1. Пороховой взрывчатый состав, включающий жидкий нефтепродукт, бездымный порох, воду и неорганический окислитель, отличающийся тем, что в качестве бездымного пороха он содержит пироксилиновый порох с флегматизирующими, или пламегасящими. Графит добавляют в состав бездымного пороха для того, чтобы гранулы пороха не слипались между собой и предотвратить самовозгорание пороха от разрядов статического электричества. Классификация порохов Пороха Дымные Бездымные (гетерогенные системы, (пластифицированные системы горючее + окислитель) на основе нитроцеллюлозы). А знаете ли вы, что из целлюлозы изготавливают бездымный порох? Таким образом, бездымные пороха примерно в три раза сильнее дымных.
Вступай в наши группы и добавляй нас в друзья :)
- Recommended Posts
- Черный и бездымный порох: различия и применение - новости компании Adriata
- Популярное
- В России началось производство пороха из альтернативных видов сырья
- Из Википедии — свободной энциклопедии
- Поделись позитивом в своих соцсетях
Производство бездымного пороха в России было налажено благодаря Д.Г. Бурылину
Также дополнительной составляющей бездымного пороха могут быть стабилизаторы и баллистические модификаторы. Двухосновные порохи обычно используются в изготовлении патронов для ружей и пулеметов , в то время как трёхосновные более широко применяются в артиллерии. Бездымный порох горит только по поверхности гранул, хлопьев или цилиндров — для краткости, гранул. Самые большие гранулы в пушечном порохе. Они представляют собой цилиндр, достигающий размера пальца руки, в котором проделаны семь отверстий одно по оси симметрии, а остальные шесть — расположены по кругу центрального поперечного сечения. Эти отверстия стабилизируют процесс горения благодаря тому, что пока внешняя поверхность, сгорая, уменьшает внешнюю площадь горения, сгорает и внутренняя поверхность, увеличивая внутреннюю площадь горения. Быстрогорящие пистолетные пороха делаются таким образом, чтобы поверхность их гранул была максимальной, как у хлопьев или плоских дисков. Сушат порох в основном в вакууме. При сушке растворители конденсируются и могут быть снова использованы в процессе изготовления.
Гранулы также покрываются графитом, с целью избежать их возгорания от искр статического электричества. Бездымный порох позволил произвести на свет современное полуавтоматическое и автоматическое оружие. Чёрный порох оставлял тонкий и вязкий налёт на стволах орудий, который был гигроскопичным и коррозивным, в то время как бездымный порох лишён этого отрицательного свойства, что позволило осуществлять автоматическую перезарядку оружия с использованием множества подвижных частей. Одно- и двухосновные бездымные пороха в наше время составляют основную часть взрывчатых веществ, использующихся в стрелковом оружии.
Рыхлая пористая нитроцеллюлоза была неоднородна и горела с далеко не постоянной скоростью, а при прессовании часто возгоралась. Лишь в 1884 г. Вьель сумел создать монолитное рогоподобное вещество на основе пироксилина. Это был первый бездымный порох.
Вьель использовал для получения пороха способность пироксилина набухать в смеси эфира и спирта. При этом получалась студкеподобная масса, которую можно было прессовать и делать из нее ленты или пластины, которые затем сушили. Большая часть растворителя улетучивалась, а меньшая — оставалась в пироксилине, продолжая играть роль пластификатора. В отличие от непластифицированного пироксилина пироксилиновый порох сгорает строго по слоям с постоянной скоростью. Строго закономерное горение — обязательное свойство любого из порохов. Пироксилиновый порох до сих пор применяют для стрелкового оружия. Вскоре появился и другой бездымный порох — нитроглицериновый, он же баллистит. Пластификатором здесь служит жидкое взрывчатое вещество тринитроглицерин о нем — самостоятельный очерк.
Такой порох обладает большой силой, его до сих пор применяют в артиллерии и ракетных войсках. Третьим типом бездымного пороха стал изобретенный в 1889 г. В начале девяностых годов своя рецептура бездымного пороха была разработана и в России. Это пироколлодийный порох Менделеева. Пороходелию, как области химических знаний, Менделеев уделил много сил и внимания в 1890—1894 годах. Он ездил во Францию и Англию, знакомился с постановкой порохового дела; он встречался с Вьелем, Абелем, Дьюаром, Арну, Сарро и другими ведущими учеными-пороховиками того времени. Он нашел способ получения растворимой нитроклетчатки — пироколлодия, причем в своих изысканиях он исходил из очень определенной и химически строго обоснованной идеи: искомое вещество при горении должно выделять максимум газообразных продуктов на единицу массы. Это значит, что кислорода в его составе должно быть достаточно для превращения всего углерода в газообразную окись, а водорода — в воду.
