СТЕРЕОМЕТРИЯ. Основные формулы. Формулы математика профиль ЕГЭ геометрия. Формулы площадей и объёмов для решения задач по стереометрии. Все формулы по стереометрии для ЕГЭ. Формулы нахождения площадей поверхностей и объемов фигур.
Формулы стереометрии для егэ профиль 2023
Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ. Как можно чаще применяйте формулы при решении задач, тренируйте гибкость мышления, чтобы на ЕГЭ по профильной математике справиться со всеми заданиями. Секретные приемы подготовки к ЕГЭ Формулы стереометрии и их применение в задачах Не забыли, как запоминать формулы?
Формулы по математике для ЕГЭ
Все формулы по стереометрии для егэ профиль таблица Формулы Лучшие шпаргалки материалы подготовки к ЕГЭ Математике Картинки запросу все геометрии Стереометрия Геометрия база планиметрия Основные понятия Геометрия Задания 14 16 49 фото 49 фото егэ. Компактно собраны формулы по стереометрии, планиметрии, преобразование выражений, решения прототипов по теме "Уравнения" и "Теория вероятностей". Формулы для стереометрии ЕГЭ математика профиль. Все формулы для ЕГЭ по математике профильного уровня 2024 года можно найти на официальном сайте Министерства образования РФ или скачать в виде pdf-файла по этой ссылке. § 1. Аксиомы стереометрии и следствия из них.
Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?
- Куб формулы
- Какие формулы необходимы для сдачи ЕГЭ по профильной математике?
- Шпаргалка по стереометрии для ЕГЭ
- Все формулы стереометрии для егэ
- Стереометрия: формулы и методы
- Шпаргалка по математике - алгебра и геометрия
Подборка основных геометрических формул для и егэ по математике
Пробные варианты ЕГЭ 2022 по математике базового уровня из различных источников. Пробные варианты ЕГЭ 2022 по математике базовый уровень Инструкция по выполнению работы Экзаменационная работа включает в себя 21 задание. На выполнение работы отводится 3 часа 180 минут. Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Все бланки ЕГЭ заполняются яркими чёрными чернилами.
Задачи из первой части может решить каждый, а я буду максимально тебе в этом помогать! Задавай их в комментариях! Таймкоды: 0:00 - 3 задание ЕГЭ.
Задавай их в комментариях! Таймкоды: 0:00 - 3 задание ЕГЭ. Теория о правильном шестиугольнике.
По определению касательная плоскость имеет со сферой только одну общую точку, следовательно, касательная прямая также имеет со сферой только одну общую точку — точку касания. Теоремы: Теорема 1 признак касательной плоскости к сфере. Плоскость, перпендикулярная радиусу сферы и проходящая через его конец, лежащий на сфере, касается сферы.
Теорема 2 о свойстве касательной плоскости к сфере. Касательная плоскость к сфере перпендикулярна радиусу, проведенному в точку касания. Многогранники и сфера Определение: В стереометрии многогранник например, пирамида или призма называется вписанным в сферу , если все его вершины лежат на сфере. При этом сфера называется описанной около многогранника пирамиды, призмы. Аналогично: многогранник называется вписанным в шар , если все его вершины лежат на границе этого шара. При этом шар называется описанным около многогранника.
Важное свойство: Центр сферы, описанной около многогранника, находится на расстоянии, равном радиусу R сферы, от каждой вершины многогранника. Приведем примеры вписанных в сферу многогранников: Определение: Многогранник называется описанным около сферы шара , если сфера шар касается всех граней многогранника. При этом сфера и шар называются вписанными в многогранник. Важно: Центр сферы, вписанной в многогранник, находится на расстоянии, равном радиусу r сферы, от каждой из плоскостей, содержащих грани многогранника. Приведем примеры описанных около сферы многогранников: Объем и площадь поверхности шара Теоремы: Теорема 1 о площади сферы. Площадь сферы равна: где: R — радиус сферы.
Теорема 2 об объеме шара. Объем шара радиусом R вычисляется по формуле: Шаровой сегмент, слой, сектор В стереометрии шаровым сегментом называется часть шара, отсекаемая секущей плоскостью. Площадь основания шарового сегмента: Площадь внешней поверхности шарового сегмента: Площадь полной поверхности шарового сегмента: Объем шарового сегмента: В стереометрии шаровым слоем называется часть шара, заключенная между двумя параллельными плоскостями. Объем шарового слоя проще всего искать как разность объемов двух шаровых сегментов. В стереометрии шаровым сектором называется часть шара, состоящая из шарового сегмента и конуса с вершиной в центре шара и основанием, совпадающим с основанием шарового сегмента. Здесь подразумевается, что шаровой сегмент меньше чем пол шара.
