Новости почему поверхностное натяжение зависит от рода жидкости

Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? Следовательно, силы поверхностного натяжения будут действовать слабее.

Почему поверхностное натяжение зависит от рода жидкости кратко

Почему поверхностное натяжение зависит от вида жидкости? Иными словами, в зависимости от силы взаимодействия молекул жидкостного раствора зависит значение сила натяжения поверхности.
Вода с низким поверхностным натяжением Как зависит поверхностное натяжение жидкости от полярности еѐ молекул?

Остались вопросы?

#ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать. Найди верный ответ на вопрос почему поверхностное натяжение зависит от рода жидкости по предмету Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Сила поверхности натяжения зависит от плотности жидкости. (следовательно и от рода жидкости).

Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)

  • Что такое поверхностное натяжение?
  • Поверхностное натяжение
  • Загадки поверхностного натяжения: почему жидкость любит себя?
  • Почему вода имеет поверхностное натяжение?
  • Ответы и объяснения
  • Почему поверхностное натяжение зависит от вида жидкости ℹ️

Что такое поверхностное натяжение?

Изучение этих свойств помогает лучше понять поведение жидкостей и разрабатывать новые технологии и материалы. Что такое поверхностное натяжение? Каждая молекула внутри жидкости оказывается под влиянием сил притяжения со стороны других молекул. Однако, на поверхности жидкости, молекулы находятся только с одной стороны, поэтому здесь силы притяжения оказываются более сильными, что создает поверхностное натяжение.

Силы притяжения молекул на поверхности жидкости стремятся уменьшить площадь поверхности, так как таким образом они занимают более устойчивое состояние и сложнее испаряются. Поверхностное натяжение является играющим огромную роль во многих процессах, таких как капиллярное действие, смачивание, образование пузырьков, и даже движение вязкой жидкости по трубе. Оно также зависит от температуры и рода жидкости.

Как поверхностное натяжение зависит от температуры? Температура является одним из факторов, которые влияют на поверхностное натяжение жидкости. Обычно, с увеличением температуры поверхностное натяжение уменьшается.

Это происходит из-за того, что с повышением температуры молекулы жидкости получают больше кинетической энергии и начинают двигаться быстрее.

Так как площадь поверхности мениска больше, чем площадь внутреннего сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться и этим создает дополнительное давление pл, которое при смачивании вогнутый мениск направлено от жидкости, а при несмачивании выпуклый мениск — внутрь жидкости. Величина этого давления была определена французским физиком Лапласом, поэтому его называют лапласовским давлением. Зарегистрируйте блог на портале Pandia. Бесплатно для некоммерческих и платно для коммерческих проектов. Регистрация, тестовый период 14 дней. Условия и подробности в письме после регистрации.

Лапласовское давление — дополнительное давление, которое создается искривленной поверхностью жидкости. При смачивании вогнутый мениск оно направлено от жидкости, а при несмачивании выпуклый мениск — внутрь жидкости. Для сферической формы свободной поверхности жидкости с радиусом R лапласовское довление выражается формулой Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра — капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие — опускаются. Подъем смачивающей жидкости в капилляре. Верхний конец капилляра открыт. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде, а уровень воды в стеклянном капилляре поднимается. Капиллярные явления играют большую роль в природе и технике. Множество мельчайших капилляров имеется в растениях. В деревьях по капиллярам влага из почвы поднимается до вершин деревьев, где через листья испаряется в атмосферу. В почве имеются капилляры, которые тем уже, чем плотнее почва.

Вода по этим капиллярам поднимается до поверхности и быстро испаряется, а земля становится сухой. Ранняя весенняя вспашка земли разрушает капилляры, т. Процесс кровообращения связан с капиллярностью.

Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости. Подвижная сторона проволочной рамки в равновесии под действием внешней силы и результирующей сил поверхностного натяжения.

Для равновесия подвижной стороны рамки к ней нужно приложить внешнюю силу. Открыть мини-сайт на портале Pandia для ведения проекта. PR, контент-маркетинг, блог компании, образовательный, персональный мини-сайт. Поверхностное натяжение это физическая величина, равная отношению силы поверхностного натяжения F, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине L этой границы. Силы поверхностного натяжения определяют форму и свойства капель жидкости, мыльного пузыря.

Эти силы удерживают на поверхности воды стальную иглу и насекомое водомерку, удерживают влагу на поверхности ткани. Вблизи границы между жидкостью, твердым телом и газом форма свободной поверхности жидкости зависит от сил взаимодействия молекул жидкости с молекулами твердого тела взаимодействием с молекулами газа или пара можно пренебречь. Если капли воды поместить на поверхность чистого стекла, то они будут растекаться, а если на жирную поверхность, то они примут форму, близкую к форме шара. Если силы взаимодействия молекул жидкости с молекулами твердого тела больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела случай с каплями воды на стекле. Краевой угол — угол между поверхностью твердого тела и касательной к поверхности жидкости в точке соприкосновения.

Искривленная поверхность жидкости в узких цилиндрических трубках или около стенок сосуда называется мениском. Поверхность смачивающей жидкости вблизи твердого тела поднимается, и мениск — вогнутый. У несмачивающей жидкости её поверхность вблизи твердого тела несколько опускается, и мениск — выпуклый. Особенно хорошо наблюдается искривление мениска жидкости в тонких трубках, называемых капиллярами. Если в сосуд с жидкостью опустить капилляр, то жидкость в нем поднимется или опустится на некоторую высоту h.

Так как площадь поверхности мениска больше, чем площадь внутреннего сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться и этим создает дополнительное давление pл, которое при смачивании вогнутый мениск направлено от жидкости, а при несмачивании выпуклый мениск — внутрь жидкости. Величина этого давления была определена французским физиком Лапласом, поэтому его называют лапласовским давлением. Зарегистрируйте блог на портале Pandia. Бесплатно для некоммерческих и платно для коммерческих проектов. Регистрация, тестовый период 14 дней.

Условия и подробности в письме после регистрации.

Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения. Например, их добавляют в жидкие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности пятен после высыхания.

