Год, а также век – это наиболее используемые для временного определения исторических событий понятия. Год, а также век – это наиболее используемые для временного определения исторических событий понятия.
Различные календари. Старый и новый стили
Это относилось к центрально- и южно-американским государствам, а затем и к Древнему Египту. У майя и ацтеков календарные системы были очень сложными с многими единицами времени, отражавшими сельскохозяйственные работы и религиозные установления. Найдено больше 300 развалин пирамидальных башен и других древних сооружений, стены которых использовались для нанесения знаков, в том числе и связанных с календарем. Но язык этих народов с трудом поддается расшифровке. Интересно, что значительный вклад в понимание календаря майя сделал знаменитый американский физик Ричард Фейнман — это было одним из его хобби. Календарь египтян Древнего царства, эпохи гигантских пирамид, был лунным. Но в эпоху Нового царства, во втором тысячелетии до нашей эры, египетские жрецы сумели создать солнечный календарь, осложненный ежегодным восходом яркой звезды Сириус в определенный день июля, совпадающий с началом бурного разлива Нила, главного достояния страны. По типу этого календаря в первом столетии до нашей эры в эллинистическом Египте астрономом Созигеном был создан так называемый александрийский календарь, который и стал основой современных календарей. По этому календарю длительность года была принята в 365 суток, а раз в 4 года — в 366 суток. Таким образом, средняя продолжительность года в сутках была принята как 365,25 — так называемый календарный год. В году было 12 месяцев по 30 дней, а после 12-го месяца — 5 или раз в три года 6 дополнительных суточных вставок.
Такими были и древнегрузинский и древнеармянский календари. Сейчас александрийским календарем пользуются только копты — прямые потомки древних египтян, принявшие христианство с 284 года. В Египте и его столице они живут компактно, образуя как бы анклавы внутри страны, сохраняя язык и свои древние обычаи такими, какими они были в третьем веке нашей эры. Любопытно, что солнечный календарь александрийского типа существовал во Франции во время Великой французской революции, пока Франция была республикой 1789—1799 , и в короткий период Парижской коммуны 18 марта — 28 мая 1871 г. Названия месяцев этого календаря полностью отражали сезонные изменения в погоде и в сельскохозяйственном труде, например: брюмер — месяц тумана, термидор — месяц жары, жерминаль — месяц посева, прорастания пшеницы, вандемьер — месяц сбора винограда. Очень стройная и привлекательная календарная система! Добавочные дни имели романтические названия — праздник Гения, праздник Подвига и др. Раз в 4 года один добавочный день посвящался спортивным играм и состязаниям. Оказывается, что еще за 100 лет до появления современного олимпийского движения во Франции вспомнили об олимпийских играх Древней Греции, происходивших раз в 4 года. Неслучайно и инициатором организации современных олимпиад стал француз — Пьер де Кубертен.
Календарь Древнего Рима Календарь Римской республики 509—27 до н. Римляне были очень суеверны и не любили четных чисел. Семь месяцев у них имели по 29 дней, четыре — по 31 дню, а в феврале было 28 дней. Этот месяц был назван в честь Фебрууса, этрусского бога подземного царства и римского бога очищения. В этом месяце справлялась поминальная неделя. Другие месяцы именовались либо в честь богов Януса, Марса, Майи, Юноны , либо по номерам, начиная с пятого квинтилис, секстилис, септембер, октобер, новембер, децембер. Квинтилис июль был пятым по счету месяцем, поскольку год начинался с марта. Очень сложно именовались в римском календаре дни. Недельные циклы отсутствовали. В каждом месяце было три особых дня.
Все первые числа месяцев назывались календами, отсюда и слово «календарь». Седьмой день в длинных по 31 дню и пятый в остальных месяцах именовались нонами. А 15-е число в длинных месяцах и 13-е в остальных назывались идами. Дни перед этими числами были канунами отсюда и наше русское «накануне». А остальные дни именовались очень странным образом — обратным включительным счетом. Например, 4 августа короткого месяца, в котором ноны приходились на 5 число называлось кануном августовских нон, 11 августа — третьим днем до августовских ид приходящихся на 13 августа , а 23 августа — восьмым днем до сентябрьских календ. Интересно, что вторых дней до нон, ид и календ не существовало, они именовались канунами. Ну, а первыми днями по включительному счету были эти самые ноны, иды и календы. Годовой подсчет дней древнеримского календаря дает 355 дней. Недостающие до солнечного года 10,25 суток требовали включения в календарь добавочных дней.
И это мероприятие было запутано до предела. Например, после 23 февраля вставлялся добавочный месяц длительностью в 22 или 23 дня, а по его истечении снова продолжался февральский счет дней до мартовских календ. Ноны и иды в марцедонии были, как в коротком месяце, а календы и вовсе отсутствовали. Этот порядок действовал много сотен лет. Но в начале второго века до нашей эры римские жрецы, которые управляли календарем, стали манипулировать длительностью и временем вставки этого добавочного месяца. В Римской республике весь комплекс административных должностей — консулы высшая должность , квесторы, цензоры и т. А поскольку эти должности приносили определенный доход и другие жизненные преимущества, продление их срока было выгодным делом. Манипулируя календарем, жрецы могли увеличивать эти сроки в пользу того или иного должностного лица, наверняка небескорыстно. Могли иметь место и экономические причины изменения времени вставки в календарь месяца расплаты. О конкретном грядущем календаре население республики оповещалось жрецами в конце февраля.
Об этом запутанном древнеримском календаре через много лет Вольтер сказал: «Римские полководцы всегда побеждали, но они никогда не знали, в какой день это случилось». Юлианский календарь Гай Юлий Цезарь Его установил в 46 году до нашей эры своим указом римский диктатор и верховный жрец, полководец и государственный деятель Гай Юлий Цезарь 100—44 до н.
XVII 17 1601 - 1700 гг до н.
XVI 16 1501 - 1600 гг до н. XV 15 1401 - 1500 гг до н. XIV 14 1301 - 1400 гг до н.
XIII 13 1201 - 1300 гг до н. XII 12 1101 - 1200 гг до н. XI 11 1001 - 1100 гг до н.
VIII 8 701 - 800 гг до н. Какие годы относятся к каким векам Века столетия н.
Год - единица измерения времени, которая означает завершенный цикл сезонов: весна, лето, осень, зима. В большинстве стран календарная продолжительность года равна 365 или 366 дням, что примерно равняется продолжительности астрономического года, в течение которого Земля совершает полный оборот вокруг Солнца. Десять лет образуют десятилетие. Продолжительность века равняется ста годам, поэтому, наравне с термином век часто используется термин столетие. В литературе столетие принято записывать, используя как арабские, так и римские цифры и использовать сокращения: в.
