Пластик легко выливается из сопла там, где принтер не должен ничего печатать. Компания PlastiQ открылась в августе 2018 года, мы занимаемся производством расходных материалов для 3D принтеров и 3D ручек, работающих по технологии FDM печати. Ниже несколько примеров изделий, которые подходят для печати на 3D-принтере из ABS-пластика. Кроме того, его использование требует обязательного наличия у 3D-принтера подогреваемой платформы, чтобы предотвратить деформацию пластика при остывании. Изготовление и использование экструдера для нити в домашних условиях немного более продвинуто, чем использование 3D-принтера, но оно определенно доступно увлеченному любителю и является отличным способом практической переработки отходов пластика!
Как жить и печатать с PMMA?
ESUN – крупнейший китайский производитель материалов для 3D-печати (объем производства – около 15 000 тонн в год). ABS пластик для печати на 3D принтере. 9 лет наша команда производит и разрабатывает инженерные пластики для 3D-печати в Санкт-Петербурге.
Пластик UNID безопасен!
Лучшие технологии для вашего принтера. Первый производитель филамента в НН. После печати на 3D принтере модели из ABS пластика, её можно легко отшлифовать и покрасить аэрозольной или акриловой краской. Разработка методик и инструментов получения полимерных композиций с регулируемым уровнем показателей для 3D-печати по технологии послойного наплавления разработана при поддержке Фонда содействия инновациям. Если можете подготовить принтер под печать композитами 1, то еще 1 катушка ABS с 10-13% наполнения. 1954 предложения - низкие цены, быстрая доставка от 1-2 часов, возможность оплаты в рассрочку для части товаров, кешбэк Яндекс Плюс - Яндекс Маркет. Рассказываем о характеристиках пластика, примерах применения в промышленности, оборудовании для 3d-печати PEEK.
Основные виды пластиков для FDM 3D печати
Выбрать пластик для 3D принтера очень важно, особенно когда стоит цель напечатать функциональную модель с определенными свойствами. Это аморфный пластик, который на 100% пригоден для вторичной переработки, с тем же химическим составом, что и полиэтилентерефталат, более известный под аббревиатурой ПЭТ. PETG, и PLA – это пластики полиэфирной группы. Как и большинство филаментов для 3D-печати по технологии FDM, они являются также термопластиками. Разновидности пластика для печати на 3D принтере. Пластик легко выливается из сопла там, где принтер не должен ничего печатать.
Пластик для 3d принтера
Для вас хорошая новость: на складе Bestfilament в городе Челябинск большое поступление комплектующих для 3d-принтера. PETG является одним из наиболее прочных пластиков, применяемых в сфере 3D-печати методом FDM, и подходит для использования в большинстве моделей 3D-принтеров рассматриваемого типа. К основным характеристикам пластика для 3D-принтера можно отнести влагостойкость, высокую устойчивость к механическим ударам, кислотам и щелочам.
Проведена экспертиза токсичности испарения ABS и PLA
Для обеспечения адгезии со столиком, особенно холодным, необходимо либо нанести на поверхность малярный скотч, либо использовать столик с полиэфиримидным покрытием, либо использовать клей, например Bubble glue. С ПЭТГ могут возникнуть проблемы в виде так называемой «паутины» — тонких нитей, тянущихся за соплом при холостом перемещении головки. Серьезных проблем они не вызывают, так как после 3D-печати легко удаляются, но все же раздражают и ведут к перерасходу материала. При появлении паутины попробуйте либо увеличить длину ретракта, либо слегка понизить температуру экструзии, либо и то, и другое. При 3D-печати ПЭТГ также настоятельно рекомендуется использовать клеи, но не столько для повышения адгезии, сколько наоборот: дело в том, что ПЭТГ отлично схватывается со многими гладкими поверхностями, особенно стеклянными столиками. При отделении готовой модели можно даже вырвать куски стекла. В таких случаях тонкий слой клея поверх столика будет служить разделительным слоем, удерживающим адгезию на оптимальном уровне. Попробуйте клеи Bubble glue или Picaso , они созданы как раз с этой целью.