почему поверхностное натяжение зависит от рода жидкости

Почему площадь свободной поверхности жидкости минимальна? На молекулы, расположенные в поверхностном слое, действует направленная внутрь жидкости равнодействующая сила и сжимает ее. Это приводит к тому, что площадь свободной поверхности стремится принять минимальное значение.

Действием внешнего фактора можно описать скольжение легких насекомых таких, как водомерки, по всей поверхности водоемов.

Лапка этих членистоногих деформирует водную поверхность, тем самым увеличивая ее площадь. В результате этого возникает сила поверхностного натяжения, стремящаяся уменьшить подобное изменение площади. Равнодействующая сила будет всегда направлена исключительно вверх, компенсируя при этом действие тяжести.

Результат действия поверхностного натяжения Под воздействием поверхностного натяжения небольшие количества жидких сред стремятся принять шарообразную форму, которая будет идеально соответствовать наименьшей величине окружающей среды. Приближение к шаровой конфигурации достигается тем больше, чем слабее начальные силы тяжести, так как у малых капель показатель силы поверхностного натяжения гораздо превосходит влияние тяжести. Поверхностное натяжение считается одной из важнейших характеристик поверхностей раздела фаз.

Оно непосредственно воздействует на формирование мелкодисперсных частиц физических тел и жидкостей при их разделении, а также на слияние элементов или пузырьков в туманах, эмульсиях, пенах, на процессы адгезии. Замечание 2 Поверхностное натяжение устанавливает форму будущих биологических клеток и их основных частей.

Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного притяжения совершат положительную работу. Поверхностный слой состоит из таких же молекул, что и вся жидкость. Отличие лишь в том, что молекулы поверхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами, находящимися внутри жидкости.

Эту энергию называют поверхностной энергией Епов. Поверхностная энергия пропорциональна площади свободной поверхности жидкости: 8. Поверхностное натяжение — физическая величина, равная работе внешних сил по увеличению площади поверхности жидкости на единицу площади при сохранении объёма и температуры жидкости неизменными: 8. От теории к практике Рис. Например, капли воды при соприкосновении сливаются в одну, форма которой отличается от сферической из-за воздействия силы тяжести и силы реакции опоры.

Чем меньше радиус капли, тем большую роль играет поверхностная энергия по сравнению с потенциальной энергией капли в гравитационном поле Земли и тем ближе форма капель жидкости на опоре к сферической. Поэтому маленькие капельки росы на листьях растений принимают форму, близкую к шарообразной рис. От теории к практике Докажите, что при слиянии нескольких капель воды в одну при неизменной температуре выделяется энергия. Считая форму капель сферической, сравните поверхностную энергию всех мелких капель с поверхностной энергией энергией капли, получившейся при их слиянии.

Физическая химия. Поверхностное натяжение Поверхностное натяжение видео 3 - Силы межмолекулярного взаимодействия - Химия Коэффициент поверхностного натяжения.

Поверхностное натяжение жидкости - формулы и определение с примерами

Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается.
Форум самогонщиков, пивоваров, виноделов Коэффициент поверхностного натяжения зависит от рода жидкости в силу межмолекулярных взаимодействий.
Поверхностное натяжение жидкости - формулы и определение с примерами тем большая сила поверхносного натяжения.
Почему поверхностное натяжение зависит от рода жидкости? Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается.

Поверхностное натяжение воды. НПК.

Попытаемся выяснить, как поверхностное натяжение зависит от рода жидкости, наличия примесей, температуры. Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. е. от сил притяжения между молекулами данной жидкости. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода воды). Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).

Поверхностное натяжение жидкости

6 ответов на вопрос “Почему поверхностное натяжение зависит от рода жидкости?”. Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул. Ответил (1 человек) на Вопрос: Почему поверхностное натяжение зависит от рода жидкости. Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры (с увеличением скорости движения молекул).

Почему поверхностное натяжение зависит от рода

Однако если позаботиться о тщательном удалении растворенного воздуха, жидкость можно заставить выдержать растяжение и вести себя необычным образом. Например, вода или ртуть держатся в верхней части барометра намного выше «высоты атмосферного столба», а сифон может работать в вакууме! Жидкости оказываются «слабыми, как вода» только в результате вредного влияния маленьких пузырьков воздуха. Молекулярное объяснение поверхностного натяжения. Итак, тот факт, что жидкости сохраняют свой объем, мы «объяснили» наличием дальнодействующих сил притяжения.

Посмотрим, не смогут ли эти силы объяснить существование поверхностного натяжения. Представим себе состояние молекулы А в середине сосуда с водой фиг. Со всех сторон ее толкают другие молекулы. Кроме того, со всех сторон ее притягивают ближайшие соседи — и равнодействующая сила притяжения равна нулю.

Силы, действующие на молекулы, в жидкости. Теперь рассмотрим другую молекулу В, находящуюся на поверхности воды. Ее тоже толкают, но не со всех сторон, и тоже притягивают, но не во всех направлениях. В области действия сил притяжения у нее есть соседи снизу и с каждой стороны, но нет соседей сверху.

Равнодействующая сил притяжения направлена внутрь жидкости и уравновешивается действием столкновений снизу. Таким образом, молекула В испытывает притяжение вниз, наподобие дополнительного веса. Во внутренних областях большой круглой капли молекулы будут, подобно молекуле А, испытывать равномерное притяжение со всех сторон. Молекулы на поверхности, подобно молекуле В, будут втягиваться внутрь.

Так как такие молекулы В будут пытаться приблизиться к центру капли, поверхность будет стремиться сжаться; по существу создается впечатление, что капля имеет сжимающуюся оболочку. Очевидно, если на поверхности образуется гребень, молекулярное притяжение распрямит его, несмотря на мешающие возмущения небольшое углубление на поверхности также исчезнет, хотя это менее очевидно ; в результате притяжения молекул все неровности на поверхности будут сглаживаться фиг. Поверхностные силы в небольшой капле жидкости. Действующее на молекулы типа В притяжение соседей стремится придать массе жидкости сферическую форму.

