О жизни Архимеда известно немного.
Что изобрел Архимед, список и история его открытий, чем прославился ученый
Вычисления Архимеда много тысяч лет спустя повторили Ньютон и Лейбниц • Создал планетарий • Гераклид написал биографию Архимеда, но она утеряна. ЖИЗНЬ Архимед получил блестящее образование у своего отца, астронома и математика. Архимед (287—212 годы до н. э.) – один из величайших ученых в мире, блестящий представитель своей эпохи, опередивший время: математик, физик, астроном, инженер, изобретатель.
Биографии великих и известных людей
За оставшиеся 35 лет жизни Архимед сделал больше, чем все его современники, вместе взятые! Из-за давности лет жизнь Архимеда тесно переплелась с легендами. 10 августа - 43706264383 - Медиаплатформа МирТесен. Сведения о жизни Архимеда оставили нам Тит Ливий, Цицерон, Плутарх, Витрувий и другие. «Архимедов винт» был изобретен ученым еще в юношеские годы и предназначался для орошения полей. Архимед родился в 287 году до нашей эры в городе Сиракузы – греческом полисе-колонии, расположенном на острове Сицилия.
Архимед - величайший древнегреческий математик, физик и инженер
Ее видел Цицерон, посетивший Сицилию через 137 лет после смерти ученого. Архимед оставил многочисленных учеников. На новый путь, открытый им, устремилось целое поколение последователей, энтузиастов, которые горели желанием, как и учитель, доказать свои знания конкретными завоеваниями. Первым по времени из этих учеников был александриец Ктесибий, живший во II веке до нашей эры. Изобретения Архимеда в области механики были в полном ходу, когда Ктесибий присоединил к ним изобретение зубчатого колеса.
Архимед Задача о трисекции угла. Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.
Измерение круга. Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате «Измерение круга» он доказывает следующие три теоремы: Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.
Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14. Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово значение архимедово число. Спираль Архимеда.
Архимедова спираль плоская трансцендентная кривая. Архимедова спираль описывается точкой M, движущейся равномерно по прямой d, которая вращается вокруг точки O, принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой. Инфинитезимальные методы В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы.
Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется приближается описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.
Опустим историю 2-й Пунической войны, когда не на жизнь, а на смерть боролись Рим и Карфаген. Начнем сразу с Сиракуз. Римский сенат направляет одного из самых жестоких и непреклонных военачальников республики на осаду города, имеющего ключевое значение. Тот принимает решение напасть на Сиракузы с моря, учитывая невысокие, выходящие на самый край защитные стены, что позволяло использовать излюбленную римлянами тактику: приблизившись вплотную к кораблю противника, взять его на абордаж. Взять на абордаж целый город?
Почему бы и нет? В Сиракузах было достаточно сторонников Карфагена, а потому новые хозяева города - ставленники Ганнибала Гиппократ и Эпидикс - стараются убедить жителей в том, что от Рима можно ждать лишь порабощения. В этом им очень помог уважаемый гражданин Архимед. Этот старейшина, близкий по духу греческой культуре человек, органически не приемлющий жестокость и беспринципность римлян, стремящихся любой ценой установить свое господство над Средиземноморьем, дает согласие принять на себя руководство возведением укреплений. Город поддерживает Архимеда, а тот, не только гениальный математик, но и блестящий механик, немедленно приступает к разработке своих технических средств, и поныне удивляющих ученых.
И вот триремы Римской республики подходят к Аркадине, крепостной стене, защищающей Сиракузы с моря. Надо, вероятно, пояснить, что такое эти суда. Трирема была быстроходным кораблем, но с немалыми недостатками, прежде всего ввиду малой парусности и недостаточной маневренности. Свое название она получила из-за того, что на каждое весло, которым были оснащены триремы, приходилось по три гребца, - вот откуда быстроходность. И вот в одно прекрасное утро римляне начали атаку.