Физико-механические свойства 3D-печатные изделия из ПЭТГ отличаются высокой прочностью, проистекающей как из свойств самого материала, так и отличной когезии слоев. Из ПЭТГ вполне можно делать механические детали, например шестерни, а также крепления, защитные кожухи и тому подобное. Слои в моделях из ПЛА схватываются не так прочно, да и сам полимер относительно хрупок, а потому полилактид подходит в основном для изготовления игрушек, сувениров, украшений и прочих изделий, не подверженных высоким механическим и тепловым нагрузкам. Помните упомянутую выше паутину? Ее появление связано с высокой вязкостью ПЭТГ, а это, в свою очередь, говорит о высокой ударной стойкости и сопротивлении необратимым деформациям. ПЭТГ также намного лучше подходит для эксплуатации на открытом воздухе.
Внимательно смотрите на цены. Один из основных пластиков для печати твердых вещей имеющих механические нагрузки трения, изломы и пр. При печати обычно обладает отличительным глянцем поверхностей. Температуры печати - 235-250 гр.
В зависимости от производителя, у каждого пластика есть определенные рекомендуемые температуры. Я лишь пишу примерный диапазон конкретные температуры лучше брать с коробки купленного вами пластика. Липнет почти как PLA практически ко всему, и даже можно печатать на холодный стол, но если есть подогреваемый стол использовать его надо всегда. В отличие от PLA уже не требует обязательного и хорошего обдува. Без обдува и так невероятно сильная межслойная адгезия становится еще лучше. Что делает хим. Из-за крепости все наросты, сопли, и пр. Обрабатывать шкуркой тоже долго и тяжело. Для чего использовать - шестерни, ручки, вещи требующие крепости. Никто, так же вам не запретит напечатать из них что угодно для себя, но вот обрабатывать после печати не очень приятно.
Шестеренки из PETG-a ходят довольно хорошо. Цена от 1000 р. SBS - Стирол-бутадиен сополимер. Слегка упругий пластик. Если прошлые пластики были довольно твердые, этот уже немного мягковатый. Пруток от этого пластика можно завязать в узел и он не лопнет. При печати тонких стенок, или моделей можно получить немного гнущиеся элементы. Красивая глянцевая поверхность. Печатается посложнее предыдущих, но не сильно.
Тесто Для печати изделий из теста на 3D-принтере в основном используют полужидкое тесто. Оно имеет идеальную консистенцию для беспрепятственного прохождения через сопло экструдера. Тесто позволит создать необычный трехмерный объект или 2D-изделие со сложным рисунком. При этом изделие после печати будет полностью готово к употреблению, благодаря антипригарной, хорошо разогретой рабочей поверхности. Плюсы: из теста можно напечатать любые по сложности картинки; можно использовать любое по составу полужидкое тесто; блюдо из теста, напечатанное на 3D-принтере, не требует дополнительной доработки — оно полностью готово к употреблению. Минусы: тесто должно быть идеально однородным без комочков, так как сопло может забиться. Другие материалы Наиболее часто используемые и известные материалы уже рассмотрены.
На деле же ничего критичного в этом нет. Весь секрет — в постобработке. И есть несколько действенных методов вернуть нужную пропускную способность: 1. Обработка сольвентом или аналогами. Даже небольшое количество состава позволяет сгладить неровности и вернуть прозрачность, визуально приблизив изделие к стеклянному. Использование сопла с большим диаметром для печати в один слой. Могут использоваться сопла до 0,8 мм, благодаря чему светопропускная способность остается на нужном уровне.