Заметьте, что сфера имеет минимальную поверхность при заданном объеме. Если на поверхности появляются небольшие неправильности, поверхностные силы стремятся устранить их. Чтобы представить себе общую картину, сравните заполненную молекулами каплю с толпой людей, привлеченных уличной дракой. Прибывает все больше и больше заинтересованных зевак.

Опоздавшие плохо видят, что происходит, они напирают на впереди стоящих — их притягивает любопытство, но они напирали бы так же, если бы их притягивали просто стоящие впереди соседи. Как влияет это притяжение к центру на толпу в целом? Подвижная толпа стягивается в круг с минимальным внешним периметром. Круг имеет меньшую протяженность периметра, нежели любая другая фигура с той же общей площадью.

Человек А, находящийся в глубине толпы, оказывается сжатым, и если ему позволяет рост, то видит, что его неприятные ощущения вызваны напирающими на него людьми, нажимающими внутрь. Он будет страдать точно тай же, если накинуть на толпу огромный пояс и затягивать его. Натянутый пояс будет влиять на внешнюю форму толпы и на тесноту внутри нее точно так же, как и стремление людей, находящихся снаружи, пробиться к середине. Поможет ли эта аналогия[72] понять, каким образом молекулярное притяжение оказывает то же действие, что и эластичная оболочка, растянутая по всей поверхности жидкости?

С молекулярной точки зрения на поверхности жидкостей существует не реальная «шкурка», как у кролика, а особый слой внешних молекул. Соотношение между поверхностными и объемными эффектами. Насекомые и поверхностное натяжение Почему эта «оболочка» превращает маленькие капли в совершенные по форме шарики вопреки действию силы тяжести и не может сделать этого с более крупными лужами? С молекулярной точки зрения согласно нашей теории, если вам угодно это обусловлено особым поведением молекул, расположенных на поверхности.

Эти силы действуют на поверхности и не связаны с основной массой жидкости. Но сила тяжести действует на всю жидкость, равным образом на ее внешние и внутренние слои. Поверхностное натяжение — это «поверхностный эффект», а вес — «объемный эффект», и их относительная важность будет изменяться в зависимости от реального размера капли или лужи. Представим себе, что поверхностные силы возрастают прямо пропорционально величине поверхности[73], тогда как вес, конечно, возрастает пропорционально объему.

Рассмотрим превращение небольшой капли в каплю, в 10 раз большую. Для простоты представим, что капли имеют вид кубиков[74]: маленького С1 фиг. Как соотносятся их поверхности? Кубические «капли».

Сравнение поверхности и объема. Каждый куб имеет шесть граней. Куб с десятикратными линейными размерами имеет в 102, или в 100 раз, большую поверхность. Как соотносятся объемы этих кубов?

Они соответственно равны а3 и 10а 3, т. Объем одного куба превышает объем другого в 103, или в 1000 раз, и, следовательно, вес воды в нем будет в 1000 раз больше. При переходе от малого кубика к большому поверхностные эффекты возрастут только в 100 раз, но действие силы тяжести возрастет в 1000 раз; таким образом, ее относительное значение увеличится в 10 раз. На самом же деле силы поверхностного натяжения растягивают каждую границу, или край, поверхности.

Поэтому они возрастают пропорционально линейным размерам, т. Для очень больших объемов сила тяжести во много раз превосходит влияние поверхностного натяжения; поэтому поверхность прудов плоская, а пролитое на пол ведро воды растекается под действием силы тяжести. На форму маленьких капель сильно влияет поверхностное натяжение, для очень маленьких капель это влияние становится определяющим. Для ныряющего в воду человека главную опасность представляет давление на него воды.

Для крошечного клопа, ползущего по капле дождя, непреодолимы силы поверхностного натяжения. Теперь понятно, почему маленькие водяные насекомые могут бегать по поверхности пруда не проваливаясь? Они ничем не рискуют: большинство из них водой не смачивается и провалиться не может. Даже если их насильно затолкнуть под воду, они немедленно выскочат наружу, причем помогает им поверхностный слой.

Для крошечных насекомых, тело которых имеет способность намокать, капля воды оказывается тюрьмой. Частично смачиваемые водой насекомые могут держаться на ее поверхности, если они достаточно малы, но, погрузившись однажды в воду, случайно проскочив через упругую поверхность, они уже не смогут выбраться наружу. В жизни еще более мелких существ, например микробов, все определяется поверхностными силами; вес едва ли имеет для них какое-либо значение. Весь контакт с внешним миром они осуществляют через свою поверхность; через нее поступает пища, и, если они хотят двигаться, им надо изменять-форму своей поверхности.

Не удивительно поэтому, что такие существа можно уничтожать с помощью ядов, которые покрывают их поверхность, подобно тому как краска наносится на волокна одежды. Размышления завели нас далеко от экспериментальных фактов. Некоторые из развитых идей подтверждаются последующими опытами, другие стоят лишь немногим более простой игры воображения, и их следует использовать только в той мере, в какой они приводят к плодотворным предположениям. Краевой угол с молекулярной точки зрения Все же мы можем развить дальше молекулярную картину и обсудить, как жидкости соприкасаются с твердыми телами, т.

Возвращаясь к небольшим лужицам на столе и к классификации по краевым углам, нарисуем каплю, поверхность которой принимает выпуклую форму под влиянием поверхностных сил, действующих на молекулы фиг. Поверхностное натяжение и краевой угол с молекулярной точки зрения. В том месте, где лужица соприкасается со столом, угловые молекулы должны также притягиваться столом. Совместное притяжение стола и жидкости и определяет краевой угол.

Складывая силы притяжения как векторы, получаем равнодействующую R сил притяжения со стороны соседних молекул как жидкости, так и стола. Для поверхности жидкости эта равнодействующая играет роль «вертикали», и поверхность расположится перпендикулярно к ней, точно так же, как поверхность большой лужи принимает горизонтальное положение, перпендикулярно силе тяжести. Итак, краевой угол определяется направлением равнодействующей сил притяжения R; прежде чем продолжить обсуждение, рассмотрим подробнее силы, которые определяют форму поверхности. Молекулярные силы и поверхность жидкости Чтобы понять, почему поверхность жидкости располагается перпендикулярно равнодействующей сил притяжения R, вернемся к обсуждению сил, действующих на молекулу.