Уже в 1892 г. Стрельбы прошли успешно. Через год впервые в России бездымным порохом стреляли из 12-дюймового орудия, и инспектор морской артиллерии адмирал С. Макаров поздравлял Менделеева с блестящим успехом.
Для этого он объединил усилия с французским инженером-предпринимателем Эженом Дюкрете, который начал производство радиодетектора Попова во Франции. В 1898 г. Впервые Эйфелева башня была использована в качестве радиоантенны — эту функцию она продолжает выполнять и по сей день. Как уже говорилось в предыдущей главе, во второй половине XIX в. Это касалось прежде всего физических и биологических наук. После поражения России в Крымской войне 1853—1856 гг. Это требовало создания новых научных лабораторий как при гражданских университетах, так и при военных учебных заведениях, а также переориентации науки на удовлетворение военных и промышленных нужд. Александр II был убежден, что выживание Российской империи в конечном счете будет зависеть от того, сумеет ли она воспользоваться новейшими достижениями науки и техники. Для торжеств по случаю своей коронации, состоявшейся в Москве в сентябре 1856 г. Один комплект гирлянд, согласно официальному отчету, был оформлен в виде «колоссальной короны… с огненными сапфирами, изумрудами и рубинами». Таково было новое индустриальное восприятие царской власти. Для Александра II будущее было за электричеством. Исследовательская лаборатория Минного офицерского класса в Кронштадте была лишь одним из великого множества новых научных учреждений, созданных в России во второй половине XIX в. В 1866 г. Это общество занималось организацией отраслевых съездов в разных областях, включая железнодорожное дело, фотографию, электрическую телеграфию и многие другие. Кроме того, РТО издавало целый ряд научных журналов, в том числе журнал «Электричество», а также проводило крупные промышленные выставки на одной из таких выставок Александр Попов и подрабатывал в бытность студентом. Университеты тоже стали уделять больше внимания физическим наукам, хотя, как правило, в этом они отставали от промышленных и военных училищ. В 1847 г. Вдохновленный британским примером, по возвращении в Россию Столетов занялся расширением и модернизацией физической лаборатории Московского университета. К концу 1880-х гг. Именно здесь Петр Лебедев проводил свои эксперименты с «давлением света», о которых шла речь в начале главы. Александр II придавал большое значение не только исследованиям в области электромагнетизма, но и развитию современной химии. В конце концов, практическая польза химии была предельно очевидна. Во второй половине XIX в. Поскольку в те времена общепризнанным лидером в промышленной химии была Германия, российское правительство отправляло сотни молодых ученых в немецкие университеты. Среди них был и Дмитрий Менделеев — пожалуй, самый знаменитый русский химик той эпохи. С 1859 по 1861 г. Сегодня Менделеева помнят в основном как создателя периодической таблицы, в которой все химические элементы были упорядочены по атомному весу и распределены по 18 группам. В таблице оставались пустые места: Менделеев смог предсказать существование пока неизвестных химических элементов, а также их свойства. Но при этом часто забывается, что Менделеев не был чистым теоретиком. Он был практиком, убежденным в важности химии для промышленного и военного развития Российской империи. Химия есть «орудие, служащее практическим целям, — утверждал Менделеев в своем известнейшем учебнике «Основы химии» 1868—1870. Таким образом, чтобы понять вклад Менделеева в развитие современной химии, нам нужно выйти за рамки его знаменитой таблицы и вернуться в мир промышленности и войн, в котором существовала наука XIX в. Дмитрий Менделеев поднял руку, отдавая флотским артиллеристам приказ зарядить пушку. Когда он опустил руку и крикнул «Огонь!
Поэтому суд приостановил производство по делу и обратился в КС РФ с просьбой проверить конституционность положений пункта 2 примечаний к статье 222. СоцсетиДобавить в блогПереслать эту новостьДобавить в закладки RSS каналы Добавить в блог Чтобы разместить ссылку на этот материал, скопируйте данный код в свой блог. Код для публикации: Конституционный суд РФ принял к рассмотрению запрос федерального суда, который усмотрел неопределенность в нормах, позволяющих привлекать граждан к уголовной ответственности за хранение и продажу пороха, предназначенного для самостоятельного снаряжения патронов, как за те же действия со взрывчатым веществом.