Гид по выбору пластика для 3D печати
В данном случае эстетическая и тактильная привлекательность материала достигается за счет снижения гибкости и прочности. Будьте осторожны с температурой, при которой вы печатаете филаментом с древесиной, так как слишком большое количество тепла может привести к почти сгоревшему или карамельному виду. С другой стороны, внешний вид ваших деревянных творений может быть значительно улучшен с помощью небольшой доработки после печати! При печати декоративных объектов, устанавливаемых на столах или полке, используйте деревянный филамент. Примеры включают чаши, статуэтки и награды. Одним из действительно креативных применений дерева в качестве нити для 3D-принтера, является создание масштабных моделей, используемых в архитектуре. Металлические пластики Что такое металлический пластик? Если вы ищете другой тип эстетики для своих 3D-моделей - что-то более объемное и блестящее, то для этого вы можете использовать металл. Как и деревянная нить для 3D-принтера, металлическая нить на самом деле не металлическая. Но это не мешает результатам и позволяет создавать прототипы, которые имеют внешний вид металла.
Даже вес подобен изделиям из металла, поскольку композитные материалы, как правило, в несколько раз плотнее, чем чистый PLA или ABS. Дополнительная информация Бронза, латунь, медь, алюминий и нержавеющая сталь - это лишь некоторые из разновидностей металлическго филамента для 3D-принтера, которые имеются в продаже. Если вас интересует особый внешний вид, не бойтесь полировать, выдерживать при различных погодных условиях или искусственно состаривать изделия после печати. Возможно, вам придется заменить сопла для 3D принтера немного раньше обычного в результате печати металлическими пластиками, поскольку их компоненты немного абразивны, что приводит к повышенному износу. Когда я должен использовать металлические пластики? Металлическая нить может использоваться для печати сувениров и функциональной продукции.
ABS более хрупкий. При сильном ударе ABS сломается.
PLA более вязкий. PLA пластик более скользок — из него получаются хорошие крутящиеся соединения например, ось детской машинки и ее держатель, а также любые подшипники скольжения. ABS пластик прекрасно растворяется в обыкновенном ацетоне это необходимо для химической обработки готовой модели. PLA пластик не растворяется в привычном ацетоне можно использовать только в специальных жидкостях: феноле, в limonen и в концентрированной серной кислоте. ABS — значительно долговечнее, не разлагается, из нефтепродуктов. PLA — делается из растительных материалов, разлагается за 2 года, долгоиграющие вещи из него делать бессмысленно, но зато он более гладкий, и именно из него печатают подшипники для моделей.
В процессе печати при холостых перемещениях экструдера часто натягивается тонкая паутина. Другими словами, в разогретом состоянии материал склонен к самовытеканию из печатающего сопла: когда оно движется по воздуху, происходит растягивание вытекающих капель или их размазывание о поверхность модели. Сложно управлять ретрактом откатом и возвратом материала. Если понизить температуру экструзии, то ретракты станут чище, но упадёт прочность изделия.
Первое, что приходит на ум — это, конечно же, пищевая промышленность. Это свойство делает его особенно подходящим для упаковки пищевых продуктов, а также в промышленности. Благодаря своей способности к стерилизации ПЭТГ также подходит в качестве материала для элайнеров, медицинского оборудования или для изготовления протезов. Благодаря своей относительной экономичности и техническим свойствам ПЭТГ также широко используется для прототипирования. Кроме того, он имеет термическую и химическую стойкость - его можно использовать даже в более долговечных изделиях, таких как оснастка, испытательные компоненты или детали конечного использования для машин. Минусы нити PETG Текучесть: приводит к появлению нитей и паутины между деталями, которые также попадают и на экструдер; капли или катышки на внешних стенках изделий; Трение: не лучший выбор для скользящих между собой деталей, по сравнению с ABS; Сложность шлифовки при постобработке. И мы видим, что этот материал широко перерабатывается.
И да, на свой День Рождения я получила от родителей долгожданный подарок — простенький недорогой 3D. Я узнала, что хвостовик - это одноразовый расходник, и нужно их очень много, я решила, что плести масксети — не мое, а вот с этими штуками, я вполне могу справиться.