Какие черты делают женщину действительно привлекательной? У вас голубые глаза? Почему вы должны спать с волосами, собранными в пучок. Что случится, если долго смотреть в глаза человеку? О чем больше всего сожалеют люди в конце жизни. Очаровательная фотосессия мамы пятерняшек. Почему нельзя ставить точки в СМС-сообщениях? Зачем кошки несут убитых животных домой. Для чего женщины испытывают оргазм? Главная Образование История Как определить век по году или тысячелетие по году? Подписаться Поделиться Рассказать Рекомендовать. Наша эра Для событий, произошедших во временном отрезке нашей эры то есть все, что было от наших дней до периода чуть более двух тысяч лет назад , век вычисляется следующим образом: Подписаться Поделиться Рассказать Рекоммендовать. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Миловидные мальчишки и девчонки превращаются в с Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки.
История Славянского летоисчисления
Однако, по сути, он следовал по пути Лейбница. Полагаю, он был первым, кто всерьёз начал использовать греческие буквы наравне с латинскими для обозначения переменных. Есть и некоторые другие обозначения, которые появились вскоре после Лейбница. Следующий пример из книги, вышедшей через несколько лет после смерти Ньютона.
Это учебник алгебры, и он содержит весьма традиционные алгебраические обозначения, уже в печатном виде. А вот книга Лопиталя, напечатанная примерно в то же время, в которой уже практически современная алгебраическая нотация. И, наконец, вот пример от Эйлера, содержащий весьма современные обозначения для интегралов и прочего.
Эйлер — популяризировал современное обозначение для числа пи, которое первоначально было предложено Уильямом Джонсом, который рассматривал его как сокращение от слова периметр. Предложенная Лейбницем и сотоварищами нотация довольно долго оставалась неизменной. Происходили небольшие изменения, как, к примеру квадрат x x получил написание x2.
Однако практически ничего нового не появилось. Однако в конце 19 века наблюдается новый всплеск интереса к математической нотации, сопряжённый с развитием математической логики. Были некоторые нововведения, сделанные физиками, такими как Максвелл и Гиббс, в основном для векторов и векторного анализа, как следствие развития абстрактной алгебры.
Однако наиболее значимые изменения были сделаны людьми, начиная с Фреге и приблизительно с 1879 года, которые занимались математической логикой. Эти люди в своих устремлениях были близки к Лейбницу. Они хотели разработать нотацию, которая представляла бы не только математические формулы, но и математические выводы и доказательства.
В середине 19 века Буль показал, что основы логики высказываний можно представлять в терминах математики. Однако Фреге и его единомышленники хотели пойти дальше и представить так как логику высказываний, так и любые математические суждения в соответствующих математических терминах и обозначениях. Фреге решил, что для решения этой задачи потребуются графические обозначения.
Вот фрагмент его так называемой "концептуальной нотации". К сожалению, в ней трудно разобраться. И в действительности, если посмотреть на историю обозначений в целом, то часто можно встретить попытки изобретения графических обозначений, которые оказывались трудными для понимания.
Но в любом случае, обозначения Фреге уж точно не стали популярными. Потом был Пеано, самый главный энтузиаст в области математической нотации. Он делал ставку на линейное представление обозначений.
Вот пример: Вообще говоря, в 80-х годах 19 века Пеано разработал то, что очень близко к обозначениям, которые используются в большинстве современных теоретико-множественных концепций. Однако, как и Лейбниц, Пеано не желал останавливаться лишь на универсальной нотации для математики. Он хотел разработать универсальный язык для всего.
Эта идея реализовалась у него в то, что он назвал интерлингва — язык на основе упрощённой латыни. Затем он написал нечто вроде краткого изложения математики, назвав это Formulario Mathematico, которое было основано на его обозначениях для формул, и труд этот был написал на этой производной от латыни — на интерлингве. Интерлингва, подобно эсперанто, который появился примерно в это же время, так и не получил широкого распространения.
Однако этого нельзя сказать об обозначениях Пеано. Сперва о них никто ничего толком и не слышал. Но затем Уайтхед и Рассел написали свой труд Principia Mathematica, в котором использовались обозначения Пеано.
Думаю, Уайтхед и Рассел выиграли бы приз в номинации "самая насыщенная математическими обозначениями работа, которая когда-либо была сделана без помощи вычислительных устройств". Вот пример типичной страницы из Principia Mathematica. У них были все мыслимые виды обозначений.
Частая история, когда авторы впереди своих издателей: Рассел сам разрабатывал шрифты для многих используемых им обозначений. И, разумеется, тогда речь шла не о шрифтах TrueType или о Type 1, а о самых настоящих кусках свинца. Я о том, что Рассела можно было встретить с тележкой, полной свинцовых оттисков, катящему её в издательство Кембриджского университета для обеспечения корректной вёрстки его книг.
Но, несмотря на все эти усилия, результаты были довольно гротескными и малопонятными. Я думаю, это довольно ясно, что Рассел и Уайтхед зашли слишком далеко со своими обозначениями. И хотя область математической логики немного прояснилась в результате деятельности Рассела и Уайтхеда, она всё ещё остаётся наименее стандартизированной и содержащей самую сложную нотацию.
Но что насчёт более распространённых составляющих математики? Какое-то время в начале 20 века то, что было сделано в математической логике, ещё не произвело никакого эффекта. Однако ситуация резко начала меняться с движением Бурбаки, которое начало разрастаться во Франции в примерное сороковые года.
Бурбаки придавали особое значение гораздо более абстрактному, логико-ориентированному подходу к математике. В частности, они акцентировали внимание на использовании обозначений там, где это только возможно, любым способом сводя использование потенциально неточного текста к минимуму. Где-то с сороковых работы в области чистой математики претерпели серьёзные изменения, что можно заметить в соответствующих журналах, в работах международного математического сообщества и прочих источниках подобного рода.
Изменения заключались в переходе от работ, полных текста и лишь с основными алгебраическими и вычислительными выкладками к работам, насыщенными обозначениями. Конечно, эта тенденция коснулась не всех областей математики. Это в некотором роде то, чем занимаются в лингвистике обычных естественных языков.
По устаревшим используемым математическим обозначениям можно заметить, как различные области, их использующие, отстают от основной магистрали математического развития. Так, к примеру, можно сказать, что физика осталась где-то в конце 19 века, используя уже устаревшую математическую нотацию тех времён. Есть один момент, который постоянно проявляется в этой области — нотация, как и обычные языки, сильно разделяет людей.
Я имею в виду, что между теми, кто понимает конкретные обозначения, и теми, кто не понимает, имеется большой барьер. Это кажется довольно мистическим, напоминая ситуацию с алхимиками и оккультистами — математическая нотация полна знаков и символов, которые люди в обычной жизни не используют, и большинство людей их не понимают. На самом деле, довольно любопытно, что с недавних пор в рекламе появился тренд на использование математических обозначений.
Думаю, по какой-то причине математическая нотация стала чем-то вроде шика. Вот один актуальный пример рекламы. Отношение к математическим обозначениям, к примеру, в школьном образовании, часто напоминает мне отношение к символам секретных сообществ и тому подобному.
Что ж, это был краткий конспект некоторых наиболее важных эпизодов истории математической нотации. В ходе исторических процессов некоторые обозначения перестали использоваться. Помимо некоторых областей, таких как математическая логика, она стала весьма стандартизированной.