Стрелковое оружие, боеприпасы, приспособления и аксессуары XIX-XXI вв
- Подписка на дайджест
- О порохах, всего понемногу |
- Популярное
- Пермские ученые разработали бездымный порох для космических кораблей - Российская газета
- Ученые придумали, как из древесины сделать бездымный порох. Его применят в ракетах
- О порохах, всего понемногу |
Черный и бездымный порохи
Тегикак был сделан порох, почему порох не выгодно использовать как топливо, история порох роли, кто изобрел бездымный порох в россии, во первых не было пороха анекдот. При использовании обычного пороха значительная часть топлива расходуется впустую (сгорает и превращается в дым), тогда как в случае с бездымным порохом почти все топливо преобразуется во взрывную силу. Организацией производства бездымного пороха решило заняться Русское о-во для выделки и продажи пороха. К явным недостаткам дымного пороха при использовании в военном деле относится его весьма малая мощность в сравнении с бездымным порохом.
Ученые придумали, как из древесины сделать бездымный порох. Его применят в ракетах
Как лён и конопля должны помочь России победить в войне с украинским нацизмом | бездымный порох Порох «Сокол» рекомендуют для использования начинающим охотникам, предпочитающим производить самостоятельную зарядку патронов. |
Нитроклетчатка и бездымный порох - Справочник химика 21 | К концу XIX века переход к бездымным порохам на основе пироксилина стал одной из важнейших задач военного строительства. |
Изготовление Бездымных Порохов и их Судебный Анализ: Краткий Обзор | Предприятия «Ростеха» начали производить порох для боеприпасов из древесной и льняной целлюлозы. |
Дымный и бездымный порох: разница, марки | Материал подходит для изготовления множества продуктов: лаков, эмалей, красок, пластмассы, а также бездымного пороха. |
Как лён и конопля должны помочь России победить в войне с украинским нацизмом | А знаете ли вы, что из целлюлозы изготавливают бездымный порох? |
Бездымный порох в пистолетах
А в 1884 году был изобретен первый бездымный порох – пироксилиновый. С появлением бездымных порохов появилась возможность значительно уменьшить калибр военных винтовок и получить в то же время оружие с лучшими баллистическими свойствами, чем это было при дымных порохах. Графит добавляют в состав бездымного пороха для того, чтобы гранулы пороха не слипались между собой и предотвратить самовозгорание пороха от разрядов статического электричества. Типы бездымного пороха включают кордит, баллистит и, традиционно, белый порох (англ.
Черный и бездымный порохи
Кроме того, бездымные пороха создают гораздо большее давление, чем дымный, металлургия для производства стволов, выдерживающих порядка ста тысяч атмосфер, дошла до кондиции лишь не так давно. Как выяснили ученые, порох из льна обладает более высокими термодинамическими свойствами, чем хлопок. Из нее изготавливают бездымный порох, пластмассы, лаки, краски и эмали. Сегодня из нее изготовляют множество продуктов: бездымный порох, который применяют во вспомогательных системах космических ракет и системах катапультирования кресел самолетов для спасения летчиков, а также пластмассы, лаки, краски и эмали. Чрезвычайно веская причина использования бездымных порохов в оружии под чёрный порох заключается в существенном — до 5-10 раз — сокращении времени чистки оружия. взрывчатое вещество, которое по своим свойствам сравнительно медленного горения при взрыве.
Пермские ученые разработали бездымный порох для космических кораблей
КС отказался декриминализировать продажу охотничьего пороха - Ведомости | класс движущих сил, которые были созданы в конце 19-ого столетия, чтобы заменить дымный порох. |
Ученые придумали, как из древесины сделать бездымный порох. Его применят в ракетах | Различные разновидности бездымного пороха являются основной частью метательных взрывчатых веществ, которые применяются в стрелковом имеют столь широкое распространение, что, как правило, слово «порох» подразумевает собой именно бездымный. |
Порох: виды и отличия (+ как выбрать, обзор ТОП-6 марок) | БЕЗДЫМНЫЙ РАКЕТНЫЙ ПОРОХ — коллоидное твёрдое ракетное топливо, основным компонентом которого являются пластифицированные тем или иным органическим растворителем нитраты целлюлозы. |
Черный и бездымный порохи | Андрей Смирнов | Из нее, например, изготавливают пластмассу, лак, краску, эмаль и бездымный порох. |
Новое изобретение: бездымный порох и его возможности | взрывчатое вещество, которое по своим свойствам сравнительно медленного горения при взрыве. |
В России создали порох из льна
Нитроцеллюлоза со временем разлагается, особенно это проявляется при хранении большого количества пороха или хранения пороха при температуре больше 25 градусов, при разложении образуется теплота, которая может привести к самовозгоранию пороха. Особенно разложению подвержены одноосновные нитроцеллюлозные пороха. Для предотвращения этого явление, в порох добавляют стабилизаторы, основным из которых является дифениламин. Пламягасящие вещества добавляют для того, чтобы уменьшить вспышку от выстрела, которая демаскирует стрелка и ослепляет его при выстреле. Катализаторы добавляют для усиления скорости горения пороха. Графит добавляют в состав бездымного пороха для того, чтобы гранулы пороха не слипались между собой и предотвратить самовозгорание пороха от разрядов статического электричества.