Но вдруг, когда римский флот был уже не более чем в трехстах метрах от берега, началось светопреставление: паруса трирем стали вспыхивать один за другим без всякой видимой причины, нестерпимо ослепительные лучи обрушились на окаменевших от ужаса воинов Клавдия Марцелла. Атакующие обратились в паническое бегство, а со стен укреплений Архимед невозмутимо наблюдал за результатами своей работы. Несколько лет назад группа итальянских ученых, усомнившихся в истории с парусами, подожженными солнечными лучами, провела такой опыт. Поскольку каждое из зеркал при помощи отраженного излучения могло поднять температуру паруса на 1,5 градуса, тот в конце концов действительно воспламенился. Количество зеркал, помноженное на вызываемое ими увеличение температуры, дает в результате 675 градусов по Цельсию.
Этот опыт показал, что в действенности "зажигательных" зеркал Архимеда сомневаться не приходится. Но это лишь на первый взгляд. А если вдуматься: смогло бы подобное устройство поджечь настоящую большую трирему? При этом давайте учтем: во-первых, массы холодного воздуха между устройством и кораблем, находящимся к тому же на значительном удалении, помешали бы ему загореться. Во-вторых, опыт проводился на земле, расстояние не превышало 50 метров, но ученым пришлось ждать несколько минут, пока произошло загорание, а в истории об уничтожении флота говорится, что они вспыхивали мгновенно.
Да и возможно ли было за 200 лет до н. Могли ли вообще зеркала, созданные тогда, отражать солнечный свет, не рассеивая его? Античные зеркала, найденные при раскопках, настолько несовершенны, что трудно поверить, что они были способны передавать какое бы то ни было точно отражение. Итальянские исследователи убеждены, что те существовали на самом деле, но скорее казались, чем действительно являлись грозным оружием.
Благодаря обширным исследованиям в области математики Архимед открыл более совершенный способ расчета площади сложных фигур, чем тот, что существовал на тот момент.
Позднее эти исследования легли в основу теории интегрального исчисления. Также делом его рук является сооружение планетария: сложного прибора, наглядно и достоверно демонстрирующего движение Солнца и планет. Личная жизнь Краткая биография Архимеда и его открытия достаточно хороши изучены, но личная жизнь ученого покрыта завесой тайны. Ни современники великого исследователя, ни историки, которые изучили его жизненный путь, не предоставили никаких данных о его семье или возможных потомках. Служение Сиракузам Как следует из биографии Архимеда, его открытия в физике сослужили немалую службу родному городу.
После открытия рычага Архимед активно развивал свою теорию и находил ей полезное практическое применение. В порту Сиракуз была создана сложная конструкция, состоящая из блочно-рычаговых приспособлений. Благодаря такому инженерному решению процесс погрузки и разгрузки судов был значительно ускорен, а тяжелые, габаритные грузы перемещались легко и практически без усилий. Изобретение винта позволило собирать воду из низко расположенных водоемов и поднимать ее на большую высоту. Это было важное достижение, так как Сиракузы расположены в гористой местности, и доставка воды представляла серьезную проблему.
Оросительные каналы наполнились живительной влагой и бесперебойно снабжали жителей острова. Однако главный дар родному городу Архимед преподнес во время осады Сиракуз римским войском в 212 г. Ученый принимал активное участие в обороне и построил несколько мощных метательных механизмов. После того как вражеским отрядам удалось прорваться за городские стены, большинство нападавших погибли под градом камней, выпущенных из Архимедовых машин. С помощью огромных рычагов, также созданных ученым, сиракузцы получили возможность переворачивать римские суда и остановили атаку.
В результате римляне прекратили штурм и перешли к тактике продолжительной осады. В конце концов город пал.
Отец Архимеда, Фидий, был математиком и астрономом; в трудах древнегреческого историка Плутарха утверждается, что Фидий был родственником правителя Сиракуз Гиерона. Очевидно, любовь к точным наукам, прежде всего математике и механике, передалась Архимеду от отца.
Для получения образования Архимед отправился в духовный и научный центр той эпохи — Александрию Египетскую. Точной даты этого путешествия в его биографии не сохранилось. В Александрии Архимед получается основы научных знаний и сближается с выдающимися учеными своего времени, прежде всего с астрономом Кононом Самосским, составителем календарей захода и восхода звезд, и Эратосфеном Киренским, главой Александрийской библиотеки, писателем, математиком и географом. Архимед состоял с ними в дружеской переписке до конца жизни.