Я рассказала о своем плане родителям, и они его одобрили, а папа стал раз в неделю выдавать мне деньги на покупку катушек! Минору: Думаю, все знают, что такое дроны. И часто их используют для сброса на противника гранат. Один из самых удобных боеприпасов для них -гранатометный ВОГ-17. Но для дрона его нужно переделать. С него снимают гильзу и вместо нее надевают хвостовик. При сбросе он поворачивает гранату носом вниз. А чтобы граната взорвалась, у нее переделывают взрыватель. Обычный взрыватель активируется при выстреле, поэтому для сброса не годится.
Вместо заводского взрывателя ставят так называемый "накольник", а печатается этот накольник тоже на 3D-принтере. Я посмотрела на сайте Авито если хвостовики еще можно где-то купить по 65-70 рублей, то комплект с накольником продают вовсе по 300. Я думаю, что те русские люди, которые делают это на продажу по такой завышенной цене очень неправы. Им должно быть стыдно. Минору: конечно, бойцам нужен полный комплект, поэтому приходится печатать все.
PETG Пластик для 3D принтера, 1 кг. серия "Мастерская"
Недостатки: Плохо переносит воздействие ультрафиолетового излучения, желтеет на солнечном свете, что ограничивает применение неокрашенных поверхностей на улице Не любит сквозняков при печати, что ограничивает применение дешевых принтеров с открытым корпусом. Из-за относительно высокой усадки склонен к деламинации расслоению , требует наличия подогреваемого стола, без него возникают проблемы с прилипанием к столу первого слоя. В процессе печати может образовываться неприятных запах, печатать лучше в проветриваемом помещении, или оснащать принтер специальной системой вытяжной вентиляции, с выводом за пределы квартиры.
Пользовательский интерфейс с возможностью 3D-отображения траекторий написан на языке Python с использованием открытых библиотек Pyqt5 и OpenGL и открыт для всех желающих, кто готов совершенствовать проект. Судя по фотографиям, за основу биопринтера был взят один из манипуляторов белорусской компании Rozum Robotics. Программно-аппаратный комплекс платформы учёным помогали разрабатывать специалисты компании 3D Bioprinting solutions. Герцена и готов к дальнейшим этапам исследований. Проведённый через некоторое время анализ ран показал, что процесс заживления прошёл со значительным ускорением. По мнению специалистов, данная технология биопечати in situ, то есть непосредственно в дефект, в будущем может стать прогрессивным терапевтическим методом лечения ожогов, язв и обширных повреждений мягких тканей.
В отличие от варианта с обработкой метала резанием, такой подход позволяет сократить время на изготовление детали и уменьшить расход материала. Источник изображения: Apple Как поясняет знакомый с планами Apple источник, если подход с изготовлением корпусов для умных часов при помощи трёхмерных принтеров себя оправдает, со временем компания расширит применение таких методов производства на другие категории продуктов. Первоначальную заготовку получают методом ковки, а потом из приближённого по размерам к готовому корпусу куска металла станок с числовым программным управлением вырезает изделие необходимой конфигурации. Альтернативная технология позволяет создавать более близкую по форме и размерам к конечным очертаниям корпуса металлическую заготовку из порошкового сырья, которая затем подвергается спеканию при высоких температуре и давлении для достижения необходимых прочностных характеристик. Обработка заготовки резанием предусмотрена на конечном этапе, но в отличие от традиционного техпроцесса, она занимает меньше времени и оставляет меньше отходов. Как отмечается, Apple и её партнёры работают над этой технологией производства на протяжении примерно трёх лет. В качестве эксперимента на протяжении последних нескольких месяцев они пробовали изготовить с помощью новой технологии стальные корпуса часов семейства Watch Series 9, которые должны дебютировать в середине сентября. Пока нет уверенности в том, что товарные экземпляры этих часов будут снабжаться корпусами, изготовленными новым методом.