Одно- и двухосновные бездымные пороха в наше время составляют основную часть порохов, используемых для охоты. Они настолько распространены, что когда говорят «порох» имеют в виду именно бездымный порох. Свойства бездымного пороха сильно зависят от размера и формы его гранул. Поверхность гранул влияет на изменение их формы и скорость сгорания пороха. Изменяя форму гранул можно изменить давление и скорость сгорания пороха.
Быстрогорящие пороха дают большее давление, соответственно дают большую скорость пули или дроби , но при этом дают более высокую температуру, которая увеличивает износ ствола ружья.
Это вещество было названо «пушечным хлопком»2, оно горело без доступа кислорода из окружающей среды с образованием высоконагретых газов, при ударе взрывалось. Однако в чистом виде «пушечный хлопок» не нашёл практического применения, так как имел волокнистую рыхлую структуру и не мог быть уплотнён до достаточной степени, обеспечивавшей необходимую массу метательного заряда и закономерное горение3. Лишь в 1884 году французский инженер-химик Поль Мари Эжен Вьель смог добиться необходимой плотности пироксилина, обеспечивавшей получение твёрдых, механически прочных и плотных пороховых элементов, горевших закономерно параллельными слоями по поверхности. Он перевёл пироксилин в пластичное состояние путём его пластификации спиртоэфирным растворителем4, уплотнил пороховую массу и нарезал пороховые пластинки, которые затем высушил. Порох Вьеля был использован в винтовке Николя Лебеля, которая показала значительные преимущества при стрельбе бездымным порохом. По сравнению со стрельбой дымным порохом значительно увеличилась дальность стрельбы, не образовывалось дымовое облако.
Работа по совершенствованию бездымных порохов продолжалась и в других странах. В 1888 году шведский промышленник и изобретатель Альфред Нобель разработал баллиститный5 порох на основе коллоксилина и нитроглицерина. Нобель предложил баллиститный порох английскому правительству и предоставил образцы и техническую документацию. Правительство поручило английскому химику Фредерику Августу Абелю исследовать баллиститный порох. Опираясь на исследования Нобеля и Вьеля, английские учёные Ф. Абель и Джеймс Дьюар предложили новый тип и новую технологию изготовления бездымного пороха. В отличие от Нобеля, который использовал коллоксилин с 11,2 проц.
Но нитроглицерин не пластифицировал пироксилин, поэтому для пластификации смеси пироксилина и нитроглицерина был использован ацетон. Под воздействием ацетона образовывалась пластичная тестообразная пороховая масса, из которой методом проходного прессования через отверстия получали пороховые шнуры. Полученные мягкие пороховые шнуры наматывались на вращавшиеся барабаны, затем провяливались в естественных условиях для удаления части ацетона и приобретения ими механической прочности. После провяливания и затвердевания шнуры разрезали на пороховые элементы необходимой длины, а затем сушили до полного удаления растворителя — ацетона. Полученный порох был назван кордитом от слова «корд» — струна, шнур. Абель и Дьюар запатентовали кордитный порох через год после начала работы над ним. Английская компания Нобеля подала в суд на Абеля и Дьюара, обвиняя их в том, что они использовали идеи Альфреда Нобеля о применении в составе пороха нитроглицерина.
Через три года судебного процесса было принято решение не в пользу компании. После окончания заседания судья сказал: «... Таким образом, в 1888 году европейские государства вышли на передовые рубежи по созданию и производству бездымных порохов: пироксилинового, баллиститного и кордитного. Эти пороха в усовершенствованном виде применяются и в настоящее время по всему миру. Российское правительство было озабочено техническим скачком в развитии вооружения европейских государств и стало предпринимать усилия для производства бездымного пороха на заводах России с целью ликвидации отставания. Однако составы и технология изготовления этих порохов в Англии и Франции были засекречены. В России производство пороха под руководством французских специалистов потерпело неудачу.