Надо полагать, именно в Александрии, прилежно посещая ее знаменитую библиотеку, Архимед впервые познакомился с трудами знаменитых философов и геометров прошлого — Евдокса, Демокрита и многих других, на которые он ссылался в своих книгах. Закончив обучение в Александрии Египтской, Архимед вернулся в Сиракузы. К этому времени молодой ученый уже имел определенную известность, был финансово обеспечен. Уже при его жизни об Архимеде складывали легенды.
Иногда довольно трудно отделить от этих легенд, ставших хрестоматийными, подлинные факты биографии великого древнегреческого ученого. Один из самых известных сюжетов легенд об Архимеде можно условно назвать «Корона царя Гиерона». Согласно этой легенде, Архимеду поручено было определить, сделана ли эта корона из чистого золота, либо же во время ее изготовления к золоту было добавлено серебро. Решение этой задачи пришло к Архимеду в то время, когда он принимал ванну: погружая корону в воду, можно по вытесненному объему жидкости узнать ее удельный вес; у золотой короны и короны «с примесью» он будет разным.
50 гениев, которые изменили мир
Профессия насчитывает уже несколько сотен и даже тысяч лет, а к величайшим известным инженерам относятся Архимед, Леонардо да Винчи, Никола Тесла, Генри Форд, Сергей Королев, Илон Маск, и череда гениальных технарей никогда не иссякнет. За свою жизнь Архимед сделал ещё множество открытий и создал немало изобретений. Считается, что погиб Архимед в преклонном возрасте (более семидесяти пяти лет) во время осады Сиракуз, однако достоверной версии произошедшего нет. ЖИЗНЬ Архимед получил блестящее образование у своего отца, астронома и математика.
Архимед – биография, фото, личная жизнь и законы
Работы Архимеда относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида, корни которых он находил с помощью пересечения параболы и гиперболы. Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать. Однако главные математические достижения Архимеда касаются проблем, которые сейчас относят к области математического анализа.
Греки до Архимеда сумели определить площади многоугольников и круга, объём призмы и цилиндра, пирамиды и конуса. Но только Архимед нашёл гораздо более общий метод вычисления площадей или объёмов; для этого он усовершенствовал и виртуозно применял метод исчерпывания Евдокса Книдского. Идеи Архимеда легли впоследствии в основу интегрального исчисления.
Архимед сумел установить, что сфера и конусы с общей вершиной, вписанные в цилиндр, соотносятся следующим образом: два конуса: сфера:цилиндр как 1:2:3. Лучшим своим достижением он считал определение поверхности и объёма шара — задача, которую до него никто решить не мог.
Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на нее золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера.
Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» — модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть». И, наконец, Архимед был не только великим ученым, он был, кроме того, человеком, страстно увлеченным механикой. Он проверяет и создает теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это — рычаг «Дайте мне точку опоры, — говорил Архимед, — и я сдвину Землю» , клин, блок, бесконечный винт и лебедка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот. Впоследствии эти механизмы широко применялись в разных странах Мира. Интересно, что усовершенствованный вариант водоподъемной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке.
Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, — к изобретению болта, сконструированного из винта и гайки. Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебедку, нашел средство, к удивлению зевак, спустить на воду тяжелую галеру, севшую на мель, со всем ее экипажем и грузом. Еще более убедительное доказательство он дал в 212 году до нашей эры. При обороне Сиракуз от римлян во время второй Пунической войны Архимед сконструировал несколько боевых машин, которые позволили горожанам отражать атаки превосходящих в силе римлян в течение почти трех лет. Одной из них стала система зеркал, с помощью которой египтяне смогли сжечь флот римлян. Этот его подвиг, о котором рассказали Плутарх, Полибий и Тит Ливий, конечно, вызвал большее сочувствие у простых людей, чем вычисление числа «пи» — другой подвиг Архимеда, весьма полезный в наше время для изучающих математику. Архимед погиб во время осады Сиракуз —его убил римский воин в тот момент, когда ученый был поглощен поисками решения поставленной перед собой проблемы. Любопытно, что, завоевав Сиракузы, римляне так и не стали обладателями трудов Архимеда.