На молекулы действуют: дальнодействующие силы: б притяжение соседей только в пределах нескольких диаметров молекул ; короткодействующие силы: в сильное отталкивание во время столкновений с соседями на расстоянии долей диаметра молекулы. Для описания поведения молекул вряд ли стоит применять термин «равновесие», но все же можно сказать, что в покоящейся жидкости каждая молекула в среднем находится в равновесии. Коротко- и дальнодействующие силы. На любую молекулу на поверхности жидкости короткодействующие силы действуют со всех сторон и снизу, поэтому равнодействующая будут перпендикулярна поверхности.

Равнодействующая дальнодействующих сил, которая уравновешивает эти короткодействующие силы, должна иметь противоположное направление, а следовательно, она также будет перпендикулярна поверхности. Из последнего утверждения следует и обратное — поверхность должна быть перпендикулярна равнодействующей сил притяжения, в противном случае все силы перемещали бы поверхность, пока она не приняла бы этого положения. Конечно, в молекулярном масштабе сама поверхность исчезает в хаосе беспорядочных движений, подобно границе толпы. Она представляется гладкой, только когда ее рассматривают издалека.

Две из названных сил действуют на поверхность и меняют свое направление, когда поверхность изгибается. Это — короткодействующее отталкивание и дальнодействующее притяжение соседей. Третья сила — земное притяжение — всегда направлена вертикально вниз. В большом пруду основное направление задается силой тяжести, которая превращает всю поверхность в горизонтальную плоскость; поэтому две другие силы также вертикальны.

На молекулы же, расположенные вблизи твердой стенки или на поверхности небольшой искривленной капли, притяжение соседей влияет намного больше, чем сила тяжести. Поэтому для объяснения искривленного мениска или краевого угла силой тяжести можно пренебречь. Просто говорят: «Поверхность располагается перпендикулярно равнодействующей сил притяжения, которые действуют на молекулу, находящуюся на поверхности». Краевой угол и молекулярные силы Чтобы объяснить природу краевого угла с точки зрения молекулярных сил, рассмотрим силы притяжения, действующие на молекулу С, которая находится в том месте, где лужица жидкости соприкасается с твердым столом фиг.

Силы, действующие на молекулу, находящуюся на краю небольшой лужицы жидкости. Лужица находится на столе, который сильно притягивает молекулы жидкости. Во-первых, на нее действует притяжение соседей, находящихся внутри слоя жидкости; равнодействующая этих сил равна F1 и направлена по биссектрисе угла клина направление подсказано симметрией. Во-вторых, ее притягивают молекулы твердого стола с равнодействующей F2, которая перпендикулярна столу снова по соображениям симметрии.

Векторное сложение сил F1 и F2 и дает их равнодействующую R; поверхность жидкости должна расположиться перпендикулярно R. Это схематически изображено на фиг. В таком случае краевой угол невелик и жидкость смачивает стол. Можно сказать, что сильно притягивающий стол побуждает жидкость растекаться.

Таким образом, смачивание зависит от относительной силы молекулярного притяжения. Если молекулы жидкости притягиваются молекулами твердого тела сильнее, чем соседними молекулами самой жидкости, жидкость будет смачивать стол и растекаться. С другой стороны, если молекула жидкости предпочитает своих собратьев молекулам стола, силу F1 следует нарисовать больше F2 и картина примет такой вид, как на фиг. Для «водоотталкивания», по-видимому, требуется, чтобы молекулы жидкости испытывали со стороны соседних молекул стола меньшее притяжение, чем со стороны соседних молекул жидкости.

Лужица находится на столе, который слабо притягивает молекулы жидкости. Водоотталкивание и смачивание Таково молекулярное объяснение смачивания и краевого угла. Разве это не просто волшебная сказка, выдуманная для того, чтобы свести концы с концами? Нет, это объяснение совсем не так плохо, поскольку оно основано на молекулярных представлениях, которые используются в других областях физики и химии.

Кроме того, оно позволяет сделать полезные рекомендации: 1 Для улучшения смачивания мечта прачек надо сделать F2 больше, чем F1, т. Это можно осуществить, применяя молекулы-посредники, которыми на практике являются молекулы мыла. Таким образом, мы раскрыли секрет мыла и указали путь к созданию новых синтетических моющих средств. На вопрос: «Какой толщины должно быть покрытие?

На вопрос: «Какова толщина молекулы? Это особенно заметно, когда жидкости поднимаются в очень узких трубках; «капиллярность» — полезное свойство жидкостей, и мы сейчас его разберем. Нагрейте кусок стеклянной трубки, растяните его в очень тонкую трубку и опустите один ее конец в чернила фиг. Окрашенная вода поднимается вверх вопреки силе тяжести, опровергая правило: «вода в сообщающихся сосудах устанавливается на одном уровне».

Однако в U-образной трубке с колонами разного сечения жидкость все же устанавливается на одном уровне фиг. Если вспомнить обсуждение относительной роли поверхностных и объемных эффектов, можно догадаться, что влияние поверхностного натяжения будет более заметно в приборах малых размеров; например, в небольшой U-образной трубке фиг. Конечно, это то же самое, что мы уже видели при погружении тонкой трубки в чернила. Наброски, представленные на фиг.

Если жидкость поднимается в тонких трубках, то в еще более тонких она должна подняться еще выше. Проверьте это см. Капиллярные явления. Поскольку это следствие поверхностного натяжения проявляется в трубках, «тонких, как волос», оно получило название от латинского слова «волос» — capilla.