Для доступа к иностранным технологиям нужен был человек с большим авторитетом среди зарубежных учёных и членов правительств, способный решить научные, организационные и производственные задачи по созданию российского порохового производства. Поэтому правительство обратилось за помощью к величайшему учёному-химику с мировым именем Дмитрию Ивановичу Менделееву — автору периодического закона химических элементов и Периодической таблицы химических элементов. Авторитет Д. Менделеева и уважение мирового научного сообщества были подкреплены его высокими научными и почётными званиями7. Ему присвоили чин тайного советника, который соответствовал армейскому чину генерал-лейтенанта8. Он имел государственные награды Российской империи: ордена Св. Владимира 1-й и 2-й степеней, Св.
Александра Невского, Белого орла, Св. Анны 1-й и 2-й степеней, Св. Станислава 1-й и 2-й степеней. Был награждён государственными и научными наградами других стран: французским орденом Почётного легиона и медалью Академии метеорологической аэростатики Франция , медалью X. Дэви и Г. Копли Лондонского королевского общества, медалью Английского химического общества. Менделеев имел учёные степени доктора Туринской академии наук; Кембриджского университета; доктора права Эдинбургского, Принстонского университетов и университета Глазго; доктора гражданского права Оксфордского университета; доктора философии и магистра свободных искусств Геттингенского университета.
Кроме этого, Д. На одной из фотографий представлен рабочий кабинет Д. Как мы видим, скромный и небольшой, даже тесный кабинет: книжные полки с большим количеством томов, рабочий стол, потёртое кресло и три стула. Свободного пространства практически не остаётся, мебель расставлена аккуратно, ничего лишнего. По стилю кабинета видно, что его хозяин скорее всего писатель или научный работник. В некоторых современных и более ранних публикациях относительно Д. Менделеева приводятся различные мифы.
Миф первый: Д. Менделеев изобрёл русскую водку.
Российская промышленность "Ростех делает прорыв: новый порох из древесной целлюлозы уже в производстве! Новый продукт, по словам индустриального директора кластера вооружений, боеприпасов и спецхимии госкорпорации Бекхана Оздоева, ничем не уступает традиционному из хлопкового сырья. В прошлом году предприятия Ростеха начали промышленное изготовление пороха из альтернативных видов сырья.
Ученые отмечают, что технология позволяет не только повысить экологичность продукта, но и сэкономить ресурсы, сократив расход древесины. Нашли опечатку? Основан в 1960 году как Пермский политехнический институт ППИ , в результате объединения Пермского горного института организованного в 1953 году с Вечерним машиностроительным институтом.
В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Порох для охоты: дымный (черный), бездымный, как выбрать
- В России началось производство пороха из альтернативных видов сырья
- «Ростех» начал производить порох из древесной целлюлозы - Оружейная тематика - Усадьба Урсы
- Бездымный ракетный порох
- Появление пороха
- 7.4. Бездымные пороха
Как лён и конопля должны помочь России победить в войне с украинским нацизмом
Снаряды использующие бездымный порох в качестве ВВ в России могли быть снаряжены лишь пироксилиновым gjhj[jv. и двухосновные бездымные пороха сегодня составляют большинство порохов, используемых на охоте. Поэтому зерна артиллерийского пороха делают довольно крупными — до двух сантиметров толщиной. и двухосновные бездымные пороха сегодня составляют большинство порохов, используемых на охоте. Группа ученых Пермского национального исследовательского политехнического университета (ПНИПУ) разработала технологию обработки целлюлозы, с помощью которой можно получить бездымный порох для. Для получения бездымного пороха смесь пироксилина и так называемого коллодионного хлопка, представляющего собой нитроклетчатку с меньшим, чем у пироксилина, содержанием азота замешивают со смесью спирта и эфира, пока не получится однородная густая масса.
Как изобрели бездымный порох?
Капсюля как самостоятельной единицы не существует, ударный состав запрессован прямо в дно гильзы. Пуля патрона полностью свинцовая, иногда бывают и другие виды пуль. Маломощный патрон кольцевого воспламенения может быть использован для охоты на мелкого зверя типа сурка, белок и так далее, а также для спортивной стрельбы. Винтовочная граната — специальная граната, выстрел которой проводится с помощью ручного огнестрельного оружия. Винтовочная граната, как правило, запускается под давлением пороховых газов непосредственно из ствола или при помощи особой насадки на ствол — дульного гранатомёта, или мортирки. Шпилечный патрон — разновидность унитарного патрона со специальной конструкцией воспламенения в виде вмонтированного в гильзу стерженька шпильки.