Только через много веков они были обнаружены европейскими учеными. Вот почему Плутарх, одним из первых описавший жизнь Архимеда, упомянул с сожалением, что ученый не оставил ни одного сочинения. Плутарх пишет, что Архимед умер в глубокой старости.
Лишь в конце XVI в. Этот труд был первой попыткой экспериментально проверить фундаментальное предположение о строении вещества путем создания его модели. Архимед не только подтвердил атомистические идеи Демокрита, но и доказал ряд важных положений о физических свойствах атомов жидкости. Научный гений ученого в этом труде проявляется с исключительной силой.
Полученные им результаты приобрели современную формулировку и доказательство только в XIX в. Так как Сиракузы были портовым и судостроительным городом, то вопросы плавания тел ежедневно решались практически, и выяснение их научной основы, несомненно, представлялось Архимеду актуальной задачей. Он изучал не только условия плавания тел, но и вопрос об устойчивости равновесия плавающих тел различной геометрической формы. Существует несколько легенд о том, как ученый пришел к своему закону, который гласит, что на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости. Вполне возможно, что, как гласит легенда, прозрение снизошло на Архимеда в бане, когда он вдруг обратил внимание, что при поднятии ноги из ванной уровень воды в ней становится ниже. И осененный идеей ученый голым выскочил из бани и с криком «Эврика! Так или иначе, но это открытие стало первым законом гидростатики.
Аналогичный закон — определения удельного веса металлов Архимед вывел при решении задачи, поставленной перед ним Гиероном. Правитель предложил ученому определить, сколько золота содержится в его короне и не содержит ли она посторонней примеси. Кроме математики, физики и механики, Архимед занимался геометрической и метеорологической оптикой и сделал ряд интересных наблюдений по преломлению света. Имеются сведения о том, что ученым было написано не дошедшее до нас большое сочинение под названием «Катоптрика», отрывки из которого часто цитировались древними авторами. На основе этих цитат можно сделать вывод о том, что Архимед хорошо знал зажигательное действие вогнутых зеркал, проводил опыты по преломлению света в воздушной и водной средах, знал свойства изображений в плоских, выпуклых и вогнутых зеркалах. Вот как об этих работах говорил Апулей: «Почему в плоских зеркалах предметы сохраняют свою натуральную величину, в выпуклых — уменьшаются, а в вогнутых — увеличиваются; почему левые части предметов видны справа и наоборот; когда изображение в зеркале исчезает и когда появляется; почему вогнутые зеркала, будучи поставлены против Солнца, зажигают поднесенный к ним трут; почему в небе видна радуга; почему иногда кажется, что на небе два одинаковых Солнца, и много другого подобного же рода, о чем рассказывается в объемистом томе Архимеда». Однако от самого труда, да и то в позднем пересказе, уцелела лишь единственная теорема, в которой доказывается, что при отражении света от зеркала угол падения луча равен углу отражения.
С «Катоптрикой» связана и легенда о жгущих зеркалах — поджоге Архимедом римских кораблей во время осады Сиракуз. Но в трех сохранившихся описаниях штурма: Полибия II в. Вопрос, что в этой истории вымысел, а что является отражением действительных событий, и по сей день вызывает бурные дискуссии современных ученых. Некоторые исследователи не исключают возможности, что гению Архимеда были по силе изобретение и постройка гелиоконцентратора, так как сама идея расчленения вогнутого зеркала на множество плоских элементов, связанная с заменой кривой вписанными и описанными многоугольниками, часто применялась им в геометрических доказательствах. В последний период своей жизни Архимед в основном занимался вычислительно-астрономическими работами. Римский писатель Тит Ливий назвал ученого «единственным в своем роде наблюдателем неба и звезд». И хотя астрономические сочинения Архимеда до нас также не дошли, можно не сомневаться, что эта характеристика неслучайна.