Таким образом, капиллярность — это старое название поверхностного натяжения, которое еще применяется, чтобы охарактеризовать поведение жидкостей в тонких трубках. Это красивое название, но оно не объясняет подъема жидкости. Сказать, что вода поднимается по тонкой трубке вследствие капиллярности, по существу то же, что сказать «вследствие поведения тонких трубок». Рассматривая через увеличительное стекло мениск поверхность жидкости в тонкой трубке, мы увидим, что он висит, как прикрепленный к стеклу изогнутый мешок, весьма похожий на одеяло пожарников, которые ловят выбрасывающегося из окна горящего дома тяжелого мужчину фиг.

Снова возникает мысль о резиновой оболочке.

Таким образом, можно дать еще одно определение коэффициента поверхностного натяжения. Коэффициент поверхностного натяжения — скалярная физическая величина, равная отношению изменения потенциальной энергии поверхностного слоя к изменению площади поверхности этого слоя. Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. Поверхностное натяжение существенно зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются поверхностно-активными веществами ПАВ. Наиболее известным поверхностно-активным веществом относительно воды является мыло. Относительно воды поверхностно-активными являются эфиры, спирты, нефть т.

С молекулярной точки зрения влияние поверхностно-активных веществ объясняется тем, что силы притяжения между молекулами жидкости больше, чем силы притяжения между молекулами жидкости и примеси.

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность.

Поверхностное натяжение и форма жидкости Поверхностное натяжение жидкости играет важную роль в определении ее формы. Оно обусловлено силами, действующими между молекулами жидкости на ее поверхности. Поверхностное натяжение стремится уменьшить площадь поверхности жидкости, что приводит к образованию сферической формы. Сферическая форма капли Капля жидкости, находящаяся в свободном состоянии, принимает сферическую форму.

Это происходит из-за поверхностного натяжения, которое стремится уменьшить площадь поверхности капли до минимума. Сферическая форма обеспечивает наименьшую площадь поверхности для заданного объема жидкости. Сферическая форма капли также объясняет, почему капли воды на поверхности не расплываются, а образуют шарики. Поверхностное натяжение делает поверхность капли похожей на эластичную пленку, которая позволяет капле сохранять свою форму.

Влияние поверхностного натяжения на форму жидкости Поверхностное натяжение также влияет на форму жидкости, находящейся в контейнере или на поверхности. Если поверхностное натяжение жидкости выше силы тяжести, то жидкость будет образовывать выпуклую поверхность, например, в случае капли на поверхности или в контейнере. Однако, если поверхностное натяжение жидкости ниже силы тяжести, то жидкость будет образовывать вогнутую поверхность. Примером такой формы может быть жидкость, находящаяся в тонкой трубке или капилляре.

В этом случае, поверхностное натяжение преодолевает силу тяжести и создает вогнутую форму. Поверхностное натяжение также может влиять на форму пузырьков воздуха, образующихся в жидкости. Они также принимают сферическую форму, так как поверхностное натяжение стремится уменьшить площадь поверхности пузырька. Все эти примеры демонстрируют, как поверхностное натяжение влияет на форму жидкости и объясняют некоторые явления, которые мы наблюдаем в повседневной жизни.

Поверхностное натяжение жидкости

Из последнего утверждения следует и обратное — поверхность должна быть перпендикулярна равнодействующей сил притяжения, в противном случае все силы перемещали бы поверхность, пока она не приняла бы этого положения. Конечно, в молекулярном масштабе сама поверхность исчезает в хаосе беспорядочных движений, подобно границе толпы. Она представляется гладкой, только когда ее рассматривают издалека. Две из названных сил действуют на поверхность и меняют свое направление, когда поверхность изгибается. Это — короткодействующее отталкивание и дальнодействующее притяжение соседей. Третья сила — земное притяжение — всегда направлена вертикально вниз. В большом пруду основное направление задается силой тяжести, которая превращает всю поверхность в горизонтальную плоскость; поэтому две другие силы также вертикальны. На молекулы же, расположенные вблизи твердой стенки или на поверхности небольшой искривленной капли, притяжение соседей влияет намного больше, чем сила тяжести.

Поэтому для объяснения искривленного мениска или краевого угла силой тяжести можно пренебречь. Просто говорят: «Поверхность располагается перпендикулярно равнодействующей сил притяжения, которые действуют на молекулу, находящуюся на поверхности». Краевой угол и молекулярные силы Чтобы объяснить природу краевого угла с точки зрения молекулярных сил, рассмотрим силы притяжения, действующие на молекулу С, которая находится в том месте, где лужица жидкости соприкасается с твердым столом фиг. Силы, действующие на молекулу, находящуюся на краю небольшой лужицы жидкости. Лужица находится на столе, который сильно притягивает молекулы жидкости. Во-первых, на нее действует притяжение соседей, находящихся внутри слоя жидкости; равнодействующая этих сил равна F1 и направлена по биссектрисе угла клина направление подсказано симметрией. Во-вторых, ее притягивают молекулы твердого стола с равнодействующей F2, которая перпендикулярна столу снова по соображениям симметрии.

Векторное сложение сил F1 и F2 и дает их равнодействующую R; поверхность жидкости должна расположиться перпендикулярно R. Это схематически изображено на фиг. В таком случае краевой угол невелик и жидкость смачивает стол. Можно сказать, что сильно притягивающий стол побуждает жидкость растекаться. Таким образом, смачивание зависит от относительной силы молекулярного притяжения. Если молекулы жидкости притягиваются молекулами твердого тела сильнее, чем соседними молекулами самой жидкости, жидкость будет смачивать стол и растекаться. С другой стороны, если молекула жидкости предпочитает своих собратьев молекулам стола, силу F1 следует нарисовать больше F2 и картина примет такой вид, как на фиг.

Для «водоотталкивания», по-видимому, требуется, чтобы молекулы жидкости испытывали со стороны соседних молекул стола меньшее притяжение, чем со стороны соседних молекул жидкости. Лужица находится на столе, который слабо притягивает молекулы жидкости. Водоотталкивание и смачивание Таково молекулярное объяснение смачивания и краевого угла. Разве это не просто волшебная сказка, выдуманная для того, чтобы свести концы с концами? Нет, это объяснение совсем не так плохо, поскольку оно основано на молекулярных представлениях, которые используются в других областях физики и химии. Кроме того, оно позволяет сделать полезные рекомендации: 1 Для улучшения смачивания мечта прачек надо сделать F2 больше, чем F1, т. Это можно осуществить, применяя молекулы-посредники, которыми на практике являются молекулы мыла.