Разница в используемых разными людьми обозначениях минимальна. Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Компьютеры Вот вопрос: можно ли сделать так, чтобы компьютеры понимали эти обозначения?
Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов. Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно.
Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках. И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками.
Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания. И, по сути, уже примерно в 500 года до н. Панини удивительно подробно и ясно расписал грамматику для санскрита.
Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Наура , которая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному. Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации.
Это действительно довольно странно. Были даже математики, которые работали над грамматиками обычных языков. Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в 1658 году.
Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall". В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: переменные внутри функций внутри предикатов внутри функций внутри соединительных слов внутри кванторов. Но не о том, что же это всё значило для обозначений выражений.
Некоторая определённость появилась в 50-е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в 20-х годах 20 века. Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в 1950-е.
И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку. И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками.
Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности. Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны. Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык.
И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом. Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер.
В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией. И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией. Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам в 1991, он пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом.
Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода. Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме.
Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных? Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: если у вас есть строка текста с операторами и операндами, то как задать, что и с чем группируется?
Итак, допустим, у вас есть подобное математическое выражение. Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике.
И я решил исследовать это. Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали. И я обнаружил весьма любопытную вещь: была удивительная слаженность мнений людей в определении приоритетов операторов.
Таким образом, можно утверждать: имеется определённая последовательность приоритетов математических операторов. Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений.
Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны. То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать.
И многие программы действительно так и работают. Но в целом это крайне неудобно. Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации.
Дать людям возможность ввода в свободной форме — значительно более сложная задача. Но это то, что мы хотим реализовать. Итак, что это влечёт?
Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным. Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом. Но тогда вы не получите знакомую математическую нотацию.
Вот ключевая проблема: традиционная математическая нотация содержит неоднозначности. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i".
Что это — Sqrt[-1] или переменная "i"? В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: все встроенные объекты Mathematica начинаются с заглавной буквы. Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах.
И что с этим делать? И вот ключевая идея: можно сделать другой символ, который вроде тоже прописная «i», однако это будет не обычная прописная «i», а квадратный корень из -1. Можно было бы подумать: Ну, а почему бы просто не использовать две «i», которые бы выглядели одинаково, — прям как в математических текстах — однако из них будет особой?
Ну, это бы точно сбивало с толку. Вы должны будете знать, какую именно «i» вы печатаете, а если вы её куда-то передвинете или сделаете что-то подобное, то получится неразбериха. Итак, значит, должно быть два "i".
Как должна выглядеть особая версия этого символа? У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления.
Но идея с двойным начертанием оказалась лучшей. В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием. Так, к примеру, прописная R могла бы быть переменной в математических записях.
А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI. Вот как это работает: Идея с двойным начертанием решает множество проблем.
В том числе и самую большую — интегралы. Допустим, вы пытаетесь разработать синтаксис для интегралов. Один из ключевых вопросов — что может означать "d" в интеграле?
Что, если это параметр в подынтегральном выражении? Или переменная? Получается ужасная путаница.
Всё становится очень просто, если использовать DifferentialD или "d" с двойным начертанием. И получается хорошо определённый синтаксис. Вот как это работает: Оказывается, что требуется всего лишь несколько маленьких изменений в основании математического обозначения, чтобы сделать его однозначным.
Это удивительно. И весьма здорово. Потому что вы можете просто ввести что-то, состоящее из математических обозначений, в свободной форме, и оно будет прекрасно понято системой.
И это то, что мы реализовали в Mathematica 3. Конечно, чтобы всё работало так, как надо, нужно разобраться с некоторыми нюансами. К примеру, иметь возможность вводить что бы то ни было эффективным и легко запоминающимся путём.
Мы долго думали над этим. И мы придумали несколько хороших и общих схем для реализации подобного. Одна из них — ввод таких вещей, как степени, в качестве верхних индексов.
Наличие ясного набора принципов подобных этому важно для того, чтобы заставить всё вместе работать на практике. И оно работает. Вот как мог бы выглядеть ввод довольно сложного выражения: Но мы можем брать фрагменты из этого результата и работать с ними.
И смысл в том, что это выражение полностью понятно для Mathematica, то есть оно может быть вычислено. Из этого следует, что результаты выполнения Out — объекты той же природы, что и входные данные In , то есть их можно редактировать, использовать их части по отдельности, использовать их фрагменты в качестве входных данных и так далее. Чтобы заставить всё это работать, нам пришлось обобщить обычные языки программирования и кое-что проанализировать.
Английская фраза «наша эра» появляется, по крайней мере, еще в 1708 году, а в книге по астрономии 1715 года это используется взаимозаменяемо с «христианской эрой» и «вульгарной эрой». В книге по истории 1759 года обыкновенная ара используется в общем смысле для обозначения общей эпохи евреев. Впервые фраза «до нашей эры» впервые использовалась в работе 1770 года, в которой также используются синонимы «обычная эпоха» и «вульгарная эпоха», в переводе книги, первоначально написанной на немецком языке.
В издании Британской энциклопедии 1797 года термины вульгарная эра и общая эра используются как синонимы. В 1835 году в своей книге Живые оракулы Александр Кэмпбелл писал: «Вульгарная эра, или Anno Domini; четвертый год Иисуса Христа, первый из которых длился всего восемь дней. Фраза «обычная эра» в нижнем регистре также появилась в 19 веке в общем смысле, не обязательно для обозначения христианской эры, но для любой системы дат в общее использование во всей цивилизации.
Таким образом, «общая эпоха евреев», «общая эпоха магометан», «общая эпоха мира», «общая эпоха основания Рима». Когда это действительно относилось к христианской эре, это иногда квалифицировалось, например, как «общая эпоха воплощения», «общая эпоха Рождества Христова» или «общая эпоха рождения Христа». Еще в 1825 году аббревиатура VE от Вульгарной эры использовалась евреями для обозначения лет по западному календарю.
С 2005 года нотация Common Era также использовалась для уроков иврита более века. Евреи также использовали термин Текущая эпоха. Современное употребление Некоторые ученые в областях теологии , образования , археологии и история приняли обозначения CE и BCE, хотя есть некоторые разногласия.
Несколько руководств по стилю теперь предпочитают или предписывают его использование. Некоторые издания перешли на его использование исключительно. Другие использовали другой подход.
We use cookies. Read the Privacy and Cookie Policy I accept 10. Считается, что эта эра стала более или менее систематически употребляться на Западе с середины XV века [100], с.
Датировки по этой эре сохранились на многих западно-европейских книгах, живописных полотнах, рисунках. Мы уже указывали, что эти даты всегда писались в виде I. Например, I.
Сегодня такую дату, проставленную, скажем на рисунке XVI века, нам предлагают воспринимать как 1500 год. Однако, эта дата могла означать совсем не 1500, а 1553 год.