О его занятиях астрономией свидетельствуют и рассказы о построенной им астрономической сфере, захваченной Марцеллом как военный трофей, и сочинение «Псаммит», в котором Архимед подсчитывает число песчинок во Вселенной. Сама постановка задачи представляет большой исторический интерес: точное естествознание впервые приступило к подсчетам космического масштаба, пользуясь еще не совершенной системой чисел. В сочинении Архимеда впервые в истории науки сопоставляются две системы мира: геоцентрическая и гелиоцентрическая. Ученый указывал, что «большинство астрономов называют миром шар, заключающийся между центрами Солнца и Земли». Таким образом, он принимал мир хотя и очень большим, но конечным, что позволило ему довести свой расчет до конца. Видевшие «небесный глобус» Архимеда — своеобразный планетарий, который был одним из замечательных произведений античной механики, — отзывались о нем с восхищением. Сам ученый, вероятно, высоко ценил это свое детище, так как написал о его устройстве специальную книгу, о которой упоминают его современники.
Римский христианский писатель Лактанций так говорил о знаменитой архимедовской «сфере»: «Я вас спрашиваю, ведь мог же сицилиец Архимед воспроизвести облик и подобие мира в выпуклой округлости меди, где он так разместил и поставил Солнце и Луну, что они как будто совершали каждодневные неравные движения и воспроизводили небесные вращения; он мог не только показать восход и заход Солнца, рост и убывание Луны, но сделать так, чтобы при вращении этой сферической поверхности можно было видеть различные течения планет…» Основой механического звездного глобуса Архимеда служил обычный глобус, на поверхность которого были нанесены звезды, фигуры созвездий, небесный экватор и эклиптика — линия пересечения плоскости земной орбиты с небесной сферой. Вдоль эклиптики располагались 12 зодиакальных созвездий, через которые движется Солнце, проходя одно созвездие в месяц. Не выходили за пределы зодиака и другие «блуждающие» небесные тела — Луна и планеты. Глобус закреплялся на оси, направленной на полюс мира Полярную звезду , и погружался до половины в кольцо, изображающее горизонт.
В своем трактате "Арена" Архимед пытается определить количество песчинок, содержащихся во Вселенной. Эта мысль побуждает его создать способ описания чрезвычайно больших чисел, который приведет к оценке размера Вселенной.
Однако самым известным его открытием, несомненно, является принцип Архимеда или тяга трактат "О плавающих телах" , а именно сила, которой подвергается тело, когда оно погружено в жидкость, подверженную действию поля тяжести. Архимеду следует отдать должное различным изобретениям, таким как подъемник, механизм передачи движения, состоящий из двух групп - одна фиксированная, а другая - мобильная, каждая из которых содержит произвольное количество шкивов, а также веревка, соединяющая их. За этим также последуют тяговые машины, доказывающие, что человек вполне способен поднимать грузы, которые намного больше его собственного. Кроме того, Архимеду приписывают изобретение червячного винта винта Архимеда , предназначенного для поднятия воды, а также крепежного винта или даже гайки. Отметим также принцип зубчатого колеса, который позволил построить планетарный механизм, представляющий известную в то время Вселенную. Говорят, что Архимед также изобрел одометр, устройство для измерения расстояний, которое римляне позже использовали для перемещения своих войск.
Идея состояла в том, чтобы измерять расстояния в дни марша, чтобы каждый день продвигаться с одинаковой скоростью и поддерживать эффективность армии. Легенда, окружающая Архимеда, очевидно, воплощена выражением Эврика!
Архимед, геодезист
- Ранние годы и молодость
- Архимед - читайте бесплатно в онлайн энциклопедии «Знание.Вики»
- Содержание
- Архимед: «Дайте мне точку опоры, и я переверну Землю»
- Биография Архимеда - биография Архимед - фото, видео
- Архимед, краткая биография
ВЫДАЮЩИЕСЯ МАТЕМАТИКИ. Архимед
Он родился и провел большую часть своей жизни в городе Сиракузы на Сицилии, где сделал множество открытий в области геометрии и заложил основы механики и гидростатики. Однако, помимо своих научных достижений, Архимед также проявил себя как талантливый стратег и инженер в военных делах. Во время осады Сиракуз римлянами он создал небывалые военные машины, такие как баллисты, метавшие камни на неслыханные расстояния, и подъемные краны с крючьями, которые топили римские корабли в гавани. Архимед был настолько изобретательным, что его новые машины вызывали у римских солдат страх и ужас.