Таким образом, мы раскрыли секрет мыла и указали путь к созданию новых синтетических моющих средств. На вопрос: «Какой толщины должно быть покрытие? На вопрос: «Какова толщина молекулы? Это особенно заметно, когда жидкости поднимаются в очень узких трубках; «капиллярность» — полезное свойство жидкостей, и мы сейчас его разберем. Нагрейте кусок стеклянной трубки, растяните его в очень тонкую трубку и опустите один ее конец в чернила фиг. Окрашенная вода поднимается вверх вопреки силе тяжести, опровергая правило: «вода в сообщающихся сосудах устанавливается на одном уровне». Однако в U-образной трубке с колонами разного сечения жидкость все же устанавливается на одном уровне фиг.

Если вспомнить обсуждение относительной роли поверхностных и объемных эффектов, можно догадаться, что влияние поверхностного натяжения будет более заметно в приборах малых размеров; например, в небольшой U-образной трубке фиг. Конечно, это то же самое, что мы уже видели при погружении тонкой трубки в чернила. Наброски, представленные на фиг. Если жидкость поднимается в тонких трубках, то в еще более тонких она должна подняться еще выше. Проверьте это см. Капиллярные явления. Поскольку это следствие поверхностного натяжения проявляется в трубках, «тонких, как волос», оно получило название от латинского слова «волос» — capilla.

Таким образом, капиллярность — это старое название поверхностного натяжения, которое еще применяется, чтобы охарактеризовать поведение жидкостей в тонких трубках. Это красивое название, но оно не объясняет подъема жидкости. Сказать, что вода поднимается по тонкой трубке вследствие капиллярности, по существу то же, что сказать «вследствие поведения тонких трубок». Рассматривая через увеличительное стекло мениск поверхность жидкости в тонкой трубке, мы увидим, что он висит, как прикрепленный к стеклу изогнутый мешок, весьма похожий на одеяло пожарников, которые ловят выбрасывающегося из окна горящего дома тяжелого мужчину фиг. Снова возникает мысль о резиновой оболочке. Если измерить силы, удерживающие оболочку, то видно, что эти же силы определяют форму маленьких капель. Можно даже говорить, что оболочка удерживает поднимающуюся по трубке жидкость[75], но более реально говорить о молекулах, которые вскарабкиваются по внутренней поверхности трубки и образуют изогнутый мениск.

Жидкости поднимаются не только в круглом стеклянном капилляре. Капиллярность проявляется в любом узком пространстве. Когда вода стекает между щетинками малярной кисти или увлажняет в ванне ваши волосы, то она заполняет не полые волоски, а узкие промежутки между отдельными волосками. На таком поведении жидкостей основано всасывание масла в ламповый фитиль, воды в банное полотенце и т. Задача 3 трудная. Формула капиллярности Допустим, что подъем жидкости в капилляре определяется разностью давлений по обе стороны мениска. Вернитесь к опыту с двумя соединенными друг с другом мыльными пузырями см.

Какой вывод только из этого опыта можно сделать о соотношении между высотой подъема в капилляре и его диаметром? Задача 4. Капиллярность в несмачиваемой трубке Возьмем жидкость, которая образует со стенками трубки большой краевой угол. К задаче 4. Уровень ртути в широкой трубке показан, но рисунки не закончены. Набросайте в тетради все эти рисунки и закончите их. Применения капиллярности Чтобы жидкость втягивалась в капилляр, а не только поднималась вверх, и вообще проникала в поры, необходим малый краевой угол между жидкостью и стенками пор.

При большой величине краевого угла предметы будут оставаться сухими. Ниже приведены примеры, которые демонстрируют роль капиллярности и смачивания в природе и в быту. Чернила на конце пера щель на конце пера подает чернила на бумагу вследствие капиллярности; стальные перья, применявшиеся прежде, когда они бывали новыми, имели большой краевой угол, и для улучшения работы перья следовало смочить слюной. Чернила на бумаге но поры в бумаге должны быть закрыты. Кровь на бинтах. Капли от насморка на слизистой оболочке носа. Припой на металле для уменьшения краевого угла применяют флюс.

Слюна на пище. Растворитель для краски на сухом порошке красителя. Жидкая краска на окрашиваемых поверхностях с этим связан ряд вопросов в технике живописи. Мыльная вода при стирке грязной одежды. Вода на стеклах очков здесь нет узких промежутков, но при небольшом краевом угле конденсирующаяся на стекле вода создает плоскую пленку, а не туман из капелек. Блинное тесто на сковороде. Вода на полу в ванной.

Вода на стеклах очков мелкие капли быстрее испаряются. Важную роль капиллярность играет в садоводстве. Вода проникает в тонкие промежутки между частицами почвы. Разрыхление и вскапывание изменяет размеры этих промежутков и затрудняет доступ воды из глубины почвы к поверхности, предотвращая тем самым ее испарение. Кирпичи пористы. Кирпичные дома на высоте 30 см или более от поверхности земли должны иметь изоляцию от влаги из непористого материала. Объяснение капиллярности с молекулярной точки зрения По всей трубке вверх поднимается очень тонкий слой жидкости, возможно, толщиной в одну молекулу, а за ним ползет основная масса жидкости, образуя искривленный мениск.

Силы F1 и F2 для случаев малого и большого краевого угла схематически изображены на фиг. Молекулярные силы, краевой угол и капиллярность. Поверхность жидкости располагается перпендикулярно равнодействующей R сил притяжения, действующих на ее молекулы. Это является результатом короткодействующих сил, которые проявляются при столкновениях с другими молекулами. Когда краевой угол равен нулю, стеклянная стенка, вероятно, на всем протяжении покрыта тонким слоем жидкости толщиной в несколько молекул. Мениск всползает по этому слою жидкости. Рисунки весьма упрощены, так как на них не учтена сила тяжести.