Средневековая иллюстрация Позже закрепилось более нейтральное определение — «события нашей эры» сокращённо — н. Постепенно с распространением христианской веры народы большинства стран мира перешли на это, привычное для современности, летоисчисление. Узнать больше В России летоисчисление от Рождества Христова было установлено больше 300 лет назад правителем-реформатором Петром I. До этого момента в России года считали от сотворения мира в христианской православной традиции считается, что сотворение мира произошло за 5508 лет до рождения Христа.
События прошлого всегда выстраиваются в определённой последовательности, поэтому можно подсчитать, что с начала нашей эры на данный момент прошло больше двух тысячелетий. Изучением временной последовательности исторических событий занимается специальная дисциплина — хронология, что в переводе с древнегреческого означает «наука о времени». Лента времени Для правильного ведения счёта времени в истории необходимо уметь пользоваться лентой времени. Лента времени — линия, на которой в хронологической последовательности отмечаются исторические события. Лента времени На ленте времени вертикальной разделительной чертой отмечено начало нашей эры. Слева от черты располагаются годы до нашей эры, справа — нашей эры.
В обоих направлениях время отмечается по возрастанию. Чем больше дата слева от вертикальной черты, тем раньше было это историческое событие. Справа от черты наоборот — чем больше число года, тем позже произошло событие. Например, по легенде, Рим был основан в 753 г.
Как менялось название российского государства
Таким образом, римские цифры веками используются для обозначения особо значимых событий или чтобы придать некую торжественность, выделить. Век 20-й и век 21-й. В чём отличия, какие знаки времени можно выделить? В статье приведены разные способы обозначения веков в итальянском языке. XXI (21-й) век по Григорианскому календарю — текущий век. Начался 1 января 2001 года и продлится до 31 декабря 2100 (часто встречаются неправильные границы века.
КОГДА НАСТУПИТ XXI ВЕК?
В этот день Церковь празднует Сретение Владимирской иконы Божией Матери в память чудесного избавления от полчищ Тамерлана. Поэтому, хотя в XIX веке 12 юлианское августа соответствовало 7 сентября и именно этот день закрепился в советской традиции как дата Бородинской битвы , для православных людей славный подвиг русского воинства был совершен в день Сретения — то есть 8 сентября по н. Строго говоря, «нового стиля» не существовало до февраля 1918 года просто в разных странах действовали разные календари. Поэтому и говорить о датах «по новому стилю» можно только применительно к современной практике, когда необходимо пересчитать юлианскую дату на гражданский календарь. Таким образом, даты событий русской истории до 1918 года следует давать по юлианскому календарю, в скобках указывая соответствующую дату современного гражданского календаря — так, как это делается для всех церковных праздников.
Если же речь идет о дате международного события, датировавшегося уже современниками по двойной дате, такую дату можно указывать через косую черту.
Этот календарь расскажет, сколько будет рабочих, выходных, праздничных и предпраздничных дней в каждом месяце. Он проинформирует о переносе выходных или рабочих дней на другие дни. Также в производственном календаре представлены нормы продолжительности рабочего времени по месяцам, кварталам и за год в целом. Информация о праздниках. Календарь праздников содержит перечень государственных, церковных и профессиональных праздников.
На последнем из них был рассмотрен проект изменения календаря, подготовленный итальянским врачом и астрономом Луиджи Лилио.
Суть проекта была достаточно простой. Луиджи Лилио лат. Алоизий Лилий не использовал аппарат «цепных дробей» см. Таким образом, за 400 лет число високосных лет должно быть равно не 100, как в юлианском календаре, а 97. Период в 400 лет был выбран Луиджи Лилио без всякого математического или астрономического обоснования, а из соображений удобства введения нового календаря. Для того чтобы согласие календаря с астрономическим годом стало хорошим, достаточно было каждые 400 лет убирать трое суток из 100 високосных лет. Нужно было лишь договориться, какие три високосных года станут простыми без 29 февраля.
Логичным было предложение взять те годы, две первых цифры которых не кратны четырем. Например, 1600 год в проекте реформы оставался високосным, как и 1604, 1608,... Это же относится к 1800 и 1900 годам. А 2000 год опять станет високосным. И для того чтобы «выровнять» календарь с астрономическим временем, необходимо было в какой-то момент «убрать» из календаря 10 дней. Это-то и было самым трудным в реформе для ее понимания простыми людьми. Да и не только простыми.
Григорий XIII Для внедрения реформы во всем христианском мире нужен был авторитет выше авторитетов властителей отдельных государств. Таким авторитетом в 1570-е годы обладал только римский папа — глава католической конфессии христианства. Но несмотря на одобрение собором проекта реформы, в течение 14 лет папы Пий IV и Пий V не решились на активные действия. И только Григорий ХIII римский папа с 1572 по 1583 год , да и то не сразу после избрания, а за месяц до своей кончины 24 февраля 1582 года, издал постановление буллу , озаглавленное «Среди важнейших» Inter gravissimas. Вот выдержки из него: «Было заботою нашей не только восстановить равноденствие на издревле назначенном ему месте, от которого со времени Никейского собора оно отступило на десять дней приблизительно, и полнолунию вернуть его место, но и установить также способ и правило, которым и будет достигнуто, чтобы в будущем равноденствие и полная луна со своих мест никогда не сдвигались... А посему мы предписываем и повелеваем касательно месяца октября текущего 1582 года, чтобы десять дней от третьего дня перед нонами 5 октября до кануна ид 14 октября включительно были изъяты». Помимо этого был приведен в порядок и 19-летний цикл смен лунных фаз, чтобы можно было день пасхи рассчитывать заранее.
Одновременно начал происходить и переход к современному счету дней от первого до последнего дня месяца. Новая календарная система получила название григорианской, или нового стиля н. А за юлианским календарем закрепилось название старый стиль ст. В конце XVI века различие датировок событий по старому и новому стилям составляло 10 дней. Таким же оно осталось и в XVII веке, поскольку 1600 год был високосным и в старом юлианском и в новом григорианском календаре. Но уже в XVIII веке различие составляло уже 11 дней, поскольку 1700 год был в юлианском календаре високосным, а в новом календаре он високосным не был 17 не делится на 4 без остатка. По такой же причине в XIX веке разница между старым стилем и новым составляла 12 дней, а в ХХ веке — 13 дней.
В нашем ХХI веке различие по-прежнему составляет 13 дней, поскольку 2000 год был високосным в обоих календарях, но в ХХII веке различие увеличится уже до 14 дней. Григорианский календарь Григорианский календарь заметно более точен, чем юлианский. Его среднегодовая погрешность составляет всего лишь 30 секунд. Если по юлианскому календарю сдвиг весеннего равноденствия на 1 сутки происходит за 128 лет, то по григорианскому календарю такой сдвиг произойдет за 2800 лет! У григорианского календаря есть и недостатки. В частности, из-за неравномерного распределения в 400-летнем периоде трех «убранных» високосных лет дни равноденствий перемещаются по календарю в пределах двух-трех суток. И вполне возможно, что уже в нынешнем столетии будет создан и внедрен другой календарь, такой же точный и в то же время более удобный.
