Найдите объём и площадь поверхности деталей, приведённых ниже в таблице. Условие задачи: Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Найдите площадь поверхности многогранника. Решение задачи
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые). Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). картинка 57. Найдите площадь поверхности многогранника, вершинами которого являются середины рёбер данного тетраэдра. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). картинка 57. 26. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Задание 8, тип 4: Площадь поверхности составного многогранника 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Задачи на комбинированные поверхности
Получаем: Слайд 26 Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов. Поверхности креста составлена из шести поверхностей кубов, у каждого из которых отсутствует одна грань. Тем самым, поверхность креста состоит из 30 единичных квадратов, поэтому ее площадь равна 30. Слайд 27.
Часть 6 Задача 37. Деталь имеет форму изображенного на рисунке многогранника все двугранные углы прямые. Числа на рисунке обозначают длины рёбер. Найдите площадь поверхности этой детали. Ответ дайте в квадратных сантиметрах. Задача 38. В бак цилиндрической формы, площадь основания которого 90 квадратных сантиметров, налита жидкость.
Изображение слайда Слайд 23: Упражнение 19 Площадь осевого сечения цилиндра равна 4 м 2. Изображение слайда Осевое сечение цилиндра - квадрат. Площадь основания равна 1. Найдите площадь поверхности цилиндра. Изображение слайда Слайд 25: Упражнение 21 Площадь большого круга шара равна 3 см 2. Найдите площадь поверхности шара. Ответ: 12 см 2.
Изображение слайда Слайд 26: Упражнение 22 Как изменится площадь поверхности шара, если увеличить радиус шара в: а 2 раза; б 3 раза; в n раз? Изображение слайда Площади поверхностей двух шаров относятся как 4 : 9. Найдите отношение их диаметров. Ответ: 2:3. Найдите радиус шара, площадь поверхности которого равна сумме площадей их поверхностей. Площади поверхностей данных шаров равны и. Их сумма равна.
Следовательно, радиус шара, площадь поверхности которого равна этой сумме, равен 10.
Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала. Фотографии предоставлены.
Смотрите также
- Практическое решение геометрических задач.11 класс.
- Как решить найдите площадь поверхности многогранника
- Найдите площадь полной поверхности многогранника, изображенного на рисунке
- Практическое решение геометрических задач.11 класс.
- Найдите площадь поверхности многогранника изображенного на рисунке?
- Площадь поверхности многогранника
Михаил Александров
- 3.3. Составные тела (Задачи ЕГЭ профиль) -
- Нахождение площади поверхности многогранника — «Шпаргалка ЕГЭ»
- Сборник для подготовки к ЕГЭ (базовый уровень).Прототип задания № 13 - математика, тесты
- ЕГЭ по математике Профиль. Задание 5 - ЕГЭ для VIP
Задание с кратким ответом: стереометрия - многогранник.
Урок 5 Задание 8 типы 1 -6 | Найдём площадь поверхности данного многогранника как площадь поверхности прямоугольного параллелепипеда с рёбрами 5, 4, 3 минус площади двух граней 1 х 1 прямоугольного параллелепипеда с рёбрами 5, 1, 1. Тогда площадь поверхности будет равна. |
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые) | Чтобы найти площадь поверхности многогранника, нужно сложить площади всех его граней. |
ЕГЭ профильный уровень. №3 Площадь поверхности и объем составного многогранника. Задача 3
Линейный угол расположен в плоскости, перпендикулярной ребру двугранного угла, и образован двумя полупрямыми - линиями пересечения этой плоскости с гранями. Обратите внимание, что в условии всех задач, которые мы будем решать ниже, встречается фраза "Все двугранные углы многогранника прямые". Опираясь на это и определение меры двугранного угла, легко доказать, что грани плоские многоугольники также имеют только прямые углы 90о или 270о. А это, в свою очередь, означает, что грани либо прямоугольники, либо фигуры, которые легко разбить на прямоугольники. У прямоугольника, как известно, противоположные стороны равны. Поэтому все размеры, данные на чертежах следующих задач, можно переносить с одного ребра на другое, если эти ребра параллельны и являются сторонами одного прямоугольника.
Вспомним также, что мы уже рассматривали похожий случай. Прямоугольный параллелепипед - это тело, все грани которого прямоугольники. Поэтому для решения следующих задач мы можем использовать свойства, теоремы и алгоритмы из 3-его раздела. Если вы еще не занимались задачами на прямоугольный параллелепипед, лучше сначала обратитесь к ним, а затем снова вернетесь к этой странице. Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне.
Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. Кроме того, в решениях задач часто встречаются рисунки, дождитесь их полной загрузки. Задача 1 Найдите квадрат расстояния между вершинами D и C2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Решение Отмечаем указанные точки на чертеже.
Ответ Задача 4. Ответ Задача 5. Ответ Задача 6. Ответ Задача 7. Ответ Задача 8. Ответ Задача 9. Ответ Задача 10. Ответ Задача 11.