Вещества, облегчающие смачивание: мыла и моющие средства Очень часто, когда нужен малый краевой угол, природа дает нам большой. Овечья шерсть, например, не смачивается водой; это мешает обработке отары растворами при дезинсекции. С обеденной посуды вода скатывается, как со спины утки, и даже на чайных стаканах порой остаются несмачиваемые отпечатки пальцев. А новые посудные полотенца, поступающие со склада с ужасной восковой отделкой! Нам необходимы молекулы-посредники, которые образовывали бы промежуточный слой и уменьшали бы краевой угол между водой и жирными тарелками, покрытыми воском волокнами одежды и т. Сейчас эту роль выполняют моющие средства, предшественником которых было мыло. Мыло действует на жир с помощью поверхностного натяжения, помогая воде заползать под жир и отрывать его частички, которые смываются в виде эмульсии скопление мелких частиц жира, взвешенных в воде.

Один конец молекулы мыла имеет сродство к воде вследствие химического или электрического притяжения[76], а другой конец инертен к воде, но легко присоединяется к жиру. В то время как «жирные» концы образуют облако вокруг частиц жира, «водяные» концы выступают наружу и притягивают воду. Современные синтетические мыла или стиральные порошки обычно облегчают смачивание. Их молекулы действуют как посредники и уменьшают краевой угол. Они проникают в любую щель между жиром и тарелкой, облегчая попадание туда воды. Вообразим себя в роли физиков-судомоек, которые приходят к группе химиков и говорят: «Пожалуйста, разработайте и пустите в производство вещество, которое было бы пригодно в качестве моющего средства. Производство этого средства должно быть недорогим».

Современные химики-органики ответят: «Это легко сделать». Чтобы прицепиться к воску или к жиру, молекулы должны иметь длинную углеводородную цепь, подобную следующей[77]»: но не слишком длинную, иначе она не будет растворяться в воде. Воски и жиры имеют аналогичную цепную структуру, и они должны притягивать такие цепи. Затем это вещество на одном из концов должно иметь нечто обладающее сродством к воде, например атом натрия. Такого рода молекулы были сконструированы и изготовлены, и сейчас мы покупаем их в больших количествах в хозяйственных магазинах. Ниже приведены примеры обычного мыла и синтетического стирального порошка подобной структуры[78]. К числу таких веществ относится также применяемый в фотографии и исследовательской работе аэрозоль.

На покрытое воском стекло наносят каплю чистой воды фиг. Концом спички добавляют раствор моющего средства и следят за изменением краевого угла. Действие смачивающего агента. Длинные молекулы показаны линией с точкой, которая обозначает группу, имеющую сродство к воде. Молекулы смачивающего агента аэрозоля показаны не в масштабе, а увеличены во много раз. Опыт 14. Новое посудное полотенце с воскообразной поверхностью разрезают на два куска и растягивают на наклонном столе.

На один кусок выливают крепкий раствор красителя. Краситель впитывается с трудом, большая его часть стекает. Затем на другой кусок выливают остаток красителя, к которому добавлено небольшое количество моющего средства. Действие мыла и моющих средств. Когда раствор моющего средства попадает на покрытую воском поверхность, его молекулы скапливаются вокруг воска, причем их «жирные» концы направлены в сторону воска, а «водяные» — наружу. Эти внешние концы создают оболочку, которая притягивает воду, и этим облегчают смачивание. Аэрозоль, молекула которого имеет удвоенную длину, прикрепляется к воску, жиру или целлюлозе обоими концами и поднимает имеющую сродство к воде середину, подобно выгнувшей спину гусенице; выпяченные «спины» создают притягивающую воду оболочку.

Мытье посуды. Молекулы большинства моющих средств и мыла имеют на одном конце группу, обладающую сродством к воде. Действие этих веществ при мытье посуды схематически изображено на фиг.

Поверхностное натяжение является играющим огромную роль во многих процессах, таких как капиллярное действие, смачивание, образование пузырьков, и даже движение вязкой жидкости по трубе. Оно также зависит от температуры и рода жидкости. Как поверхностное натяжение зависит от температуры?

Температура является одним из факторов, которые влияют на поверхностное натяжение жидкости. Обычно, с увеличением температуры поверхностное натяжение уменьшается. Это происходит из-за того, что с повышением температуры молекулы жидкости получают больше кинетической энергии и начинают двигаться быстрее. Быстрое движение молекул позволяет им преодолевать силы взаимодействия и образовывать более слабые связи на поверхности жидкости. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры. Разные жидкости имеют разные атомные и молекулярные структуры, поэтому их поведение при изменении температуры может отличаться.

Некоторые жидкости могут иметь большие изменения поверхностного натяжения при изменении температуры, в то время как другие могут быть менее чувствительными к изменениям. Понимание того, как поверхностное натяжение зависит от температуры и рода жидкости, имеет практическое значение в различных областях, таких как физика, химия, биология и технологии.

Это движение создает натяжение на поверхности жидкости. Атомы соединяются в молекулы, и структура поверхности определяется химическим составом жидкости. Молекулярная теория: Молекулярная теория поверхностного натяжения основывается на предположении о существовании молекулярно-кинетической энергии. Молекулы в жидкости движутся случайным образом и сталкиваются между собой. Молекулярные силы притяжения и отталкивания между молекулами влияют на поверхностное натяжение. Благодаря этим силам, молекулы на поверхности жидкости организовываются в компактный слой и создают натяжение. Деликтная теория: Деликтная теория поверхностного натяжения основывается на предположении о существовании внутренних деликтных сил внутри жидкости. Известно, что жидкость состоит из молекул, связанных друг с другом.

