Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Искусственный интеллект (ИИ) для диагностики.
Полная роботизация: как искусственный интеллект помогает врачам
Большая часть таких разработок - решения для работы с медицинскими изображениями, уточнил Пугачев. Поделиться новостью Нажимая на кнопку вы даете согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности.
Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента.
Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных.
Таким образом, понадобилось 46 дней для выбора подходящего лекарства.
Однако прежде чем рассматривать особенности использования технологии в сфере здравоохранения, необходимо разобраться в том, что представляет из себя ИИ. Что такое ИИ? Одно из первых определений ИИ было предложено еще в 80-х годах XX века. Ученые в области теории вычислений Файгенбаум и Барр назвали искусственный интеллект областью информатики, направленной на создание интеллектуальных систем, обладающих возможностями, присущими человеческому разуму. К ним относят возможность обучения, распознавание языка, умение рассуждать и решать различные проблемы. Сегодня к ИИ относят программные средства с набором алгоритмов и методов, которые могут решать интеллектуальные задачи так же, как это сделал бы человек. К примеру, искусственный интеллект способен: Прогнозировать различные ситуации Оценивать информацию и формулировать заключительную оценку Анализировать данные и искать скрытые закономерности Стоит отметить, что на настоящий момент компьютеру не доступно моделирование сложных процессов высшей нервной системы человека: творчество, эмоции и т. Все это может возникнуть со временем и с появлением более сильного искусственного интеллекта.
Однако компьютеры уже научились решать задачи так называемого «слабого искусственного интеллекта». Машина может работать по заранее установленным человеком правилам. Кроме того увеличивается количество проектов, в которых компьютеры не только работают по установленным алгоритмам, но также самообучаются, совершенствуются и решают более сложные задачи. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом — полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими — системы используются для расчетов статистик, формирования реестров и т. Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни. Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы.
Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше. Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос.
Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства. Алгоритм разработан с помощью технологий машинного обучения в медицине.
Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны.
Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств , сетей Байеса и искусственных нейронных сетей , были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах. Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства. Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности.
В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины.
Искусственный интеллект в помощь врачам и пациентам
Искусственный интеллект и машинное обучение в медицине | Команда ученых из Калифорнийского технологического института создала систему SAIS на базе искусственного интеллекта для тренировки хирургических навыков. |
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране | В фокусе: технологии искусственного интеллекта (ИИ) в здравоохранении и системы поддержки принятия врачебных решений (СППВР). |
Искусственный интеллект в медицине: добро или зло? | Разрабатываем решения для медицины будущего с искусственным интеллектом. |
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране
Растущий потенциал нейросетей — от возможности диагностировать серьезные заболевания до рекомендаций выбору терапии или даже эвтаназии — эксперты обсудили в эфире телеканала «Царьград». Обсуждению предшествовала статистика. По данным исследований ВЦИОМ и Pew Research Center, прогноз эффективности искусственного интеллекта ИИ в медицине в российском и американском обществе находится примерно на одном уровне. Более оптимистичное отношение россиян коррелирует с высшим образованием, материальным положением и доступом к интернету. По оценкам Национального центра развития искусственного интеллекта НЦРИИ , сегодня более половины технологий ИИ в области здравоохранения находятся на стадии экспериментального запуска.