К 2024 году Apple рассчитывает применить новый метод производства с использованием титана для часов серии Ultra. Первоначальные затраты на перевооружение производства под новую технологию будут высокими, но со временем они позволят добиться экономии сырья. Сейчас себестоимость изготовления корпусов по обеим технологиям сопоставима. Основная часть выпускаемых компанией часов оснащается алюминиевыми корпусами, для их производства использовать трёхмерные принтеры пока не планируется. Отладив новый метод на мелкосерийных изделиях, Apple сможет масштабировать его на более массовые в производстве продукты, включая и смартфоны. Ожидается, что именно этот подход будет использован для изготовления некоторых механических деталей новых Apple Watch Ultra. Ожидается, что некоторые титановые детали для новых Apple Watch Ultra будут изготовлены с помощью этого метода. Несмотря на то, что на текущий момент механические детали, изготовленные методом 3D-печати, всё ещё проходят обработку на станках с ЧПУ, это способствует оптимизации времени производства и снижению себестоимости.
Предполагается, что при успешном сотрудничестве, всё больше продуктов Apple будет изготовлено с применением технологии 3D-печати. Это не только позволит снизить затраты на производство и улучшить показатели « устойчивого развития » ESG в цепочке поставок Apple, но и принесет выгоду упомянутым поставщикам в рамках этой новой производственной тенденции. Внедрение технологии 3D-печати в производственный процесс Apple приведёт к значительной оптимизации времени производства и снижению себестоимости продукции компании. Это лишь некоторые преимущества, которые открывают новые возможности для развития и использования 3D-печати в электронной индустрии, и не только для Apple. Группа учёных смогла решить эту проблему в сфере 3D-печати живых тканей человека — она создала сложнейшее и дорогое оборудование из обычных наборов LEGO и готова поделиться опытом со всеми желающими. Самыми дорогими, по-видимому, оказались интеллектуальный блок Lego Mindstorms и лабораторный насос. LEGO-принтер печатает биогелем, в котором растворены клетки кожи человека. Сопло принтера создаёт трёхмерную модель тканей кожи в чашке Петри, укладывая в неё слой за слоем.
В дальнейшем учёные намерены изучить работу с разными составами геля и соплами разного диаметра, чтобы попытаться максимально точно воспроизводить кожную ткань человека. Всё эту нужно для получения множества образцов живой ткани для проведения медицинских опытов. В обычных условиях биологический материал получают либо от доноров, либо в виде отходов после операций. В обоих случаях процедура и порядок получения биоматериалов достаточно сложные и становятся всё сложнее и сложнее, поэтому даже такой доморощенный принтер из конструктора LEGO может быть приемлемым решением для медицинских экспериментов. Данные о разработке с детальным описанием сборки, настройки и работы принтера изложены в журнале Advanced Materials и свободно доступны по ссылке. Повторить работу может любой желающий. Как правило, количество одновременно используемых ингредиентов ограничено, и продукты должны быть примерно одной и довольно высокой вязкости, иначе они не будут держать форму. Однако в США смогли разработать алгоритм 3D-печати еды из рекордного количества ингредиентов.
Это пирожное напечатано на 3D-принтере. В еде важна текстура, которая делает её желанной для потребления. Особенно важно это для печати еды из искусственного мяса, для которого натуральная текстура — это одно из обязательных условий популярности. Объёмная печать идеально подходит для такой работы и, вероятно, со временем будет широко использоваться в готовке дома или в местах общественного питания как продолжение политики повышения экологичности. Специалисты Колумбийского университета воспользовались классическим методом 3D-печати, используемым при работе с пластиком. Это метод наплавленного осаждения FDM. Для термической обработки ингредиентов использовались два лазера — синий и инфракрасный в ближнем диапазоне. В качестве ингредиентов были выбраны пищевые «чернила» из теста для «крекер-грэма», арахисовое масло, клубничный джем, Nutella, банановое пюре, вишнёвый сок и глазурь.
Утверждается, что это самое большое количество одновременно используемых компонентов для 3D-печати еды. Для получения целого и приятного на вид пирожного потребовалось восемь попыток, что отражено в видео. По мере создания восьмого удачного «изделия» были выработаны рекомендации для повышения устойчивости формы пищевого объекта. Например, был разработан метод армированной печати каркаса для более жидких ингредиентов.