Делектные силы между этими молекулами создают сопротивление изменениям формы жидкости. Деликтные силы направлены внутрь жидкости и противодействуют деформации. Именно эти силы порождают поверхностное натяжение на границе раздела между жидкостью и воздухом. Роль водородных связей в поверхностном натяжении Водородные связи представляют собой электростатическое взаимодействие между атомами водорода, связанными с электроотрицательными атомами, такими как кислород, азот или фтор. В жидкостях, обладающих возможностью образовывать водородные связи, молекулы образуют сеть связей между собой, что приводит к более высокому поверхностному натяжению. Водородные связи имеют свойства притягивать другие молекулы ко всему будучи притянутыми молекулярному возвышению, что способствует укреплению поверхности жидкости. Это объясняет, почему жидкости, такие как вода и многие органические соединения, обычно имеют более высокое поверхностное натяжение, потому что они образуют больше водородных связей в сравнении с другими жидкостями. Более сильные взаимодействия водородных связей между молекулами создают более прочную поверхность, что приводит к более высоким значениям поверхностного натяжения. На практике это проявляется в способности жидкостей с высоким поверхностным натяжением образовывать капли сферической формы, так как энергия поверхности молекул жидкости минимизируется при минимальном контакте с внешней средой. Таким образом, водородные связи играют важную роль в определении поверхностного натяжения жидкости.

Изучение этих связей и их влияния на физические свойства различных жидкостей имеет большое значение в научных и технических областях, таких как фармакология, материаловедение и биохимия. Зависимость поверхностного натяжения от температуры При повышении температуры, поверхностное натяжение жидкости обычно снижается. Это происходит из-за увеличения теплового движения молекул в жидкости.

Подъём смачивающей жидкости по капилляру можно объяснить и по-другому. Как было сказано ранее, под действием сил поверхностного натяжения поверхность жидкости стремится сократиться. Вследствие этого поверхность вогнутого мениска стремится выпрямиться и сделаться плоской. При этом она тянет за собой частицы жидкости, лежащие под ней, и жидкость поднимается по капилляру вверх. Но поверхность жидкости в узкой трубке плоской оставаться не может, она должна иметь форму вогнутого мениска. Как только в новом положении данная поверхность примет форму мениска, она снова будет стремиться сократиться и т. В результате действия этих причин смачивающая жидкость и поднимается по капилляру. Поднятие прекратится, когда сила тяжести Fтяж поднятого столба жидкости, которая тянет поверхность вниз, уравновесит равнодействующую силу F сил поверхностного натяжения, направленных касательно к каждой точке поверхности. В случае несмачивающей жидкости последняя, стремясь сократить свою поверхность, будет опускаться вниз, выталкивая жидкость из капилляра. Выведенная формула применима и для несмачивающей жидкости. В этом случае h — высота опускания жидкости в капилляре. Капиллярные явления в природе Капиллярные явления также весьма распространены в природе и часто используются в практической деятельности человека. Дерево, бумага, кожа, кирпич и очень многие другие предметы, окружающие нас, имеют капилляры. За счет капилляров вода поднимается по стеблям растений и впитывается в полотенце, когда мы им вытираемся. Поднятие воды по мельчайшим отверстиям в куске сахара, забор крови из пальца — это тоже примеры капиллярных явлений. Кровеносная система человека, начинаясь с весьма толстых сосудов, заканчивается очень разветвленной сетью тончайших капилляров. Могут вызвать интерес, например, такие данные. Площадь поперечного сечения аорты равна 8 см2. Диаметр же кровеносного капилляра может быть в 50 раз меньше диаметра человеческого волоса при длине 0,5 мм. В теле взрослого человека имеется порядка 160 млрд капилляров. Их общая длина доходит до 80 тыс. По многочисленным капиллярам, имеющимся в почве, вода из глубинных слоев поднимается к поверхности и интенсивно испаряется. Чтобы замедлить процесс потери влаги, капилляры разрушают путем разрыхления почвы с помощью борон, культиваторов, рыхлителей. Опустим один из концов капилляра в сосуд с водой -вода поднимется выше уровня воды в сосуде. Поверхностное натяжение способно поднимать жидкость на сравнительно большую высоту. Поднятие жидкости вследствие действия сил поверхностного натяжения воды можно наблюдать в простом опыте. Возьмем чистую тряпочку и опустим один ее конец в стакан с водой, а другой свесим наружу через край стакана. Вода начнет подниматься по порам ткани, аналогичным капиллярным трубкам, и пропитает всю тряпочку. Избыток воды будет капать с висящего конца см. Если для опыта брать ткань светлого цвета, то на фото очень плохо видно как вода распространяется по ткани. Также следует иметь в виду, что не для всякой ткани избыток воды будет капать со свисающего конца. Я этот опыт делал дважды. Поднятие жидкости по капиллярам происходит тогда, когда силы притяжения молекул жидкости друг к другу меньше сил их притяжения к молекулам твердого тела. В этом случае говорят, что жидкость смачивает твердое тело. Если взять не очень тонкую трубочку, набрать в нее воды и пальцем закрыть нижний конец трубки, можно увидеть, что уровень воды в трубке вогнут рис. Это результат того, что молекулы воды сильнее притягиваются к молекулам стенок сосуда, чем друг к другу. Не все жидкости и не во всяких трубках «цепляются» за стенки. Бывает и так, что жидкость в капилляре опускается ниже уровня в широком сосуде, при этом ее поверхность — выпуклая.

Коэффициент поверхностного натяжения

  • почему поверхностное натяжение зависит от рода жидкости- вопрос-ответ
  • Поверхностное натяжение некоторых жидкостей на границе с воздухом
  • Почему поверхностное натяжение зависит от вида жидкости?
  • Ответы : почему поверхностное натяжение зависит от рода жидкости?
  • Почему поверхностное натяжение зависит от рода жидкости
  • Почему поверхностное натяжение зависит от вида жидкости?

Ответы и объяснения

  • Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)
  • Природа поверхностного натяжения жидкостей
  • Что такое сила поверхностного натяжения
  • Почему поверхностное натяжение зависит от рода воды?

Поверхностное натяжение воды. НПК.

Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения. Следовательно, силы поверхностного натяжения будут действовать слабее. Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами. Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Поверхностное натяжение жидкости зависит от нескольких факторов, которые определяют ее свойства и поведение на поверхности.

Похожие новости:

Оцените статью
Добавить комментарий