Таких проектов много, есть даже комиссия ООН, которая должна заниматься этой проблемой. Внедрение нового стиля Как происходило внедрение григорианского календаря? В католических странах реформа 1582 года была принята практически сразу из-за угрозы отлучения от церкви в случае непослушания. Но в протестантских странах она вызвала бурю протестов и ожесточенную полемику даже среди ученых. Особенно ретивыми в этом проявили себя немецкие, голландские и швейцарские протестанты, которые считали, что «лучше разойтись с Солнцем, чем сойтись с папой». В то же время самый знаменитый тогда немецкий астроном Иоганн Кеплер, хоть и был протестантом, выступил за реформу. Но к нему не прислушались, и внедрение реформы календаря в протестантских странах растянулось на несколько десятков лет.
Дольше всего сопротивлялась Англия, что, в частности, до сих пор вызывает неопределенность с днем рождения великого Ньютона. По григорианскому календарю самое раннее празднование пасхи — 2 апреля, а самое позднее — 8 мая. Для определения дня пасхи была еще до реформы календаря разработана система, в которой большую роль играл и 19-летний цикл календарного повторения лунных фаз. Было создано несколько арифметических систем с использованием специальных слов и обозначений. В 1800 году 23-летний будущий великий «король математиков» Карл Фридрих Гаусс предложил сравнительно простой алгоритм определения дня пасхи его легко можно найти в интернете. В Россию христианство пришло из Византии в конце IХ века. Тогда христианская церковь была единой.
Когда в ХI веке произошел раскол христианства на две конфессии, Русь осталась верна византийской конфессии, которая получила название ортодоксальной верной решениям только семи первых вселенских соборов. Сейчас в России эту конфессию христианства принято называть православной церковью. Россия сохранила верность старине и после государственного конца Византии в 1453 году.
Источники: как определить век по годам 1564 1110 1694 1724 годы перевести в века римскими цифрами Совет полезен?
Vll какой это век
В исторической науке на сегодняшний день принято использовать несколько систем цифирного обозначения. конкретно для веков принято применять римскую систему. Ответ на вопрос: Века, таблица с переводом. Ответы на часто задаваемые вопросы при подготовке домашнего задания по всем школьным предметам. Новое время — это период истории между Средними веками и Новейшим временем. Век Век Очень давно люди договорились использовать точку отсчёта времени. Ее обозначили на линии времени нулём и стали считать началом нашей эры.
Обозначение веков и годов
Ответ на этот вопрос и сложен, и прост. Трудно назвать точную цифру, и на это есть несколько причин: язык постоянно развивается, обновляется одни слова появляются в речи, другие исчезают, уходят ; масса диалектных слов пока учеными просто не зафиксирована и ни в каких словарях не описана; почти все профессии и научные дисциплины обладают «собственными» лексиконами, которые не входят в общенародную литературную речь; есть и другие причины. Ономастика изучает фоновые знания носителей конкретного...
Первым из этих способов была, естественно, полная запись даты. Вторым способом, была, сокращенная форма записи. Даты писали так: X. Мозаичное изображение Иисуса Христа на куполе «Святой Софии» в Стамбуле Буква «X» — одна из самых распространенных средневековых монограмм, встречающаяся до сих пор в старинных иконах, мозаиках, фресках и книжных миниатюрах. Она символизирует имя Христа.
Именно из этих сокращений и возникли, принятые сегодня обозначения веков. Правда, буква «X»уже читается нами не как буква, а как римская цифра 10. Когда же писали дату арабскими цифрами, то перед ними ставили букву «I» - первую букву от имени «Иисус», написанного по-гречески и, тоже, отделяли ее точкой. Но позже, буква эта была объявлена «единицей», якобы, обозначавшей «тысячу». Вот средневековая английская гравюра датированная, якобы, 1463 годом. Но если хорошо присмотреться, то можно увидеть, что первая цифра единица т. Точно такая же, как и буква слева в слове «DNI».
Следовательно, дата, написанная на этой гравюре не 1463 год, как утверждают современные хронологи и искусствоведы, а 463 год «от Иисуса», то есть «от Рождества Христова». На этой старинной гравюре немецкого художника Иоганса Бальдунга Грина помещено его авторское клеймо с датой якобы 1515 год. Но при сильном увеличении этого клейма, можно отчетливо увидеть в начале даты латинскую букву «I» от Иисуса точно такую же, как и в монограмме автора «IGB» Иоганс Бальдунг Грин , а цифра «1» здесь написана иначе. Значит, дата на этой гравюре не 1515 год, как утверждают современные историки, а 515 год от «Рождества Христова». На титульной странице книги Адама Олеария «Описание путешествия вМосковию» изображена гравюра с датой якобы 1566 года. На первый взгляд латинскую букву «I» в начале даты можно принять за единицу, но если внимательно присмотреться, то мы отчетливо увидим, что это вовсе не цифра, а прописная буква «I», точно такая же, как в этом фрагменте из старинного рукописного немецкого текста. Поэтому реальная дата гравюры на титульном листе средневековой книги Адама Олеария не 1566 год, а 566 год от «Рождества Христова».
Такая же прописная латинская буква «I» стоит в начале даты на старинной гравюре, изображающей русского царя Алексея Михайловича Романова. Гравюру эту изготовил средневековый западноевропейский художник, как мы уже теперь понимаем, не в 1664 году, а в 664 - от «Рождества Христова». А на этом портрете легендарной Марины Мнишек жены Лжедмитрия I , прописная буква «I» при большом увеличении совсем не похожа на цифру один, как бы мы это себе не пытались представить. И хотя историки относят этот портрет к 1609-у году — здравый смысл нам подсказывает, что истинная дата изготовления гравюры — 609 год от «Рождества Христова». На гравюре средневековогонаписано крупно: «Anno т. Заглавная буква «I», стоящая перед цифрами даты изображена настолько явно, что ни с какой «единицей» ее спутать невозможно. Изготовлена эта гравюра, без сомнения, в 658 году от «Рождества Христова».
Кстати, двуглавый орел, расположенный в центре герба, говорит нам о том, что Нюрнберг в те далекие времена входил в состав Российской Империи. Точно такие, же, заглавные буквы «I» можно увидеть и в датах на старинных фресках в средневековом «Шильенском замке», расположенном в живописной швейцарской ривьере на берегу Женевского озера близ города Монтрё. Даты, «от Иисуса 699 и 636 год», историки и искусствоведы, сегодня, читают, как 1699 и 1636год, объясняя, это несоответствие, невежеством неграмотных средневековых художников, допускавших ошибки в написании цифр.
Присутствующие утвердили основные догматы христианской веры, в частности — празднование Пасхи ежегодно в 1-е воскресенье после весеннего равноденствия и последующего за ним первого полнолуния. Вместе с этим составили и Пасхалии — рассчитали, на какие дни будет припадать Пасха в последующие года. Все это непосредственно связано с темой изменения летоисчисления. В дальнейшем к теме Пасхалий возвращались неоднократно, чтобы откорректировать или дополнить таблицы. Он поручил римскому аббату Дионисию Малому, у которого уже был подобный опыт, работу над Пасхалиями.