Легко поддается механической обработке и покраске. Нетоксичен и безопасен для здоровья. Требует длительного застывания после печати 2-3 часа. Сами нити могут быть достаточно хрупкими и требовать аккуратного обращения. PC Поликарбонат. В 3Д-печати только начинает набирать популярность по мере совершенствования технологий.
Сам по себе материал прозрачный и часто используется в качестве заменителя обычного стекла. Довольно требователен при печати. Сам по себе безопасен, но лучше печатать в хорошо проветриваемом помещении. Nylon PA Нейлон. Само использование нейлона при простой 3D-печати затруднительно из-за технологических сложностей, тем не менее уже появляются специальные нити из нейлона для 3Д-принтеров например, производители Taulman и Stratasys , обладающие высокой износоустойчивостью и эластичностью. Расходник имеет плохую вязкость. Перед печатью рекомендуется просушка нитей. Практически не поддается склеиванию. Инновационная модель сополимера, которую отличает высокая теплостойкость и низкая жесткость. Используется при прототипировании и проектировании светопропускаемых изделий.
Обладает высокой адгезией к чистому стеклу и имеет отличную свариваемость слоев между собой. Запах при печати отсутствует, не впитывает влагу, низкая усадка, гибкость, практически полностью прозрачен. POM Полиформальдегид. Отличается высокой прочностью, жесткостью и хорошей стабильностью. Хорошо переносит ударные нагрузки, истирание, воздействие органических растворителей и масел. При этом довольно хорошо поддается обработке.
Если понизить температуру экструзии, то ретракты станут чище, но упадёт прочность изделия. Первое, что приходит на ум — это, конечно же, пищевая промышленность.
Это свойство делает его особенно подходящим для упаковки пищевых продуктов, а также в промышленности. Благодаря своей способности к стерилизации ПЭТГ также подходит в качестве материала для элайнеров, медицинского оборудования или для изготовления протезов. Благодаря своей относительной экономичности и техническим свойствам ПЭТГ также широко используется для прототипирования. Кроме того, он имеет термическую и химическую стойкость - его можно использовать даже в более долговечных изделиях, таких как оснастка, испытательные компоненты или детали конечного использования для машин. Минусы нити PETG Текучесть: приводит к появлению нитей и паутины между деталями, которые также попадают и на экструдер; капли или катышки на внешних стенках изделий; Трение: не лучший выбор для скользящих между собой деталей, по сравнению с ABS; Сложность шлифовки при постобработке. И мы видим, что этот материал широко перерабатывается. Это создает проблемы при совместной переработке этих двух материалов. Что касается формата, то, как и другие нити, существуют катушки диаметром 1,75 или 2,85 мм с разным весом в зависимости от потребностей.
Обратите внимание, что ПЭТГ часто армируется углеродными волокнами, что увеличивает жесткость детали при оптимизации ее конечного веса.
Свойства, различия и области применения PLA и ABS пластика
5 популярных пластиков для FDM-печати: особенности, применение, отличия | На рынке материалов для FDM печати представлено несколько видов пластиков, каждый из которых обладает своими преимуществами и недостатками, используется для печати определенных моделей и требует отличных настроек принтера перед печатью. |
Пластик для 3d-принтеров | Выводы: Из всего вышесказанного стоит отметить, что SBS пластик от FDplast – очень удачное решение для 3д печати. |
Пластики для 3D печати, всё что нужно знать о материалах | Выбрать пластик для 3Д-печати становится сложнее, особенно неопытным новичкам, которые только знакомятся с технологиями FDM/FFF. |
PETG: что это за пластик? Особенности печати пластиков ПЕТГ | If you have Telegram, you can view and join НИТ пластик для 3D right away. |
Основные виды пластиков для FDM 3D печати | Чтобы сделать 3Д-модель, имеется несколько способов, причем суть технологии можно описать таким образом — материал для 3Д-принтера накладывается при изготовлении модели слой за слоем, а в последствии затвердевает. |
Первая печать филаментом от компании Greg. Пластик для 3д принтера.