Ответ Задача 12. Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые.
Решение: Площадь поверхности заданного многогранника равна сумме площадей большого и маленького параллелепипедов с ребрами 1, 4, 7 и 2, 1, 2, уменьшенной на 4 площади прямоугольника со сторонами 2, 2 — передней грани маленького параллелепипеда, излишне учтенной при расчете площадей поверхности параллелепипедов: Ответ: 78. Решение: Площадь поверхности заданного многогранника равна сумме площадей большого и маленького параллелепипедов с ребрами 6, 6, 2 и 4, 4, 3, уменьшенной на 2 площади квадрата со сторонами 4, 4 — общей для обоих параллелепипедов, излишне учтенной при расчете площадей поверхности параллелепипедов: Sпов.
Слайд 11 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1 и 3.
Ответ 28. Задача 2.
Найдите площадь поверхности этой детали. Ответ дайте в квадратных сантиметрах. Ответ 64.
Найти площадь полной поверхности егэ
2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Для того чтобы найти площадь поверхности любом объёмной фигуры (в данном случае, многогранника), необходимо сложить площади всех его сторон, из которых состоит эта фигура.
Редактирование задачи
Чтобы найти площадь поверхности многогранника, нужно сложить площади всех его граней. № 25601 Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов. Для того чтобы найти площадь поверхности любом объёмной фигуры (в данном случае, многогранника), необходимо сложить площади всех его сторон, из которых состоит эта фигура. Задача е площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Все двугранные углы многогранника прямые.
Решение задачи 5. Вариант 369
Правильный ответ: 60 13 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины. Правильный ответ: 5 14 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Правильный ответ: 3 15 Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности.
Правильный ответ: 24 16 Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда. Правильный ответ: 48 17 Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.
Правильный ответ: 8 18 Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани. Правильный ответ: 5 19 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.
Правильный ответ: 4 20 Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба. Правильный ответ: 6 21 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Правильный ответ: 32 22 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36.
Правильный ответ: 7 23 Одна из граней прямоугольного параллелепипеда — квадрат. Диагональ параллелепипеда равна 8 и образует с плоскостью этой грани угол 45o. Правильный ответ: 4 24 Диагональ прямоугольного параллелепипеда равна 8 и образует углы 30o , 30o и 45o с плоскостями граней параллелепипеда. Правильный ответ: 4 25 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Найдите площадь поверхности параллелепипеда. Правильный ответ: 64 26 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2.
Объем параллелепипеда равен 6. Найдите объем треугольной пирамиды AD1CB1. Найдите длину ребра AA1. Найдите длину диагонали DB1. Точка K — середина ребра BB1. Найдите площадь сечения, проходящего через точки A1, D1 и K.
Найдите площадь сечения, проходящего через точки A, A1 и С. Найдите синус угла между прямыми CD и A1C1. Правильный ответ: 0,6 41 Найдите расстояние между вершинами A и C2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
D19 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые.
D21 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. D23 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. D25 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. D27 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые.
Автопродление Автоматическое списание средств и открытие следующей мастер-группы каждый месяц. Нажимая кнопку "купить", Вы выражаете своё согласие с офертой оказания услуг и принимаете их условия Купить Купить Ты включаешь автопродление - 25-го числа каждого месяца доступ к купленным курсам будет автоматически продлеваться.
Далее внимательно вычисляйте сумму площадей всех полученных граней. Если будете предельно внимательны при построении и вычислении, то ошибка будет исключена. Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Используем оговоренный способ.
Он нагляден. На листе в клетку строим все элементы грани в масштабе. Если длины рёбер будут большими, то просто подпишите их. Ответ: 72 Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Посмотреть решение Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Посмотреть решение Ещё задачи 25881, 77155, 77156. В них приведены решения другим способом без построения , постарайтесь разобраться — что откуда взялось. Также решите уже представленным способом. Разбиваем многогранник на составляющие его параллелепипеды, записываем внимательно длины их рёбер и вычисляем.
ПЛОЩАДЬ ПОВЕРХНОСТИ МНОГОГРАННИКА — презентация
Нахождение площади поверхности многогранника — «Шпаргалка ЕГЭ» | Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы 12. которого прямые. |
Практическое решение геометрических задач.11 класс. | Задания для 11 класса от авторов «СтатГрада» и других экспертов для подготовки к ЕГЭ-2020 по всем предметам. Формат реальных вариантов ЕГЭ по профильной математике для 11 класса. В том числе — упражнения на тему «Стереометрия». |
Найдите площадь поверхности многогранника изображенного на рисунке? - Геометрия | Задача № 5 (3). Найдите площадь поверхности многогранника, изображённого на рисунке. |
Найдите площадь полной поверхности многогранника, изображенного на рисунке
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые). Найдите площадь поверхности многогранника изображенного на рисунке. №1. Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые). 4). Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы — прямые).