Интересно: Почему античные статуи белые? Дионисий с заданием справился, однако обнаружил, что в писаниях все еще используется эра Диоклетиана. Продолжать летоисчисление по данной системе, с учетом антихристианских настроев императора, сторонника язычества, было бы неразумно. Интересный факт: в России переход на новое летоисчисление произошел благодаря указу Петра I 1699 г. С момента его издания новый год начинался 1 января 1700 вместо 1 марта 7208. Другие методы также оказались неподходящими, поскольку требовалась исключительно христианская система. Поэтому Дионисий Малый предложил вести счет лет совершенно иначе — от даты рождения Иисуса Христа. Проблема была только в том, что ее никто не знал.
Аббат решил вычислить эту дату самостоятельно. Как именно он это сделал, неизвестно. В распоряжении Дионисия было лишь множество евангельских писаний, где, тем не менее, точных сведений тоже никто не называл. Единственная конкретная информация — воскрешение 25 марта в праздник Пасхи, воскресенье.
И тут же: "Православные Церкви, перешедшие на новоюлианский календарь, сохранили Александрийскую пасхалию, основанную на юлианском календаре, а непереходящие праздники стали отмечаться по григорианским датам. Я вообще ничего не понимаю. Это невозможно понять. Я так поняла, насколько хватило моих умственных способностей. Есть реальное 25 декабря, это сегодня, 2022 года.
Есть какое-то 25 декабря, которое будет в тот же день, в который будет 7 января 2023 года. По новому стилю. Но в то же время этот будет и 25 декабря по старому стилю. На фоне прошедшего 25 декабря, которое сегодня, 2022 года. Это просто надо очень постараться, чтобы наворотить такое. И, главное, без каких-либо серьезных причин. Те, что описаны в статье, невозможно назвать серьезными, чтобы обосновать такой хаос с тремя календарями. Положа руку на сердце, дерзну сказать, что Христу все равно на все эти три календаря, Ему важно совсем другое. И учинить раскол по поводу принятия другого календаря - это как высосать проблему из пальца.
Я бы лично никакого раскола не сотворила бы - было бы из чего его учинять. Ещё хотела уточнить: 25 декабря то, которое сегодня, 2022 года - это какой из трёх календарей?
10. РЕФОРМА ЗАПИСИ ДАТ В XVI — НАЧАЛЕ XVII ВЕКА
Для обозначения века также можно использовать арабские цифры, например, «20 век» или «21 век». Именно такой способ обозначения веков позволяет учитывать границы временных периодов и упорядочивать исторические события по хронологии. Например, если событие произошло в XVI–XVII веках, прибавлять 10 дней, если в XVIII веке – 11, в XIX веке – 12, наконец, в XX и XXI веках – 13 дней. Если ориентироваться науказ Петра I, новый век долженначаться в 2000 году. В середине XIX века аристократы наряжали рождественскую елку и соревновались, чья выше и богаче украшена. Слово Сварга в древности обозначало все обжитые территории — Вселенные нашей Действительности.
10. РЕФОРМА ЗАПИСИ ДАТ В XVI — НАЧАЛЕ XVII ВЕКА
XXI (21-й) век по Григорианскому календарю — текущий век. Начался 1 января 2001 года и продлится до 31 декабря 2100 (часто встречаются неправильные границы века. Обозначения веков простыми словами. *Именно поэтому абсолютно неверно утверждение о том, что в 2020 году Россия вступила в новое десятилетие XXI века.
Соотношение веков годов тысячелетий (Таблица)
Ученый-астроном профессор Е. Предтеченский в своей работе «Церковное время: счисление и критический обзор существующих правил определения Пасхи» отмечал: «Этот коллективный труд Прим. Позднейшая римская пасхалия, принятая теперь западной церковью, является, по сравнению с александрийской, до такой степени тяжеловесною и неуклюжею, что напоминает лубочную картинку рядом с художественным изображением того же предмета. При всём том эта страшно сложная и неуклюжая машина не достигает ещё и предположенной цели». Кроме того, схождение Благодатного огня у Гроба Господня совершается в Великую Субботу по юлианскому календарю. Читайте также: Календарь постов и трапез Поскольку вы здесь...
У нас есть небольшая просьба. Эту историю удалось рассказать благодаря поддержке читателей. Даже самое небольшое ежемесячное пожертвование помогает работать редакции и создавать важные материалы для людей. Сейчас ваша помощь нужна как никогда.
Если дата записывается только цифрами, используется следующий формат: две цифры — день, две цифры — месяц, четыре цифры — год. В справочных и особо компактных изданиях для обозначения года используются две цифры. Перед числами до 10 ставится ноль, чтобы сохранить стандартный цифровой формат записи даты: число и месяц записываются двумя цифрами. Мы же не пишем «05 книг и 05 журналов». В нашем случае — разные слова, поэтому между ними нужно соединительное тире, которое используется при записи интервалов. Артемий Лебедев в своём «Ководстве» пишет, что классическое тире для обозначения диапазона выглядит длинноватым, поэтому предлагает перейти на короткое. Короткое тире —. Длинное тире —. В классических справочниках по русскому языку и типографике ничего о коротком тире не говорится.
В более узком смысле веком называют не вообще столетний интервал времени, а конкретный, номерной отрезок, повторяющийся каждые 100 лет, исходная точка зависит от используемого календаря способа летосчисления. В григорианском календаре Согласно григорианскому календарю , I век н. II век начался в 101 году, III век — в 201 и т. Последний год века начинается с номера этого века например, 2000 год — последний год XX века. Поэтому, если основываться на летосчислении по григорианскому календарю, неверно распространённое утверждение о том, что XXI век и 3-е тысячелетие начались 1 января 2000 года ; на самом деле это произошло 1 января 2001 года.