ПЛА — биоразлагаемый материал. Он создан из растений — кукурузы и сахарного тростника. За счет этого свойства тратится меньше электроэнергии и становится возможным применение бюджетных латунных и алюминиевых сопел. Характеризуется низким коэффициентом взаимодействия для контактирующих поверхностей. Достаточно медленно застывает. Не имеет резкого запаха. Не токсичен. Пригоден для производства детских игрушек и контакта и пищей.
Стоит недорого. Используется в медицине для изготовления шовных материалов, штифтов. Служит для выпуска авторских моделей, сувениров, детских конструкторов. Применяется для производства подшипников, которые не несут высоких физических нагрузок.
Пиролиз может сопровождаться выделением токсичных паров. Бетон Сегодня существуют принтеры, которые используют и этот материал. При помощи строительного 3D-принтера создаются дома и другие конструкции. Металлы Применяются порошки и 3D-принтеры, стоимость которых весьма высока. После изготовления модели обжигаются, чтобы придать им большую прочность. Порошки обычно обжигаются лазером. Сплавы Среди сплавов имеется их широкий набор. Сплавы титана используются в медицинской промышленности по причине биосовместимости.
PLA - термопластичный полимер, который очень прост в 3D печати, за что и получил такую популярность. Он не требует сложных настроек, редко становится причиной засоров, печатается при не высокой температуре и без подогрева стола. Показывает отличные результаты при печати моделей с мелкими деталями и острыми углами. И к тому же практически не дает усадки. Вам понравится с ним работать, даже если вы только что купили свой первый 3D принтер! Но в каждой бочке мёда есть ложка дёгтя!
Например, на 3d-принтерах изготавливаются межпозвоночные кейджи — протезы, заменяющие позвонки, удаленные вследствие спондилолистеза. Биополимер PEEK обладает прочностью и эластичностью схожими с живой костью, способен выдерживать типичные для позвоночника нагрузки, а потому отлично подходит для изготовления кейджей. Энергетическая промышленность В любой среде, где присутствует большое количество жидкостей, от топлива до кислот, успешно применяется PEEK пластик. Высокая химическая стойкость и механическая прочность делают этот полимер привлекательным для предприятий нефтегазовой отрасли. Так, распространена 3d- печать лабиринтных и пружинных уплотнений, опорных колец, корпусов масляных насосов и т. Любая аддитивная установка работает по принципу послойного синтеза, нанося новый слой детали поверх предыдущего. Для обеспечения прочного сцепления адгезии между слоями, а, значит, оптимальных механических свойств изделия, необходимо, чтобы температура внутри рабочей камеры была близка к температуре стеклования полимера. Нагреваемая камера также предотвращает усадку выращиваемой модели. На сегодняшний день количество 3d-принтеров, способных обеспечить качественную работу с PEEK, ограниченно. Это обусловлено невысокой стоимостью оборудования, доступностью и большим количеством пластиков, возможностью установки 3d-принтера в обычном офисном помещении, легкостью освоения техники оператором. Однако, когда речь заходит именно о PEEK, стоимость 3d-принтера и самого пластика являются условно привлекательными — машины для работы с этим материалом, как правило, обходятся в несколько миллионов рублей, а килограммовая катушка PEEK пластика стоит в районе 50 000 — 70 000 рублей. В линейке производителя представлен 3d-принтер Fortus 450mc , предназначенный для работы с высокотемпературными полимерами. К недостаткам можно отнести высокую стоимость аппарата и комплектующих, а также привязку к оригинальным расходным материалам производителя. Европейским аналогом Fortus 450mc выступает высокотемпературный 3d- принтер итальянского производителя 3ntr — Spectral 30. В сравнении с американским конкурентом аппарат обладает более низкой стоимостью и открытой архитектурой, что позволяет использовать пластики любых производителей. Уникальной особенностью принтера является наличие четырёх блоков печати экструдеров и такого же количества встроенных сушильных модулей, чему нет аналогов в мире.