В российском ружейном обычае такой способ перезаряжания часто связывается с винтовками со скобой Генри. Кучность боя оружия , Кучность стрельбы — свойство оружия группировать точки падения разрывов снарядов ракет, пуль и другого на некоторой ограниченной площади. Короткоствольное оружие обладает стволом длины, допускающей ношение его в кармане и позволяющей ведение стрельбы с одной или двух рук в отличие от длинноствольного оружия — винтовок, карабинов, ружей и прочего оружия, стрельба из которого обычно ведется двумя руками с упором приклада в плечо. Кумулятивный эффект , эффект Манро англ. Munroe effect — усиление действия взрыва путём его концентрации в заданном направлении, достигаемое применением заряда с выемкой, противоположной местонахождению детонатора и обращённой в сторону поражаемого объекта.
Кумулятивная выемка обычно конической формы, покрывается металлической облицовкой, толщина которой может варьироваться от долей миллиметра до нескольких миллиметров. Служит мерой его общей работоспособности, разрушительного, метательного и иного действия взрыва. Основное влияние на фугасность оказывает объём газообразных продуктов взрыва... Ружейный патрон — это патрон, предназначенный для использования в ружьях либо ином гладкоствольном оружии. Осколочный снаряд — артиллерийский снаряд основного назначения для поражения живой силы и небронированной военной техники противника, решения ряда других задач.
По сравнению с универсальным осколочно-фугасным снарядом того же калибра обладает лучшим осколочным действием, но не может быть эффективно использован против фортификационных сооружений. Наряду с ударным взрывателем мгновенного действия осколочные снаряды оснащаются разнообразными взрывателями дистанционного типа в зависимости от их назначения... Бронебойная пуля — особый тип пули, предназначенный для поражения легкобронированных целей. Относится к так называемым специальным боеприпасам, созданным для расширения тактических возможностей стрелкового оружия. Промежуточный патрон — тип патрона для огнестрельного оружия, промежуточный по мощности между пистолетными и винтовочными патронами.
Бризантные снаряды — артиллерийские снаряды, способные при разрыве давать большое количество разлетающихся во все стороны осколков.
Это безопасный и экологичный способ. Читайте «Хайтек» в Исследователи из Пермского Политеха создали способ, с помощью которого можно безопасно и экологично сделать из древесного сырья нитроцеллюлозу. Из этого расходника сегодня создают, например, бездымный порох — его применяют во вспомогательных системах космических ракет и системах катапультирования кресел самолетов для спасения летчиков. Также из нитроцеллюлозы производят пластмассы, лаки, краски и эмали. Исследователи также заинтересовались бездымным порохом в контексте ракетного топлива, так как нитроцеллюлоза — главный компонент твердого топлива для космических ракет.
Ученые провели отбелку и облагораживание по авторским технологиям. По словам разработчиков, качество образцов соответствует принятым нормам в отношении целлюлозы для пороха, а экологические характеристики сточных вод после биологической очистки отвечают требованиям Европейского Союза. Ученые отмечают, что технология позволяет не только повысить экологичность продукта, но и сэкономить ресурсы, сократив расход древесины. Статья за 2021 г.
Все потому, что у него морфология другая, он хорошо впитывает нитраты глицерина и за счет этого становится мощнее. Из-за этого во время испытаний нам приходилось убирать 5-8 процентов массы из заряда, чтобы приближаться к нужной скорости. А это открыло нам две возможности.
Первая — это снижение массы для достижения нужной скорости, это влечет за собой более экономные перевозки и хранение сырья. Вторая — при той же массе мы можем увеличить дальность стрельбы. По разбросу начальных скоростей пороха из льна и конопли также показали лучшие результаты. Как правило, разброс штатных порохов составляет 3-5 метров. А если мы готовим о порохе из льна, то разброс — всего 0,5 метра. Если говорить проще, то когда артиллерия стреляет снарядами с порохом из льна, удар выходит точнее. Ведь параметр разброса начальных скоростей тесно связан с кучностью стрельбы — свойством оружия группировать точки падения снарядов на некоторой ограниченной площади — эллипса рассеивания, - читает научную лекцию Владимир Никишов.
Выходит, что при использовании пороха из льна, чтобы попасть в цель, сделают 80 выстрелов вместо 100.