ИИ может помочь в профилактическом здравоохранении, анализируя данные пациентов, чтобы выявлять факторы риска и прогнозировать потенциальные проблемы со здоровьем до того, как они возникнут. Это может привести к своевременным вмешательствам и более здоровому образу жизни. Например, носимые устройства, интегрированные с искусственным интеллектом, могут отслеживать показатели жизнедеятельности и предупреждать людей о потенциальных проблемах со здоровьем. Как ИИ способствует точной медицине? ИИ вносит свой вклад в точную медицину, позволяя анализировать большие наборы данных, таких как геномные данные, для выявления закономерностей, влияющих на здоровье и болезни. Это может помочь в разработке индивидуальных стратегий лечения, основанных на индивидуальном генетическом составе, образе жизни и окружающей среде. Что мешает внедрению ИИ в здравоохранение? Барьеры включают проблемы с конфиденциальностью данных, отсутствие стандартизированных данных и нехватку навыков для внедрения и управления решениями ИИ. Кроме того, существует проблема интеграции систем искусственного интеллекта в существующие инфраструктуры здравоохранения. Преодоление этих барьеров требует тщательного планирования, правил и междисциплинарного сотрудничества. Какую роль ИИ играет в охране психического здоровья? ИИ играет важную роль в охране психического здоровья, предлагая инструменты для раннего выявления, лечения и поддержки. Алгоритмы ИИ могут анализировать речевые паттерны и поведение в социальных сетях, чтобы обнаруживать признаки проблем с психическим здоровьем. Кроме того, чат-боты с поддержкой ИИ могут оказывать психологическую поддержку и терапию тем, у кого может быть ограниченный доступ к традиционным службам охраны психического здоровья. Может ли ИИ помочь в лечении хронических заболеваний? Да, ИИ может внести значительный вклад в борьбу с хроническими заболеваниями. Алгоритмы ИИ могут прогнозировать развитие таких заболеваний, как диабет, болезни сердца и рак, что позволяет медицинским работникам разрабатывать персонализированные планы лечения. Кроме того, носимые устройства с искусственным интеллектом могут помочь пациентам следить за своим здоровьем и соблюдением режима лечения дома. Как ИИ поддерживает телемедицину? ИИ поддерживает телемедицину, обеспечивая удаленный мониторинг, диагностику и лечение пациентов. Приложения на базе искусственного интеллекта могут давать медицинские советы в зависимости от симптомов, а виртуальные помощники помогают планировать встречи. Кроме того, ИИ может анализировать данные с носимых устройств, чтобы предупреждать врачей о любых серьезных проблемах со здоровьем, обеспечивая своевременное дистанционное вмешательство. Какова роль ИИ в анализе данных здравоохранения? ИИ играет ключевую роль в анализе данных здравоохранения. Он может анализировать огромные объемы данных — от историй болезни пациентов до клинических исследований — для извлечения информации, которая поможет принять решение о лечении. Алгоритмы машинного обучения могут выявлять закономерности и тенденции, прогнозировать результаты лечения пациентов и помогать организациям здравоохранения принимать решения на основе данных. Какое влияние ИИ оказывает на хирургические процедуры? ИИ оказывает значительное влияние на хирургические процедуры. Хирургические роботы с искусственным интеллектом могут выполнять точные движения, снижая риск человеческой ошибки. Кроме того, ИИ может помочь в хирургическом планировании, предоставляя подробные персонализированные 3D-модели анатомии пациента. Кроме того, ИИ может контролировать жизненно важные органы пациента во время операции, предупреждая команду о любых потенциальных проблемах. Как ИИ меняет управление больницами? ИИ упрощает администрирование больниц, автоматизируя такие задачи, как планирование, выставление счетов и управление картами пациентов. ИИ может прогнозировать поток пациентов, чтобы оптимизировать расписание, сократить время ожидания и повысить качество обслуживания пациентов. Кроме того, искусственный интеллект может отмечать потенциальные ошибки в выставлении счетов или записях пациентов, повышая точность и эффективность.
Более оптимистичное отношение россиян коррелирует с высшим образованием, материальным положением и доступом к интернету. По оценкам Национального центра развития искусственного интеллекта НЦРИИ , сегодня более половины технологий ИИ в области здравоохранения находятся на стадии экспериментального запуска. Наиболее успешно развиваются направления, связанные с компьютерной диагностикой: скрининг и более глубокий анализ симптомов на базе изучения медицинских изображений — рентгеновских или КТ-снимков. Это подтвердила и врач МРТ Ольга Козловская, отметив, что ИИ уже сейчас становится хорошим помощником рентгенологам благодаря автоматизации рутинной работы и поддержке врачебных решений. Сопредседатель Всероссийского союза пациентов, член СПЧ при Президенте РФ Ян Власов уверен, что в условиях серьезной проблемы дефицита кадров в здравоохранении, когда у врачей не хватает времени на работу с пациентом, ИИ сможет технологически облегчить жизнь медперсоналу за счет поставки первично обработанного объема информации.
Поделиться новостью Нажимая на кнопку вы даете согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности.
Топ-7 прорывов в медицине в 2023 году
Электронные подписи есть у 522 тыс. Доступ к медицинским данным дает возможность создавать цифровые сервисы. Самый популярный в настоящий момент — сервис удаленной записи на прием к врачу через портал госуслуг. Напомним, что в 2022 г.
Что он должен успеть? Собрать клинический анамнез, выявить риски заболеваний, назначить правильное лечение, успеть принять всех пациентов, уделив внимание каждому, подписать документы электронной подписью, следовать клиническим рекомендациям, учитывать стандарты и порядок оказания медицинской помощи. Ему надо быть подобным шестирукому божеству, и все это — в условиях крайне сжатого времени, отведенного на прием.