Пожалуй, ответом будет нет. Думаю, тут сокрыт фундаментальный принцип: кто-то хочет всё представлять в обозначениях, и не использовать ничего другого. А кому-то не нужны специальные обозначения. А кто-то пользуется в Mathematica FullForm. Однако с этой формой весьма утомительно работать. Другая возможность заключается в том, что всему можно присвоить специальные обозначения. Получится что-то наподобие APL или каких-то фрагментов математической логики. Вот пример этого. Довольно трудно читать. Вот другой пример из оригинальной статьи Тьюринга, в которой содержатся обозначения для универсальной машины Тьюринга, опять-таки — пример не самой лучшей нотации. Она тоже относительно нечитабельная. Думаю, эта проблема очень близка к той, что возникала при использовании очень коротких имён для команд. К примеру, Unix. Ранние версии Unix весьма здорово смотрелись, когда там было небольшое количество коротких для набора команд. Но система разрасталась. И через какое-то время было уже большое количество команд, состоящих из небольшого количества символов. И большинство простых смертных не смогли бы их запомнить. И всё стало выглядеть совершенно непонятным. Та же ситуация, что и с математической или другой нотацией, если на то пошло. Люди могут работать лишь с небольшим количеством специальных форм и символов. Возможно, с несколькими десятками. Соизмеримым с длиной алфавита. Но не более. А если дать им больше, особенно все и сразу, в голове у них будет полная неразбериха. Это следует немного конкретизировать. Вот, к примеру, множество различных операторов отношений. Но большинство из них по сути состоят из небольшого количества элементов, так что с ними проблем быть не должно. Конечно, принципиально люди могут выучить очень большое количество символов. Потому что в языках наподобие китайского или японского имеются тысячи иероглифов. Однако людям требуется несколько дополнительных лет для обучения чтению на этих языках в сравнении с теми, которые используют обычный алфавит. Если говорить о символах, кстати, полагаю, что людям гораздо легче справится с какими-то новыми символами в качестве переменных, нежели в качестве операторов. И весьма занятно рассмотреть этот вопрос с точки зрения истории. Один из наиболее любопытных моментов — во все времена и практически без исключения в качестве переменных использовались лишь латинские и греческие символы. Ну, Кантор ввёл алеф, взятый из иврита, для своих кардинальных чисел бесконечных множеств. И некоторые люди утверждают, что символ частной производной — русская д, хотя я думаю, что на самом деле это не так. Однако нет никаких других символов, которые были бы заимствованы из других языков и получили бы распространение. Кстати, наверняка вам известно, что в английском языке буква "e" — самая популярная, затем идёт "t", ну и так далее. И мне стало любопытно, каково распределение по частоте использования букв в математике. Потому я исследовал сайт MathWorld , в котором содержится большое количество математической информации — более 13 500 записей, и посмотрел, каково распределение для различных букв [к сожалению, эту картинку, сделанную Стивеном, не удалось осовременить — прим. Можно увидеть, что "e" — самая популярная. И весьма странно, что "a" занимает второе место. Это очень необычно. Я немного рассказал об обозначениях, которые в принципе можно использовать в математике. Так какая нотация лучше всего подходит для использования? Большинство людей, использующих математическую нотацию, наверняка задавались этим вопросом. Однако для математики нет никакого аналога, подобного "Современному использованию английского языка" Фаулера для английского языка. Была небольшая книжка под названием Математика в печати, изданная AMS, однако она в основном о типографских приёмах. В результате мы не имеем хорошо расписанных принципов, аналогичным вещам наподобие инфинитивов с отдельными частицами в английском языке. Если вы используете StandardForm в Mathematica, вам это больше не потребуется. Потому что всё, что вы введёте, будет однозначно интерпретировано. Однако для TraditionalForm следует придерживаться некоторых принципов. К примеру, не писать , потому что не совсем ясно, что это означает. Будущее Чтобы закончить, позвольте мне рассказать немного о будущем математической нотации. Какой, к примеру, должна бы быть новая нотация? В какой-нибудь книге символов будет содержаться около 2500 символов, популярных в тех или иных областях и не являющимися буквами языков. И с правильным написанием символов, многие из них могли бы идеально сочетаться с математическими символами. Для чего же их использовать? Первая приходящая на ум возможность — нотация для представления программ и математических операций. В Mathematica, к примеру, представлено довольно много текстовых операторов, используемых в программах. И я долгое время считал, что было бы здорово иметь возможность использовать для них какие-то специальные символы вместо комбинаций обычных символов ASCII [последние версии Mathematica полностью поддерживают Unicode — прим. Оказывается, иногда это можно реализовать весьма просто. Поскольку мы выбрали символы ASCII, то часто можно получить некоторые символы, очень близкие по написанию, но более изящные. И это всё реализуемо за счёт того, что парсер в Mathematica может работать в том числе и со специальными символами. Я часто размышлял о том, как бы расширить всё это. И вот, постепенно появляются новые идеи. Обратите внимание на знак решётки , или номерной знак, или, как его ещё иногда называют, октоторп, который мы используем в тех местах, в которые передаётся параметр чистой функции. Он напоминает квадрат с щупальцами. И в будущем, возможно, он будет обозначаться симпатичным квадратиком с маленькими засечками, и будет означать место для передачи параметра в функцию. И он будет более гладким, не похожим на фрагмент обычного кода, чем-то вроде пиктограммы. Насколько далеко можно зайти в этом направлении — представлении вещей в визуальной форме или в виде пиктограмм? Ясно, что такие вещи, как блок-схемы в инженерии, коммутативные диаграммы в чистой математике, технологические схемы — все хорошо справляются со своими задачами. По крайней мере до настоящего момента. Но как долго это может продолжаться? Не думаю, что уж очень долго. Думаю, некоторые приближаются к некоторым фундаментальным ограничениям людей в обработке лингвистической информации. Когда языки более или менее контекстно-свободные, имеют древовидную структуру, с ними можно многое сделать. Наша буферная память из пяти элементов памяти и что бы то ни было спокойно сможет их разобрать. Конечно, если у нас будет слишком много вспомогательных предложений даже на контекстно-свободном языке, то будет вероятность исчерпать стековое пространство и попасть впросак. Но, если стек не будет заходить слишком глубоко, то всё будет работать как надо. Но что насчёт сетей? Можем ли мы понимать произвольные сети? Я имею в виду — почему у нас должны быть только префиксные, инфиксные, оверфиксные операторы? Почему бы операторам не получать свои аргументы через какие-то связи внутри сети? Меня особенно интересовал этот вопрос в контексте того, что я занимался некоторыми научными вопросами касательно сетей. И мне действительно хотелось бы получить некоторое языковое представление для сетей. Но не смотря на то, что я уделил этому вопросу довольно много времени — не думаю, что мой мозг смог бы работать с подобными сетями так же, как с обычными языковыми или математическими конструкциями, имеющими одномерную или двумерную контекстно-свободную структуру. Так что я думаю, что это, возможно, то место, до которого нотация не сможет добраться. Вообще, как я упоминал выше, это частый случай, когда язык или нотация ограничивают наше пространство мыслимого. Итак, что это значит для математики? В своём научном проекте я разрабатывал некоторые основные обобщения того, что люди обычно относят к математике. И вопрос в том, какие обозначения могут быть использованы для абстрактного представления подобных вещей. Что ж, я не смог пока что полностью ответить на этот вопрос. Однако я обнаружил, что, по крайней мере в большинстве случаев, графическое представление или представление в виде пиктограмм гораздо эффективнее обозначений в виде конструкций на обычных языках. Возвращаясь к самому началу этого разговора, ситуация напоминает то, что происходило