Устройство, иногда называемое «тепловым лучом Архимеда», использовалось для фокусировки солнечного света на приближающихся кораблях, вызывая их возгорание. В современную эпоху были созданы аналогичные устройства, которые могут называться гелиостатом или солнечной печью. Это предполагаемое оружие было предметом постоянных споров о его надежности с Возрождение. Рене Декарт отверг это как ложное, в то время как современные исследователи попытались воссоздать эффект, используя только те средства, которые были доступны Архимеду.
Было высказано предположение, что для фокусирования солнечного света на корабле можно было использовать большой массив хорошо отполированных бронзовых или медных экранов, действующих как зеркала. Современные испытания Испытание теплового луча Архимеда было проведено в 1973 году греческим ученым Иоаннисом Саккасом. Эксперимент проводился на военно-морской базе Скарамагас недалеко от Афин. Зеркала были направлены на фанерный макет римского военного корабля на расстоянии около 160 футов 49 м. Когда зеркала были точно сфокусированы, корабль загорелся в течение нескольких секунд. Корабль из фанеры был покрыт краской гудрон , которая могла способствовать возгоранию. Покрытие смолой было обычным делом на кораблях в классическую эпоху.
В октябре 2005 года группа студентов из Массачусетского технологического института провела эксперимент с 127 футовыми 30 см квадратные зеркальные плитки, сфокусированные на макете деревянного корабля на расстоянии около 100 футов 30 м. Пламя вспыхнуло на участке корабля, но только после того, как небо стало безоблачным и корабль оставался неподвижным около десяти минут. Был сделан вывод, что в этих условиях устройство было возможным оружием. Группа Массачусетского технологического института повторила эксперимент для телешоу Разрушители мифов , используя в качестве цели деревянную рыбацкую лодку в Сан-Франциско. Снова произошло некоторое обугливание и небольшое пламя. Когда Разрушители мифов передают результаты эксперимента в Сан-Франциско в январе В 2006 году претензия была отнесена к категории "сорванных" то есть отклоненных из-за продолжительности времени и идеальных погодных условий, необходимых для возникновения горения. Также было указано, что, поскольку Сиракузы обращены к морю на восток, римскому флоту пришлось бы атаковать утром для оптимального сбора света зеркалами.
Разрушители мифов также указали, что обычное оружие, такое как горящие стрелы или болты из катапульты, было бы гораздо более простым способом поджечь корабль на коротких дистанциях. В декабре 2010 года Разрушители мифов снова обратились к Рассказ теплового луча в специальном выпуске под названием « Вызов президента ». Было проведено несколько экспериментов, в том числе крупномасштабное испытание с участием 500 школьников, наводивших зеркала на макет римского парусного корабля на расстоянии 400 футов 120 м. В шоу сделан вывод, что более вероятным эффектом зеркал было бы ослепление, ослепление или отвлечение экипажа корабля. Рычаг Хотя Архимед не изобретал рычаг , он дал объяснение принципа, использованного в его работе О равновесии плоскостей.
Еще одна легенда повествует о том, что Архимеду удалось сдвинуть с места одним движением руки тяжелый многопалубный корабль «Сиракузия» благодаря разработанной им системе блоков, так называемому полиспасту. Использование рычага для увеличения силы применяется сейчас во всех механических системах; традиция связывает практику использования рычагов и блоков с именем Архимеда, хотя подобные конструкции существовали и ранее. Архимед скорее обобщил опыт своих предшественников и теоретически обосновал их опыт в книге «О равновесии плоских фигур», считающейся фундаментальным трудом в области механики.