А перегруженность, как известно, ведет к профессиональному выгоранию. Естественный, то есть человеческий интеллект способен на многое: синтезировать новые знания, принимать решения, основанные на ценностях и смыслах, неся социальную и профессиональную ответственность, постоянно расширять профессиональный кругозор. Человек может мыслить креативно, создавая качественно новые решения. Не только на базе предыдущего опыта, но и на основе абстракций строить модели будущего, создавать концепции, рассматривать теории и предположения. Он видит профессиональную проблему с разных сторон и применяет кросс-дисциплинарный подход. Например, врач при постановке диагноза учитывает не только данные по своему профилю, но и по смежным дисциплинам.
А еще берет во внимание эмоциональное состояние пациента, его образ жизни, помнит, что пациент может симулировать или что симптоматику могут искажать сопутствующие заболевания. С учетом всего этого диагностика будет намного качественнее. Наверное, у многих так бывало, что все данные и цифры говорят об одном, но есть четкое внутреннее ощущение, что сейчас нужно сделать другой выбор. И в итоге такие решения оказываются верными. Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык.
Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор. Любому биологическому организму свойственна усталость, влекущая потерю концентрации и риск совершить ошибку. Огромный поток интерактивных данных и массив исторически накопившихся данных в виде анамнеза заболеваний, предыдущих исследований, динамики показателей здоровья пациента, множество факторов для принятия решений и катастрофическая нехватка времени — неподъемная ноша для обычного врача.
Согласно оценкам Минздрава, планируется, что в текущем году каждый регион приобретет как минимум одно медицинское устройство с использованием искусственного интеллекта. К 2024 году этот показатель планируется увеличить до не менее трех медицинских изделий с применением технологий ИИ. Пока к работе ИИ есть вопросы, к робокошкам их нет. Пилотный проект по внедрению милых роботов-курьеров на помощь медицинскому персоналу и посетителям стартовал в трёх больницах столицы.
Кроме того, нейропротезирование достигло значительных успехов, позволив людям с потерей конечностей восстановить не только движение, но и осязание. Имплантируя электроды непосредственно в периферические нервы, нейропротезы теперь могут обеспечить пользователям реалистичные и интуитивные ощущения, позволяя им держать предметы, ощущать текстуру и даже испытывать колебания температуры. Влияние этих прорывов в области нейротехнологий невозможно переоценить.
Они дают пациентам с травмами спинного мозга новое чувство надежды, позволяя им вновь обрести подвижность и независимость. Применение ИМК и нейропротезирования выходит за рамки физической реабилитации; они также многообещающи для людей с неврологическими расстройствами, такими как эпилепсия, болезнь Альцгеймера и Паркинсона. Непосредственно взаимодействуя с мозгом, эти технологии позволяют проводить более целенаправленные и эффективные методы лечения, потенциально повышая качество жизни бесчисленного множества пациентов.
В то время как 3D-печать используется в различных отраслях промышленности, ее применение в области медицинских технологий особенно перспективно. Возможность 3D-печати органов обладает огромным потенциалом в решении глобального кризиса нехватки органов. Используя собственные клетки пациента, ученые могут создавать функциональные органы, которые являются биосовместимыми и не требуют иммуносупрессии.
Представьте себе мир, в котором люди, нуждающиеся в пересадке почки, могут просто напечатать новую почку в 3D-формате, избавив от необходимости в длинных очередях ожидания и риска отторжения органа. CRISPR, сокращение от сгруппированных коротких палиндромных повторов с регулярными промежутками, является мощным инструментом редактирования генов, который позволяет ученым вносить точные изменения в ДНК организма. Эта разработка способна излечивать генетические заболевания, модифицировать сельскохозяйственные культуры для повышения урожайности и устойчивости и даже уничтожать переносчиков болезней, таких как комары.
Попав в цель, Cas9 разрезает ДНК в нужном месте, позволяя ученым вставлять, удалять или модифицировать гены с поразительной точностью. В области генетических заболеваний у него есть потенциал для коррекции генетических мутаций, ответственных за такие заболевания, как муковисцидоз, серповидноклеточная анемия и болезнь Хантингтона. Фактически, в 2020 году было проведено первое в истории клиническое испытание с использованием CRISPR на людях для лечения генетической формы слепоты, продемонстрировавшее его потенциал для применения в реальных условиях.
Телемедицина Телемедицина, еще одно прорывное достижение в области медицины, революционизирует способы оказания медицинской помощи.
Яндекс Образование
Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. Искусственный интеллект стал лидером цифрового здравоохранения России по объему инвестиций. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. В фокусе: технологии искусственного интеллекта (ИИ) в здравоохранении и системы поддержки принятия врачебных решений (СППВР). Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы.
Что хотите найти?
Также высказываются предположения, что он якобы был убит вместе с несколькими высокопоставленными украинскими офицерами. Robert W. Ранее стало известно о сбитии хуситами очередного MQ-9 Reaper. Он имеет очень хорошую оптику с внушительной дальностью обнаружения, а также средства радиоэлектронной разведки. Кроме того, зачастую на дрон устанавливаются радиолокационные станции бокового обзора. Все это обеспечивает комплексную и весьма эффективную разведку», — говорит военный эксперт Максим Климов. Впрочем, Reaper также способен наносить удары по наземным целям, но только в условиях практически полного отсутствия противовоздушной обороны, добавил он. Собеседник объясняет: главная уязвимость аппаратов — их достаточно высокая заметность. В зоне действия ПВО он не выживет», — уточнил аналитик. В то же время Климов не исключает, что в операции против Reaper хуситы задействовали двухступенчатый беспилотник, вторая ступень которого представляет зенитную ракету. Он напомнил, что это не первый случай, когда боевики «Ансар Аллах» смогли сбить американский дрон.
В данном контексте военный эксперт напомнил, что цена одного Reaper составляет примерно 30 млн долларов. Для американцев потерять дорогую матчасть, а не личный состав — более приемлемый вариант. Ведь беспилотники выполняют задачи, которые находятся в зоне повышенного риска, потери неминуемы», — считает Климов. Кроме того, был случай, когда американский беспилотник упал в Черном море в результате инцидента с российскими истребителями Су-27 в марте 2023 года. Эта деятельность продолжается сейчас как в Черном, так и в Красном морях», — сказал военный эксперт. Однако у России не получится перенять опыт хуситов в борьбе с Reaper. Климов указал: американские разведывательные аппараты в Черном море летают над международными водами, их уничтожение приведет к неблагоприятным для Москвы международным последствиям. Об уязвимости разведывательно-ударных беспилотников Reaper говорит и эксперт в области беспилотной авиации Денис Федутинов. При этом они малоскоростные и неманевренные. Совокупность этих факторов делает их несложными целями для средств ПВО», — указал он.
Собеседник напомнил, что БПЛА Reaper использовались американскими военными в ходе всех конфликтов последних почти двух десятков лет, а также применялись в отдельных операциях ЦРУ. Сейчас США также используют Reaper в числе прочих пилотируемых и беспилотных средств разведки вблизи наших границ на Черном море, добавил Федутинов. Тем не менее их использование, очевидно, связано с решением Украины собственных военных задач. В этом вопросе они буквально балансируют на грани casus belli», — подчеркнул он. Федутинов в этой связи вспомнил события, повлекшие потерю одного из Reaper над акваторией Черного моря. Сейчас все возвращается обратно. Чтобы память наших визави не подводила, необходимо, чтобы такие вещи повторялись чаще», — заключил эксперт. Ранее йеменские хуситы сбили американский беспилотник MQ-9 Reaper. Об этом сообщили представители движения «Ансар Алла».
С помощью применения искусственного интеллекта рассчитываем ускорить описание исследований и повысить точность диагностики. В случае успеха ИИ-технологии оставят работать автономно на постоянной основе. Please open Telegram to view this post.
Эти технологии включают в себя решения для электронных медицинских карт, маммографии и анализа рентген-снимков грудной клетки. Пугачев также отметил, что Росздравнадзор зарегистрировал 24 медицинских изделия, использующих ИИ, из которых 17 разработаны отечественными компаниями, а 7 — иностранными. Эти технологии, в основном помогают врачам в анализе медицинских данных, включая изображения и цифровые медицинские записи.
И вот «Джейн» попыталась сделать шаг к светлому будущему, когда мы сможем собирать все показатели здоровья человека, а компьютерная система будет находить в них закономерности, которые важны для успешного лечения. Вы ему что-то отвечаете. Хотя откуда вы можете достоверно знать о противопоказаниях? Но если у нас будет возможность пользоваться «Джейн» или подобной программой, то все данные о пациенте рано или поздно станут известны системе и она сможет указать врачу на эти аспекты, индивидуальные особенности. Причём, в отличие от доктора-человека, компьютерная система не может что-то забыть или потерять, она способна запомнить информацию о тысячах пациентов с абсолютной точностью. Персонализация является одной из частей современного подхода к здравоохранению, известного как концепция 4П-медицины. Название происходит от четырёх английских слов, начинающихся с буквы П: персонализация, прогнозирование, профилактика и преемственность Инфографика: Skillbox Media — Что из этого было реализовано в «Джейн»? Мы взяли базу РЛС, распарсили и ввели в систему. Так у «Джейн» появились знания о показаниях, противопоказаниях и побочных явлениях приёма лекарственных средств. Далее врач, когда решал, какой препарат назначить, давал алгоритму задание: «Подбери лекарство для этого ребёнка». И система рассчитывала интегральный показатель для каждого вещества, который показывал степень риска приёма средства для конкретного пациента. Вещества, которые могут ухудшить состояние больного, компьютер подсветит красным. Более того, лекарственные средства взаимодействуют друг с другом. Если врач попытается назначить несовместимые препараты, то «Джейн» и об этом просигнализирует. Так алгоритм подбирает лекарство, наилучшим образом подходящее конкретному пациенту. Это наглядный пример персонализированной медицины. Её можно модифицировать под другие болезни, не только для эпилепсии? Это отдельный модуль, который был встроен в «Джейн» и работал очень успешно. Кстати, им пользовались не только неврологи, но и врачи других специализаций. Как «Джейн» помогала предсказать приступы эпилепсии — Из каких частей состояла «Джейн»? Перечислю основные модули: диагностика; разработка плана лечения и подбор лекарств; контроль принятия лекарств; Также был дневник пациента. Поскольку эпилепсия требует пристального внимания к состоянию пациента, были необходимы инструменты контроля. Сегодня все системы делаются с веб-доступом. Я не могу себе представить стационарную программу такого рода, которую нужно было бы устанавливать как отдельное приложение. Естественно, «Джейн» тоже имела веб-доступ, а чат-бот — это просто дополнительный интерфейс к базе данных, в которой аккумулировались данные о пациенте — история болезни, жизненные показатели, дневник наблюдений и так далее. Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни. И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона. То есть осуществляла поиск скрытых закономерностей. Например, у одного ребёнка «Джейн» выявила жёсткую причинно-следственную зависимость между фазами Луны и обострениями болезни. Ни родители, ни врачи этой связи не чувствовали и не знали о ней. Они просто отмечали в электронном дневнике дни, в которые происходили приступы. Я, конечно, всё перепроверил, долго копался в научных трудах. И нашёл публикации, в которых учёные отмечали селенозависимость течения эпилепсии у отдельных людей. Но объяснить её, кстати, медики пока не могут. Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов. Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует. Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами.
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
Команда ученых из Калифорнийского технологического института создала систему SAIS на базе искусственного интеллекта для тренировки хирургических навыков. Искусственный интеллект существенно улучшает точность аппаратной диагностики в медицине благодаря нескольким ключевым аспектам. Искусственный интеллект оцифровывает данные.
«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине. Альманах содержит ряд статей о применении технологий искусственного интеллекта (ИИ) в здравоохранении, в частности, в медицинской диагностике и мониторинге хронических заболеваний. Приложения искусственного интеллекта Национальной службы здравоохранения. ИИ начинает использоваться во всех аспектах здравоохранения, при этом 34% случаев использования NHS являются диагностическими. Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Подробнее о результатах исследования мы расскажем подробнее в отдельной статье в ближайшие недели! В условиях быстро меняющейся ситуации в сфере цифровизации сектор здравоохранения переживает глубокую трансформацию, характеризующуюся растущей интеграцией технологий цифрового здравоохранения, телемедицины, единых реестров и ИИ. Этот сдвиг не только предлагает множество преимуществ, но и меняет динамику отношений между пациентами и поставщиками медицинских услуг в рамках системы здравоохранения. Отчет представляет из себя большой обзор всех стран - участников региона по основным показателям. В профилях указаны важнейшие компоненты цифрового здравоохранения на национальном уровне, включая цифровое управление здравоохранением, электронные медицинские карты, порталы пациентов, телемедицину, мобильное здравоохранение, а также большие данные и аналитику. Всего в рамках награды было подано более 100 заявок.
Также победителями номинаций стали: Русагро, Авито, Росатом и Роскосмос. Премия Data Fusion Awards присуждается за достижения в области развития тренда Data Fusion, реализацию успешных кросс-отраслевых проектов по анализу больших данных с использованием алгоритмов машинного обучения и искусственного интеллекта, развитие образовательных инициатив для подготовки специалистов.
Однако мРНК-вакцины используют другой подход. Они используют небольшой фрагмент генетической информации вируса или патогена, чтобы дать указание нашим клеткам вырабатывать безвредный белок, похожий на часть вируса. Этот белок запускает иммунный ответ, позволяя нашему организму распознавать настоящую инфекцию и бороться с ней. Эта технология потенциально способна произвести революцию в области терапии таких заболеваний, как рак, генетические нарушения и аутоиммунные состояния. Предоставляя клеткам точные инструкции, мРНК-терапия может нацеливаться на конкретные молекулы, вызывающие заболевание, и запускать выработку терапевтических белков. Перспективы персонализированной медицины с помощью мРНК-терапии дают надежду на индивидуальные варианты лечения, которые ранее были немыслимы. Виртуальная реальность в медицине В то время как технология мРНК находится в центре внимания, другой технологией, которая добилась значительных успехов в 2023 году, является виртуальная реальность VR.
В медицине виртуальная реальность стала мощным инструментом для революционизирования медицинского образования и улучшения ухода за пациентами. В медицинском образовании виртуальная реальность обеспечивает имитируемую среду, в которой студенты могут изучать и практиковать различные процедуры, операции и медицинские сценарии. Этот захватывающий тренинг позволяет студентам приобрести практический опыт, усовершенствовать свои навыки и повысить уверенность в себе перед выполнением процедур на реальных пациентах. Виртуальная реальность также предлагает ценную платформу для непрерывного медицинского образования, позволяя медицинским работникам быть в курсе новейших технологий и методик. Более того, виртуальная реальность также доказала свою эффективность в улучшении ухода за пациентами. Этот подход может помочь справиться с болью, беспокойством и стрессом, создавая захватывающую обстановку или переживания, которые отвлекают пациентов от их физического дискомфорта. VR показала себя многообещающей в таких областях, как обезболивание, терапия психического здоровья, физическая реабилитация и даже помощь пациентам справляться с хроническими заболеваниями. Нейротехнология Одной из самых захватывающих областей инноваций в области медицинских технологий за последние годы стала область нейротехнологий. Ученые и исследователи добились огромных успехов в понимании сложной работы человеческого мозга и разработке технологий, которые непосредственно взаимодействуют с ним.
Первого российско-американского конкурса стартапов Сбер500Startups Первый поставщик специализированного сервиса видеоаналитики для здравоохранения Финалист конкурса "Новатор Москвы" на медицинские изделия по 3-му классу риска В 2019 году команда "Третье Мнение" победила в акселерационной программе Сбер500Startups и продолжила развитие в Кремниевой долине США В 2020 году сервис "Третье Мнение. ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Искусственный интеллект ИИ отлично зарекомендовал себя в отечественной медицине.
Уже 70 регионов используют умные технологии в здравоохранении. Мы уверены, что уже к концу года это начнёт в масштабах всей нашей страны приносить пользу как медицинским работникам, так и пациентам», — отметил заместитель министра здравоохранения РФ Павел Пугачёв. Разрабатывать и внедрять передовые решения также помогает федеральный проект «Искусственный интеллект» нацпроекта «Цифровая экономика».
В ходе его реализации с 2021 года Фондом содействия инновациям запущена линейка эффективных инструментов. Такой комплексный подход позволяет не терять взаимодействие с перспективными командами и стимулирует приток новых идей и решений», — рассказал ИА Регнум генеральный директор Фонда содействия инновациям Сергей Поляков. По его словам, о востребованности мер поддержки свидетельствует статистика поступающих заявок: по линии федпроекта «Искусственный интеллект» Фондом уже поддержано более 800 проектов, каждый десятый из которых связан с медициной.
Цифровой ассистент: как искусственный интеллект помогает московским врачам
В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. В ряде зарубежных исследований было показано, что прогностические модели искусственного интеллекта со временем могут оказаться ненадежными в клинических условиях. Там проектами, связанными с искусственным интеллектом, стали активно интересоваться инвесторы — крупные раунды подняли медицинские компании WoundMetrics, Genuity Science, Tempus, AI Therapeutics.