тысячи лет в геометрии. В геометрии мы знаем, как представить что-то в графическом виде. Ещё со времён древнего Вавилона. И чуть более ста лет назад стало ясно, как можно формулировать геометрические задачи с точки зрения алгебры. Однако мы всё ещё не знаем простого и ясного способа представлять геометрические схемы в обозначениях на естественном языке. И моя догадка состоит в том, что практически все эти математические вещи лишь в небольшом количестве могут быть представлены в обозначениях на естественном языке. Однако мы — люди — легко воспринимаем лишь эти обозначения на естественном языке. Так что мы склонны изучать те вещи, которые могут быть представлены этим способом. Конечно, подобные вещи не могут быть тем, что происходит в природе и вселенной. Но это уже совсем другая история. Так что я лучше закончу на этом. Большое спасибо. Примечания В ходе обсуждения после выступления и во время общения с другими людьми на конференции возникло несколько моментов, которые следовало бы обсудить. Эмпирические законы для математических обозначений При изучении обычного естественного языка были обнаружены различные историко-эмпирические законы. Пример — Закон Гримма , которые описывает переносы в согласных на индоевропейских языках. Мне было любопытно, можно ли найти подобные историко-эмпирические законы для математического обозначения. Дана Скотт предложила такой вариант: тенденция к удалению явных параметров. Как пример, в 60 годах 19 века часто каждый компонент вектора именовался отдельно. Но затем компоненты стали помечать индексами — как ai. И вскоре после этого — в основном после работ Гиббса — векторы стали представлять как один объект, обозначаемый, скажем, как или a. С тензорами всё не так просто. Нотацию, избегающую явных индексов, обычно называют координатно-свободной. И подобная нотация — частое явление в чистой математике. Однако в физике данный подход считается слишком абстрактным, потому явные индексы используются повсеместно. В отношении функций так же имеется тенденция явно не упоминать параметры. В чистой математике, когда функции рассматриваются через сопоставления, они часто упоминаются лишь по своему имени — просто f, без каких-либо параметров. Однако это будет хорошо только тогда, когда у функции только один параметр. Когда параметров несколько, обычно становится непонятно, как будут работать те потоки данных, которые ассоциированы с параметрами. Однако, ещё в 20-х годах 20 века было показано, что можно использовать так называемые комбинаторы для определения подобных потоков данных без какого-либо явного указания параметров. Комбинаторы не использовались в основных течениях математики, однако время от времени становились популярными в теории вычислений, хотя их популярность заметно поубавилась из-за несовместимости с идеей о типах данных. Комбинаторы довольно легко задать в Mathematica через задание функции с составным заголовком. Никакие переменные не требуются. Проблема заключается в том, что выражения получаются непонятными, и с этим ничего не поделать. Я пытался найти какие-то способы для более ясного представления их и сопряжённых с ними вычислений. Я добился небольшого прогресса, однако нельзя сказать, что задача была решена. Печатные обозначения против экранных Некоторые спрашивали о разнице в возможностях печатных и экранных обозначений. Чтобы можно было понимать обозначения, они должны быть похожими, и разница между ними не должна быть очень большой. Но есть некоторые очевидные возможности. Во-первых, на экране легко можно использовать цвет. Можно было бы подумать, что было каким-то образом удобно использовать разные цвета для переменных. Мой опыт говорит о том, что это удобно для разъяснения формулы. Однако всё станет весьма запутанным, если, к примеру, красному x и зелёному x будут соответствовать разные переменные. Другая возможность состоит в том, чтобы иметь в формуле какие-то анимированные элементы. Полагаю, что они будут столь же раздражающими, как и мигающий текст, и не будут особо полезными. Пожалуй, идея получше — иметь возможность скрывать и разворачивать определённые части выражения — как группы ячеек в ноутбуке Mathematica. Тогда будет возможность сразу получить представление обо всём выражении, а если интересны детали, то разворачивать его далее и далее. Письменные обозначения Некоторые могли бы подумать, что я уж слишком много времени уделил графическим обозначениям. Хотелось бы прояснить, что я нахожу довольно затруднительным графические обозначения обычных математических действий и операций. В своей книге A New Kind of Science я повсеместно использую графику, и мне не представляется никакого другого способа делать то, что я делаю. И в традиционной науке, и в математике есть множество графических обозначений, которые прекрасно работают, пускай и в основном для статичных конструкций. Теория графов — очевидный пример использования графического представления. К ним близки структурные диаграммы из химии и диаграммы Фейнмана из физики. В математике имеются методы для групповых теоретических вычислений, представленные отчасти благодаря Предрагу Цвитановицу, и вот они основаны на графическом обозначении. И в лингвистике, к примеру, распространены диаграммы для предложений, показывающие дерево лингвистических компонентов и способы их группировки для образования предложения. Все эти обозначения, однако, становятся малопригодными в случаях исследования каких-то очень крупных объектов. Однако в диаграммах Фейнмана обычно используется две петли, а пять петель — максимум, для которого когда-либо были сделаны явные общие вычисления. Шрифты и символы Я обещал рассказать кое-что о символах и шрифтах. В Mathematica 3 нам пришлось проделать большую работу чтобы разработать шрифты для более чем 1100 символов, имеющих отношение к математической и технической нотации. Получение правильной формы — даже для греческих букв — часто было достаточно сложным. С одной стороны, мы хотели сохранить некоторую традиционность в написании, а с другой — сделать греческие буквы максимально непохожими на английские и какие бы то ни было другие. В конце концов я сделал эскизы для большинства символов. Вот к чему мы пришли для греческих букв. Мы разработали Times-подобный шрифт, моноширинный наподобие Courier, а сейчас разрабатываем sans serif. Разработать шрифт Courier было непростой задачей. Нужно, к примеру, было придумать, как сделать так, чтобы йота занимала весь слот под символ. Так же сложности были со скриптовыми и готическими фактурными шрифтами. Часто в этих шрифтах буквы настолько непохожи на обычные английские, что становятся абсолютно нечитаемыми. Мы хотели, чтобы эти шрифты вписывались в соответствующую им тему, и, тем не менее, обладали бы теми же габаритами, что и обычные английские буквы. Вот, что у нас получилось: Веб сайт fonts. Поиск математических формул Некоторые люди спрашивали о поиске математических формул [после создания Wolfram Alpha появился гигантский объем баз данных, доступных в языке Wolfram Language, теперь можно получить огромный массив информации о любых формулах с помощью функции MathematicalFunctionData — прим. Очевидно легко сказать, что же такое поиск обычного текста. Единственная вопрос заключается в эквивалентности строчных и прописных букв. Для математических формул всё сложнее, потому что есть ещё много различных эквивалентностей. Если спрашивать о всех возможных эквивалентностях, то всё станет слишком сложным. Но, если спросить об эквивалентностях, которые просто подразумевают замену одной переменной другой, то всегда можно определить, эквивалентны ли два выражения. Однако, для этого потребуется мощь обнаружителя одинаковых паттернов Mathematica. Мы планируем встроить возможности по поиску формул в наш сайт functions. Невизуальные обозначения Кто-то спрашивал о невизуальных обозначениях. Первая мысль, которая у меня возникла, заключалась в том, что человеческое зрение даёт гораздо больше информации, чем, скажем, слух.
Наша эра - Common Era
Для обозначения веков при написании и печати используют заглавные буквы английского алфавита – I, V и X, которые соответствуют арабским цифрам – от 1 до 10. Таблица соответствия веков и лет (с 1-го века до 21 века) нашей эры. Следует различать число единиц времени, когда применяется сокращенное обозначение единиц (Прошло 6 ч 30 мин 45 с), от обозначения времени дня, когда чаще всего словачасы.