К изобретениям Архимеда относится также архимедов винт, или шнек, предназначенный для вычерпывания воды; он и сегодня применяется в Египте. Биография Архимеда - зрелые годы Главной наукой, которой посвятил себя Архимед, безусловно, была математика. Плутарх утверждает, что великий ученый, поглощенный решением математических проблем, забывал о еде и внешнем виде. Работы Архимеда показывают, что он был превосходно знаком с математикой и астрономией своего времени. Они поражают глубиной проникновения в суть рассматриваемых Архимедом задач. Ряд работ Архимеда в области математики имеет вид посланий к его друзьям и коллегам. Ему принадлежат исследования по всем областям математики его времени: арифметике, алгебре, геометрии. Основной проблематикой математических работ Архимеда являются задачи на нахождение площадей поверхностей и объемов, которые сейчас могут быть отнесены к области математического анализа.
В результате исследований Архимед нашел общую формулу для вычисления площадей и объемов, основанную на методе исчерпывания своего предшественника, математика Евдокса Книдского. На основе идей Архимеда впоследствии было разработано интегральное исчисление. До Архимеда ни один ученый не мог найти алгоритм для вычисления площади поверхности и объема шара.
Изобретения Архимеда: механическая птичка Также математик заложил основы дифференциального исчисления. С геометрической точки зрения он изучал возможности определения касательной к кривой линии, с физической точки зрения — скорость тела в любой момент времени. Ученый исследовал плоскую кривую, известную как архимедова спираль. Он нашел первый обобщенный способ поиска касательных к гиперболе, параболе и эллипсу.
Только в семнадцатом веке ученые смогли в полной мере осознать и раскрыть все идеи Архимеда, которые дошли до тех времен в его сохранившихся трудах. Ученый часто отказывался описывать изобретения в книгах, из-за чего далеко не каждая написанная им формула дошла до наших дней. Изобретения Архимеда: "солнечные" зеркала Достойным открытием ученый считал изобретение формул для вычисления площади поверхности и объема шара. Если в предыдущих из описанных случаев Архимед дорабатывал и усовершенствовал чужие теории, либо создавал быстрые методы расчета как альтернативу уже существующим формулам, то в случае с определением объема и поверхности шара он был первым. До него ни один ученый не справился с этой задачей. Поэтому математик попросил выбить на своем могильном камне шар, вписанный в цилиндр. Закон Архимеда Открытием ученого в области физики стало утверждение, которое известно как закон Архимеда.
Он определил, что на всякое тело, погруженное в жидкость, оказывает давление выталкивающая сила. Она направлена вверх, а по величине равна весу жидкости, которая была вытеснена при помещении тела в жидкость, вне зависимости от того, какова плотность этой жидкости. Закон Архимеда Есть легенда, связанная с этим открытием. Однажды к ученому якобы обратился Гиерон II, который засомневался в том, что вес изготовленной для него короны соответствует весу золота, которое было предоставлено для ее создания. Архимед сделал два слитка такого же веса, как и корона: серебряный и золотой. Далее он по очереди поместил эти слитки в сосуд с водой и отметил, насколько повысился ее уровень. Затем ученый положил в сосуд корону и обнаружил, что вода поднялась не до того уровня, до которого она поднималась при помещении в сосуд каждого из слитков.
Таким образом было обнаружено, что мастер оставил часть золота себе. Архимед в ванне Есть миф о том, что сделать ключевое открытие в физике Архимеду помогла ванна. Во время купания ученый якобы слегка приподнял ногу в воде, обнаружил, что в воде она весит меньше, и испытал озарение.
Развитие науки в Греции
- Краткая биография Архимеда для школьников 1-11 класса. Кратко и только самое главное
- Что изобрел Архимед, список и история его открытий, чем прославился ученый
- Краткая биография Архимеда | Биографии известных людей
- Биография Архимеда. Выдающиеся открытия Архимеда
- Содержание
- Биография Архимеда. Выдающиеся открытия Архимеда
Электронное научное издание
- Архимед и четыре версии его гибели
- Легенды об Архимеде.
- Архимед - гений, опередивший время
- Ещё статьи на эту тему: