Новости температура земли на глубине

на глубине 400 км температура должна достигать 1400 1700 °С. Наиболее высокие температуры (около 5000 °С) получены для ядра Земли. Геотермический градиент – приращение температуры с глубиной, выраженной в 0С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0С. На глубине 5 км исследователи столкнулись с неожиданно высокой температурой — более 700 °С. Через 2 км температура выросла до 1 200 °С. Тогда работы отложили на год — до установки модифицированной версии «Уралмаш-15000» с повышенной термостойкостью. На глубине 5 км исследователи столкнулись с неожиданно высокой температурой — более 700 °С. Через 2 км температура выросла до 1 200 °С. Тогда работы отложили на год — до установки модифицированной версии «Уралмаш-15000» с повышенной термостойкостью.

Смотрите также

  • Наши проекты
  • Какая температура в центре Земли?
  • Индийский аппарат передал первые данные с Луны, почва которой оказалась горячей
  • Как Земля держит: Учёные пришли в ужас от последствий подземного изменения климата
  • С 1960-х нагрев вырос в 20 раз

Ученые встревожены резким нагреванием мирового океана

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 19 июня 2022 года; проверки требуют 2 правки. Математически выражается изменением температуры, приходящимся на единицу глубины. В геологии при расчёте геотермического градиента за единицу глубины приняты 100 метров. В различных участках и на разных глубинах геотермический градиент непостоянен и определяется составом горных пород, их физическим состоянием и теплопроводностью, плотностью теплового потока, близостью к интрузиям и другими факторами. Большую роль в исследовании геотермического градиента сыграла Кольская сверхглубокая скважина.

Температуру образцов резко поднимали до 1800-3000 кельвинов при давлении в 33-110 гигапаскалей.

Для этой цели были использованы ячейки с алмазными наковальнями и лазерным нагревом, а за трансформациями минералов следили методом рентгеновской дифракции на источнике синхротронного излучения Advanced Photon Source в Аргоннской национальной лаборатории. Было показано, что растворимость кальция в бриджманите резко возрастает при температуре около 2300 кельвинов и выше 40 гигапаскалей до уровня, достаточного для полного растворения всего CaSiO3. Это приводит к исчезновению перовскита CaSiO3 на глубинах более 1800 километров и появлению обогащенного кальция бриджманита.

Температура поверхности Луны меняется в больших пределах, сообщил в беседе с корреспондентом ИА «Время Н» лектор Нижегородского планетария им. Гречко и старший преподаватель кафедры физики, математики и физико-математического образования Мининского университета Алексей Киселев.

Нижегородский ученый объяснил изменения температуры на Луне Ранее ряд СМИ в очередной раз поставил под сомнение высадку американцев на спутнике Земли. Температура поверхности Луны меняется в больших пределах, сообщил в беседе с корреспондентом ИА «Время Н» лектор Нижегородского планетария им.

Расчет необходимой глубины скважин

  • Другие новости
  • Нижегородский ученый объяснил изменения температуры на Луне - Новости
  • Температуру вечной мерзлоты измерят на глубине 15 метров
  • Луна оказалась горячее, чем считалось ранее, выяснил индийский луноход «Прагьян»

Зависимость температуры от глубины. Температура внутри Земли

Таблица температуры на разных глубинах Земли. Температуры разных глубин Земли Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли. На некоторой глубине от поверхности Земли располагается пояс постоянной температуры, ниже его происходит увеличение температуры.

Поверхность Луны оказалась более горячей, чем считалось раньше

Какая температура в центре Земли? На глубине всего несколько десятков метров хранится столько же тепла, сколько во всей атмосфере Земли. Чем теплее океан, тем ниже его способность поглощать энергию и сглаживать повышение температур на планете в целом. И тут нет хороших новостей.
Почему ядро Земли такое горячее? | Пикабу Чтобы получить представление о температуре в центре Земли, можно подумать, что достаточно экстраполировать геотермический градиент на глубину 6 371 км, что соответствует радиусу Земли.
Температура Земли приблизилась к рекордным показателям за 50 млн лет это скорость изменения температуры по мере увеличения глубины недр Земли.

Рекордно высокую температуру зафиксировали на Земле

Луноход «Прагьян», который был доставлен на Луну посадочным модулем миссии «Чандраян-3», передал на Землю первые научные данные о температуре поверхности Луны. Это постоянство температуры вызвало ученых предположить о возможном искусственном происхождении пещер, хотя окончательные выводы еще рано делать. Неопределённость оценок температуры зависит от глубины (возрастает от ±10 % в литосфере до ±30 % в центре Земли) и точности определения термодинамических параметров.

Зависимость температуры от глубины. Температура внутри Земли

Затем они упоминают среднюю температуру поверхности Венеры и Титана и то, как это повлияет на температуру на глубине 20 футов под землей. Температуры разных глубин Земли Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли. В Кольской скважине глубиной 12 км температура достигает 220° C, а чем ниже — тем горячее. Таблица температуры на разных глубинах Земли. Геотермический градиент – приращение температуры с глубиной, выраженной в 0С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0С. «К 2300 году средняя глобальная температура может подняться до уровней, каких Земля не видела за 50 миллионов лет», – заявляют ученые.

Рекордно высокую температуру зафиксировали на Земле

Внутреннее строение Земли | Образовательный геологический сайт Юрия Попова Вопрос о распределении температур в мантии ниже слоя В и ядре Земли еще не решен, и поэтому высказываются различные представления.
Геотермический градиент - Что такое Геотермический градиент? - Техническая Библиотека Средняя температура на Земле в этот день превысила 17 градусов.

Зависимость температуры от глубины. Температура внутри Земли

Считается, что верхний слой толщиной 80 сантиметров является возможным убежищем для бактерий от ультрафиолетового света и содержит некоторое количество воды. В ходе новой экспедиции исследователи вырыли грунт на глубине более четырех метров в долине Юнгай, чтобы собрать образцы почвы. При этом был использован новый метод экстракции ДНК из неповрежденных клеток для последующего секвенирования — определения последовательности нуклеотидов.

Гуфельда 2013 , которая рассматривает «формирование структуры границ в литосфере на основе процессов взаимодействия восходящих потоков водорода и гелия с твердой фазой, приводящих к образованию газовой пористости и цепочек пор, связанных трещинами. За счет действия P-T параметров и барьерного эффекта в среде характерны деструкция и развитая трещиноватость.

В литосфере и верхней мантии происходят эффекты аморфизации структуры, приводящей к увеличению пористости и диффузии комплексов типа C-H и O-H, допускается возможность горизонтальной миграции водорода и водородных комплексов на большие расстояния по зонам барьерного эффекта. Причем одной из таких зон может быть граница Мохо». Последняя граница Мохо в нашем понимании выступает не только как глобальная в масштабах планеты реологическая граница раздела квазихрупких земная кора и квазипластичных верхняя мантия сред, но и как граница распространения фронта барьерного эффекта аморфизации структуры среды, обеспечивающей реализацию механизма внутриочаговой мобилизации, то есть «первичной миграции» в терминах органического учения мантийных С-Н-N-О-S систем и других элементов включая металлы - компонентов глубинных УВ-систем в верхней мантии и формирование скоплений первичной протонефти. Как заключает И.

Часто энергетические ресурсы для снижения периода окупаемости оборудования эксплуатируются очень интенсивно, что может привести к их быстрому истощению. Поэтому необходимо поддерживать такой уровень производства энергии, который бы позволил эксплуатировать источник энергетических ресурсов длительное время. Эта способность систем поддерживать требуемый уровень производства тепловой энергии длительное время называется «устойчивостью» sustainability. Для систем использования низкопотенциального тепла Земли дано следующее определение устойчивости : «Для каждой системы использования низкопотенциального тепла Земли и для каждого режима работы этой системы существует некоторый максимальный уровень производства энергии; производство энергии ниже этого уровня можно поддерживать длительное время 100—300 лет ». Проведенные в ОАО «ИНСОЛАР-ИНВЕСТ» исследования показали, что потребление тепловой энергии из грунтового массива к концу отопительного сезона вызывает вблизи регистра труб системы теплосбора понижение температуры грунта, которое в почвенно-климатических условиях большей части территории России не успевает компенсироваться в летний период года, и к началу следующего отопительного сезона грунт выходит с пониженным температурным потенциалом.

Потребление тепловой энергии в течение следующего отопительного сезона вызывает дальнейшее снижение температуры грунта, и к началу третьего отопительного сезона его температурный потенциал еще больше отличается от естественного. И так далее. Однако огибающие теплового влияния многолетней эксплуатации системы теплосбора на естественный температурный режим грунта имеют ярко выраженный экспоненциальный характер, и к пятому году эксплуатации грунт выходит на новый режим, близкий к периодическому, то есть, начиная с пятого года эксплуатации, многолетнее потребление тепловой энергии из грунтового массива системы теплосбора сопровождается периодическими изменениями его температуры. Таким образом, при проектировании теплонасосных систем теплоснабжения представляется необходимым учет падения температур грунтового массива, вызванного многолетней эксплуатацией системы теплосбора, и использование в качестве расчетных параметров температур грунтового массива, ожидаемых на 5-й год эксплуатации ТСТ. В комбинированных системах , используемых как для тепло-, так и для холодоснабжения, тепловой баланс устанавливается «автоматически»: в зимнее время требуется теплоснабжение происходит охлаждение грунтового массива, в летнее время требуется холодоснабжение — нагрев грунтового массива.

В системах, использующих низкопотенциальное тепло грунтовых вод, происходит постоянное пополнение водных запасов за счет воды, просачивающейся с поверхности, и воды, поступающей из более глубоких слоев грунта. Таким образом, теплосодержание грунтовых вод увеличивается как «сверху» за счет тепла атмосферного воздуха , так и «снизу» за счет тепла Земли ; величина теплопоступлений «сверху» и «снизу» зависит от толщины и глубины залегания водоносного слоя. За счет этих теплопоступлений температура грунтовых вод остается постоянной в течение всего сезона и мало меняется в процессе эксплуатации. В системах с вертикальными грунтовыми теплообменниками ситуация иная. При отводе тепла температура грунта вокруг грунтового теплообменника понижается.

На понижение температуры влияет как особенности конструкции теплообменника, так и режим его эксплуатации. Например, в системах с высокими величинами отводимой тепловой энергии несколько десятков ватт на метр длины теплообменника или в системах с грунтовым теплообменником, расположенным в грунте с низкой теплопроводностью например, в сухом песке или сухом гравии понижение температуры будет особенно заметным и может привести к замораживанию грунтового массива вокруг грунтового теплообменника. Немецкие специалисты провели измерения температуры грунтового массива, в котором устроен вертикальный грунтовой теплообменник глубиной 50 м, расположенный недалеко от Франкфурта-на-Майне. Для этого вокруг основной скважины на расстоянии 2,5, 5 и 10 м от было пробурено 9 скважин той же глубины. Во всех десяти скважинах через каждые 2 м устанавливались датчики для измерения температуры — всего 240 датчиков.

На рис. В конце отопительного сезона хорошо заметно уменьшение температуры грунтового массива вокруг теплообменника. Возникает тепловой поток, направленный к теплообменнику из окружающего грунтового массива, который частично компенсирует снижение температуры грунта, вызванное «отбором» тепла. Схемы распределения температур в грунтовом массиве вокруг вертикального грунтового теплообменника в начале и в конце первого отопительного сезона Поскольку относительно широкое распространение вертикальные теполообменники стали получать примерно 15—20 лет назад, во всем мире ощущается недостаток экспериментальных данных, полученных при длительных несколько десятков лет сроках эксплуатации систем с теплообменниками такого типа. Возникает вопрос об устойчивости этих систем, об их надежности при длительных сроках эксплуатации.

Является ли низкопотенциальное тепло Земли во- зобновляемым источником энергии? Каков период «возобновления» этого источника? С 1986 года в Швейцарии неподалеку от Цюриха проводились исследования системы с вертикальными грунтовыми теплообменниками. В грунтовом массиве был устроен вертикальный грунтовой теплообменник коаксиального типа глубиной 105 м. Этот теплообменник использовался в качестве источника низкопотенциальной тепловой энергии для теплонасосной системы, установленной в одноквартирном жилом доме.

Вертикальный грунтовой теплообменник обеспечивал пиковую мощность примерно 70 Вт на каждый метр длины, что создавало значительную тепловую нагрузку на окружающий грунтовой массив. Годовое производство тепловой энергии составляет около 13 МВт ч На расстоянии 0,5 и 1 м от основной скважины были пробурены две дополнительных, в которых на глубине в 1, 2, 5, 10, 20, 35, 50, 65, 85 и 105 м установлены датчики температуры, после чего скважины были заполнены глинисто-цементной смесью. Температура измерялась каждые тридцать минут. Кроме температуры грунта фиксировались и другие параметры: скорость движения теплоносителя, потребление энергии приводом компрессора теплового насоса, температура воздуха и т. Первый период наблюдений продолжался с 1986 по 1991 год.

Измерения показали, что влияние тепла наружного воздуха и солнечной радиации отмечается в поверхностном слое грунта на глубине до 15 м. Ниже этого уровня тепловой режим грунта формируется главным образом за счет тепла земных недр. За первые 2—3 года эксплуатации температура грунтового массива , окружающего вертикальный теплообменник, резко понизилась, однако с каждым годом понижение температуры уменьшалось, и через несколько лет система вышла на режим, близкий к постоянному, когда температура грунтового массива вокруг теплообменника стала ниже первоначальной на 1—2 оC. Осенью 1996 года, через десять лет после начала эксплуатации системы, измерения были возобновлены. Эти измерения показали, что температура грунта существенным образом не изменилась.

В последующие годы были зафиксированы незначительные колебания температуры грунта в пределах 0,5 градусов C в зависимости от ежегодной отопительной нагрузки. Таким образом, система вышла на квазистационарный режим после первых нескольких лет эксплуатации. На основании экспериментальных данных были построены математические модели процессов, проходящих в грунтовом массиве, что позволило сделать долгосрочный прогноз изменения температуры грунтового массива. Математическое моделирование показало, что ежегодное понижение температуры будет постепенно уменьшаться, а объем грунтового массива вокруг теплообменника, подверженного понижению температуры, с каждым годом будет увеличиваться. По окончании периода эксплуатации начинается процесс регенерации: температура грунта начинает повышаться.

Характер протекания процесса регенерации подобен характеру процесса «отбора» тепла: в первые годы эксплуатации происходит резкое повышение температуры грунта, а в последующие годы скорость повышения температуры уменьшается. Продолжительность периода «регенерации» зависит от продолжительности периода эксплуатации. Эти два периода примерно одинаковы. В рассматриваемом случае период эксплуатации грунтового теплообменника равнялся тридцати годам, и период «регенерации» также оценивается в тридцать лет. Таким образом, системы тепло- и холодоснабжения зданий, использующие низкопотенциальное тепло Земли, представляют собой надежный источник энергии, который может быть использован повсеместно.

Этот источник может использоваться в течение достаточно длительного времени, и может быть возобновлен по окончании периода эксплуатации. Литература 1. Rybach L. International course of geothermal heat pumps, 2002 2. Васильев Г.

Энергоэффективная сельская школа в Ярославской области. Sanner B. Ground Heat Sources for Heat Pumps classification, characteristics, advantages. International course of geothermal heat pumps, 2002 5. IGA News no.

Ground-source heat pump systems — the European experience. GeoHeat- Center Bull. Maxi Brochure 08. Atkinson Schaefer L. Georgia Institute of Technology, 2000 9.

Morley T.

На глубине около 15 метров, температура земли составляет примерно 10 градусов по Цельсию. Через каждые 33 метра, температура повышается на один градус. В итоге, для того, чтобы бесплатно отапливать дом, порядка 100 м2, достаточно пробурить скважину около 600 метров и получать тепло 22 градуса на протяжении всей жизни! Теоретически, система бесплатного отопления от энергии земли достаточно проста. В скважину закачивается холодная вода, которая нагревается до 22 градусов и по законам физики с небольшой помощью насоса 400-600 вт поднимается по утепленным трубам в дом. Недостатки использования энергии земли для отопления частного дома: — Давайте более подробно разберем финансовые затраты на создание такой системы отопления. Средняя стоимость 1 м бурения скважины составляет порядка 3000 рублей. Итого глубина в 600 метров обойдется в 1 800 000 рублей. И это только бурение!

Без установки оборудования для закачки и подъема теплоносителя. В некоторых местах пробурить скважину в 50 метров задача не из легких. Требуются усиленные обсадные трубы, укрепление шахты и т. Следует, что вода не будет подниматься с температурой 22 градуса. Вопрос, как «снять» полностью с носителя всю энергию земли? Максимум, при прохождении по трубам в теплом доме опуститься до 15 градусов. Таким образом нужен мощный насос, который будет в десятки раз больше прогонять воды с 600 метровой глубины для получения хоть какого-то эффекта. Здесь закладываем не сопоставимый с экономией расход электроэнергии. На глубине около 15 метров, температура земли составляет примерно 10 градусов по Цельсию Следует логичный вывод, что уже далеко не бесплатным отопление дома энергией земли может позволить только человек далеко не бедный, которому экономия на отоплении особо и не нужна. Конечно, можно сказать, что такая технология будет служить сотни лет и детям и внукам, но все это фантазии.

Идеалист скажет, что дом строит на века, а реалист всегда будет рассчитывать на инвестиционную составляющую — строю для себя, но в любой момент продам. Не факт, что детки будут привязаны к этому дому и не захотят его продать. Энергия земли для отопления дома эффективна в следующих регионах: На Кавказе есть действующие примеры работающих скважин с минеральной водой выходящей наружу самоизливом, с температурой 45 градусов с учетом глубинной температуры около 90 градусов. На Камчатке использование геотермальных источников с температурой на выходе около 100 градусов — самый оптимальный вариант использования энергии земли для отопления дома. Технологии развиваются бешеными темпами. КПД классических систем отопления растет на глазах. Несомненно и отопление дома энергией земли станет менее дорогой. Видео: Геотермальное отопление. Энергия земли. Финские инженеры планируют использовать естественное тепло земных недр для обогрева зданий.

И если эксперимент будет успешным, то подобные теплоцентрали можно возводить повсеместно, например, в Ленинградской области. Вопрос в том, насколько это выгодно. Использование энергии Земли - идея не новая. Так, например, еще в 1904 году итальянский князь Пьеро Джинори Конти зажег четыре электролампочки, поместив турбинку с электрогенератором вблизи природного выхода разогретого пара из земли, в регионе Лардерелло Тоскана. Спустя девять лет, в 1913 году, там же была запущена первая коммерческая геотермальная станция мощностью 250 киловатт. Станция использовала самый выгодный, но, к сожалению, редко встречающийся ресурс — сухой перегретый пар, который можно встретить лишь в недрах вулканических массивов. Но, на самом деле, жар Земли можно найти не только близ огнедышащих гор. Он есть повсеместно, под нашими ногами. Недра планеты раскалены до нескольких тысяч градусов. Ученые до сих пор не выяснили, вследствие каких процессов наша планета в течение нескольких миллиардов лет хранит в себе гигантское количество тепла, и невозможно оценить, на сколько миллиардов лет его хватит.

Внутреннее строение Земли

Под самой жаркой пустыней Земли обнаружили скрытую экосистему Ученые пришли к выводу, что в недрах на Земли, на глубине 2900 километров, около внешнего слоя ядра, существуют условия для образования ранее неизвестного минерала.
Reader1 • Таяние «вечной» мерзлоты. Электропроводимость вещества Земли на разных глубинах может быть использована для определения температуры, так как она очень сильно зависит от температуры.
Таблица температур грунта на различных глубинах в крупных городах РФ и СНГ | СтройFAQ Теоретики обещали, что температура Балтийского щита останется сравнительно низкой до глубины по крайней мере 15 километров.
Пластовая температура 50 метров, преобладающим фактором является тепловая инерция верхнего слоя земли и температура там примерно равна среднегодовой температуре в данной местности.

Поверхность Луны оказалась более горячей, чем считалось раньше

Отчет, подготовленный в Институте физики Земли, гласил: за миллиарды лет своего существования Кольский щит остыл, температура на глубине 15 км не превышает 150°С. А геофизики подготовили примерный разрез недр Кольского полуострова. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года. Помощь проекту: под землёй такие высокие температуры, и как это связано с картошкой?Перевод: Мария КоршуноваРедактура. Ученые пришли к выводу, что в недрах на Земли, на глубине 2900 километров, около внешнего слоя ядра, существуют условия для образования ранее неизвестного минерала. 2370°C — самая высокая температура в истории Земли, которую зафиксировали ученые. Ученые из Австралийского национального университета обнаружили, что температура Земли на глубине трех тысяч километров на самом деле неоднородна, как думали ранее.

Кольская сверхглубокая

При этом был использован новый метод экстракции ДНК из неповрежденных клеток для последующего секвенирования — определения последовательности нуклеотидов. Оказалось, что в верхних 80 сантиметрах в микробных сообществах доминировали бактерии Firmicutes, а ниже 200 сантиметров — актинобактерии. Авторы предполагают, что бактерии могли колонизировать почву 19 000 лет назад, прежде чем они были погребены под отложениями плайя дном высохшего озера.

Промежутки между твердыми частицами могут быть заполнены минерализованной влагой, газом, паром и льдом или тем и другим одновременно. Моделирование процессов тепломассопереноса, формирующих тепловой режим такой многокомпонентной системы, представляет собой чрезвычайно сложную задачу, поскольку требует учета и математического описания разнообразных механизмов их осуществления: теплопроводности в отдельной частице, теплопередачи от одной частицы к другой при их контакте, молекулярной теплопроводности в среде, заполняющей промежутки между частицами, конвекции пара и влаги, содержащихся в поровом пространстве, и многих других. Особо следует остановиться на влиянии влажности грунтового массива и миграции влаги в его поровом пространстве на тепловые процессы, определяющие характеристики грунта как источника низкопотенциальной тепловой энергии. В капилярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла.

Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые прежде всего связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. До сих пор не выяснены природа сил связи влаги с частицами скелета, зависимость форм связи влаги с материалом на различных стадиях увлажнения, механизм перемещения влаги в поровом пространстве. При наличии в толще грунтового массива температурного градиента молекулы пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков , а также грунтовые воды. Основные факторы, под воздействием которых формируются температурный режим грунтового массива систем сбора низкопотенциального тепла грунта, приведены на рис. Факторы, под воздействием которых формируются температурный режим грунта Виды систем использования низкопотенциальной тепловой энергии Земли Грунтовые теплообменники связывают теплонасосное оборудование с грунтовым массивом.

Кроме «извлечения» тепла Земли, грунтовые теплообменники могут использоваться и для накопления тепла или холода в грунтовом массиве. В общем случае можно выделить два вида систем использования низкопотенциальной тепловой энергии Земли : открытые системы: в качестве источника низкопотенциальной тепловой энергии используются грунтовые воды, подводимые непосредственно к тепловым насосам; замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса или, при использовании теплоносителя с повышенной относительно грунта температурой, его охлаждение. Основная часть открытых систем — скважины, позволяющие извлекать грунтовые воды из водоносных слоев грунта и возвращать воду обратно в те же водоносные слои. Обычно для этого устраиваются парные скважины. Схема такой системы приведена на рис. Схема открытой системы использования низкопотенциальной тепловой энергии грунтовых вод Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах.

Однако скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы: достаточная водопроницаемость грунта, позволяющая пополняться запасам воды; хороший химический состав грунтовых вод например, низкое железосодержание , позволяющий избежать проблем, связанных с образованием отло- жение на стенках труб и коррозией. Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонасосная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г.

Луисвилль Louisville , штат Кентукки. Система используется для тепло- и холодоснабжения гостиничноофисного комплекса; ее мощность составляет примерно 10 МВт. Иногда к системам, использующим тепло Земли, относят и системы использования низкопотенциального тепла открытых водоемов, естественных и искусственных. Такой подход принят, в частности, в США. Системы, использующие низкопотенциальное тепло водоемов, относятся к открытым, как и системы, использующие низкопотенциальное тепло грунтовых вод. Замкнутые системы, в свою очередь, делятся на горизонтальные и вертикальные.

Горизонтальный грунтовой теплообменник в англоязычной литературе используются также термины «ground heat collector» и «horizontal loop» устраивает- ся, как правило, рядом с домом на небольшой глубине но ниже уровня промерзания грунта в зимнее время. Использование горизонтальных грунтовых теплообменников ограничено размерами имеющейся площадки. В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно рис. Для экономии площади участка были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали, расположенной горизонтально или вертикально рис 4д, 4е. Такая форма теплообменников распространена в США. Виды горизонтальных грунтовых теплообменников а — теплообменник из последовательно соединенных труб; б — теплообменник из параллельно соединенных труб; в — горизонтальный коллектор, уложенный в траншее; г — теплообменник в форме петли; д — теплообменник в форме спирали, расположенной горизонтально так называемый «slinky» коллектор; е — теплообменник в форме спирали, расположенной вертикально Если система с горизонтальными теплообменниками используется только для получения тепла, ее нормальное функционирование возможно только при условии достаточных теплопоступлений с поверхности земли за счет солнечной радиации.

По этой причине поверхность выше теплообменников должна быть подвержена воздействию солнечных лучей. Вертикальные грунтовые теплообменники в англоязычной литературе принято обозначение «BHE» — «borehole heat exchanger» позволяют использовать низкопотенциальную тепловую энергию грунтового массива, лежащего ниже «нейтральной зоны» 10—20 м от уровня земли. Системы с вертикальными грунтовыми теплообменниками не требуют участков большой площади и не зависят от интенсивности солнечной радиации, падающей на поверхность. Вертикальные грунтовые теплообменники эффективно работают практически во всех видах геологических сред, за исключением грунтов с низкой теплопро- водностью, например, сухого песка или сухого гравия. Системы с вертикальными грунтовыми теплообменниками получили очень широкое распространение. Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником приведена на рис.

Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником Теплоноситель циркулирует по трубам чаще всего полиэтиленовым или полипропиленовым , уложенным в вертикальных скважинах глубиной от 50 до 200 м. Обычно используется два типа вертикальных грунтовых теплообменников рис. В одной скважине располагаются одна или две реже три пары таких труб. Преимуществом такой схемы является относительно низкая стоимость изготовления. Двойные U-образные теплообменники — наиболее широко используемый в Европе тип вертикальных грунтовых теплообменников. Коаксиальный концентрический теплообменник.

Простейший коаксиальный теплообменник представляет собой две трубы различного диаметра. Труба меньшего диаметра располагается внутри другой трубы. Коаксиальные теплообменники могут быть и более сложных конфигураций. Сечение различных типов вертикальных грунтовых теплообменников Для увеличения эффективности теплообменников пространство между стенками скважины и трубами заполняется специальными теплопроводящими материалами. Системы с вертикальными грунтовыми теплообменниками могут использоваться для тепло- и холодоснабжения зданий различных размеров. Для небольшого здания достаточно одного теплообменника; для больших зданий может потребоваться устройство целой группы скважин с вертикальными теплообменниками.

Вертикальные грунтовые теплообменники этого колледжа располагают- ся в 400 скважинах глубиной 130 м. В Европе наибольшее число скважин 154 скважины глубиной 70 м используются в системе тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением «Deutsche Flug-sicherung». Частным случаем вертикальных замкнутых систем является использование в качестве грунтовых теплообменников строительных конструкций, например фундаментных свай с замоноличенными трубопроводами. Сечение такой сваи с тремя контурами грунтового теплообменника приведено на рис. Схема грунтовых теплообменников, замоноличенных в фундаментные сваи здания и поперечное сечение такой сваи Грунтовой массив в случае вертикальных грунтовых теплообменников и строительные конструкции с грунтовыми теплообменниками могут использоваться не только как источник, но и как естественный аккумулятор тепловой энергии или «холода», например тепла солнечной радиации. Существуют системы , которые нельзя однозначно отнести к открытым или замкнутым.

Например, одна и та же глубокая глубиной от 100 до 450 м скважина, заполненная водой, может быть как эксплуатационной, так и нагнетательной. Диаметр скважины обычно составляет 15 см. В нижнюю часть скважины помещается насос, посредством которого вода из скважины подается к испарителям теплового насоса. Обратная вода возвращается в верхнюю часть водяного столба в ту же скважину. Происходит постоянная подпитка скважины грунтовыми водами, и открытая система работает подобно замкнутой. Системы такого типа в англоязычной литературе носят название «standing column well system» рис.

Схема скважины типа «standing column well» Обычно скважины такого типа используются и для снабжения здания питьевой водой. Однако такая система может работать эффективно только в почвах, которые обеспечивают постоянную подпитку скважины водой, что предотвращает ее замерзание.

Мантия Земли по отношению к сейсмическим волнам ведёт себя как твёрдое тело , поэтому за верхний предел температур можно принять величину, определяемую в соответствии с кривой плавления. Внешнее ядро Земли находится в расплавленном состоянии, поэтому температуру плавления железа преобладающего в составе ядра можно принять за верхнюю оценку возможных температур ядра. Вероятное присутствие примесей в жидком железном ядре приводит к оценке температуры на границе ядра и мантии в 4000—5000 К. В жидком ядре по причине конвективного перемешивания температура не может сильно отличаться от адиабатической , тогда в центре Земли температура может достигать 5000—6000 К. Более детальное распределение температуры получают из решения уравнений тепловой конвекции с использованием реперных точек — температур фазовых переходов в мантии.

Для переходов на глубинах 410, 660 и 2650 км эти температуры составляют соответственно 1810, 1940 и 2500 К. Опубликовано 23 января 2023 г.

Сеть термометрических скважин обустроена под жилыми и социальными зданиями в Салехарде. В настоящее время здесь апробируется и тестируется первая версия методики автоматизированного геотехнического мониторинга объектов капитального строительства, разработанная учёными Научного центра изучения Арктики в сотрудничестве с Институтом математики и механики Уральского отделения РАН. Окончательную версию разработчики планируют представить через три года.

Новая технология позволит специалистам следить за параметрами многолетней мерзлоты в режиме онлайн и прогнозировать возможные процессы растепления грунтов и снижения их несущей способности в будущем.

Похожие новости:

Оцените статью
Добавить комментарий