи и обычно негорючи. Они также оказывают минимальное влияние на суспензию, из которой формируется катод, практически не затрагивая производственный процесс. Остаются проблемы, такие как поиск лучшей ионной жидкости, которая не разлагается так легко.
Знаки «А» и «К» при сварке постоянным током Как определить анод и катод Что это такое катод и анод, выясняют в частных моментах: при определении выводов у полупроводниковых элементов или при идентификации электродов в электрохимических процессах.
Полупроводниковый диод требует позиционного размещения в электросхемах. Для правильного соединения необходимо отождествить выводы. Это можно сделать по следующим признакам: маркировка, нанесённая на корпус элемента; длина выводов детали; показания тестера при измерениях в режиме омметра или проверки диодов; использование источника тока с известной полярностью. Маркировка полупроводников такого типа может быть выполнена при помощи нанесения на корпус графического обозначения диода. Тогда минус К — это вывод со стороны вертикальной линии, в которую упирается контур стрелки. Ножка диода, от которой выходит стрелка, — это плюс А. Так графически указано прямое направление тока — от «А» к «К». Другим способом обозначения анода у диодного элемента могут быть нанесённые на корпус одна или две цветные точки или пара узких колец. Существуют конструктивно выполненные диоды, у которых минусовой катодный вывод обозначен широким серебряным кольцом.
Диод 2А546А-5 ДМ служит таким примером. Примеры нанесения меток на диоды Длина ножек светодиодов, ни разу не паянных в платы, также может указывать на полярность выводов. У led-диодов длинная ножка — это положительный электрод, короткая — отрицательный вывод. К тому же форма корпуса обрез края окружности может служить ориентиром. Полярность выводов led-диодов При определении мультиметром полярности контактных выводов полупроводника подключают его в режиме тестирования диодов.
Выяснилось, что на межзёренных границах отрицательного электрода на катоде в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. При прохождении через такие скопления ионов лития что происходит в момент зарядки и разрядки аккумуляторов они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались. Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания. Своими выводами учёные поделились в статье в журнале Nature Communications, которая свободна доступна по этой ссылке.
Создан уникальный катод для металл-ионных аккумуляторов
Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта. Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. Новости металлургической отрасли. Магнитогорский завод прокатных валков запустил комплекс по приготовлению формовочных смесей.