Объем шарового сектора вычисляется по формуле: Определения: В некоторой плоскости рассмотрим окружность с центром O и радиусом R. Через каждую точку окружности проведем прямую, перпендикулярную плоскости окружности. Цилиндрической поверхностью называется фигура, образованная этими прямыми, а сами прямые называются образующими цилиндрической поверхности. Все образующие цилиндрической поверхности параллельны друг другу, так как они перпендикулярны плоскости окружности. Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим цилиндрической поверхности. Неформально, можно воспринимать цилиндр как прямую призму, у которой в основании круг.
Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности цилиндра. Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между секущими плоскостями, которые перпендикулярны ее образующим, а части круги , отсекаемые цилиндрической поверхностью на параллельных плоскостях, называются основаниями цилиндра. Основания цилиндра — это два равных круга. Образующей цилиндра называется отрезок или длина этого отрезка образующей цилиндрической поверхности, расположенный между параллельными плоскостями, в которых лежат основания цилиндра. Все образующие цилиндра параллельны и равны между собой, а также перпендикулярны основаниям. Осью цилиндра называется отрезок, соединяющий центры кругов, являющихся основаниями цилиндра.
Высотой цилиндра называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания цилиндра к плоскости другого основания. В цилиндре высота равна образующей. Радиусом цилиндра называется радиус его оснований. Цилиндр называется равносторонним , если его высота равна диаметру основания. Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого — образующие, а две другие — хорды оснований цилиндра. Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось.
Осевое сечение цилиндра — прямоугольник, две стороны которого есть образующие цилиндра, а две другие — диаметры его оснований. Если секущая плоскость, перпендикулярна оси цилиндра, то в сечении образуется круг равный основаниям. На чертеже ниже: слева — осевое сечение; в центре — сечение параллельное оси цилиндра; справа — сечение параллельное основанию цилиндра. Цилиндр и призма Призма называется вписанной в цилиндр , если ее основания вписаны в основания цилиндра. В этом случае цилиндр называется описанным около призмы. Высота призмы и высота цилиндра в этом случае будут равны.
Все боковые ребра призмы будут принадлежать боковой поверхности цилиндра и совпадать с его образующими. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать в такой цилиндр можно также только прямую призму. Примеры: Призма называется описанной около цилиндра , если ее основания описаны около оснований цилиндра. В этом случае цилиндр называется вписанным в призму. Высота призмы и высота цилиндра в этом случае также будут равны. Все боковые ребра призмы будут параллельны образующим цилиндра.
Так как под цилиндром мы понимаем только прямой цилиндр, то вписать такой цилиндр можно только в прямую призму. Примеры: Цилиндр и сфера Сфера шар называется вписанной в цилиндр , если она касается оснований цилиндра и каждой его образующей. При этом цилиндр называется описанным около сферы шара. Сферу можно вписать в цилиндр, только если это равносторонний цилиндр, то есть диаметр его основания и высота равны между собой. Центром вписанной сферы будет служить середина оси цилиндра, а радиус этой сферы будет совпадать с радиусом цилиндра. Пример: Цилиндр называется вписанным в сферу , если окружности оснований цилиндра являются сечениями сферы.
Цилиндр называется вписанным в шар, если основания цилиндра являются сечениями шара. При этом шар сфера называется описанным около цилиндра. Вокруг любого цилиндра можно описать сферу. Центром описанной сферы также будет служить середина оси цилиндра. Пример: На основе теоремы Пифагора легко доказать следующую формулу, связывающую радиус описанной сферы R , высоту цилиндра h и радиус цилиндра r : Объем и площадь боковой и полной поверхностей цилиндра Теорема 1 о площади боковой поверхности цилиндра : Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту: где: R — радиус основания цилиндра, h — его высота. Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности прямой призмы.
Площадью полной поверхности цилиндра , как обычно в стереометрии, называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра то есть просто площадь круга вычисляется по формуле: Следовательно, площадь полной поверхности цилиндра S полн. Эта формула также легко выводится доказывается на основе формулы для объема призмы. Теорема 3 Архимеда : Объём шара в полтора раза меньше объёма, описанного вокруг него цилиндра, а площадь поверхности такого шара в полтора раза меньше площади полной поверхности того же цилиндра: Конус Определения: Конусом точнее, круговым конусом называется тело, которое состоит из круга называемого основанием конуса , точки, не лежащей в плоскости этого круга называемой вершиной конуса и всех возможных отрезков, соединяющих вершину конуса с точками основания. Неформально, можно воспринимать конус как правильную пирамиду, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности конуса.
Отрезки или их длины , соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Все образующие прямого кругового конуса равны между собой. Поверхность конуса состоит из основания конуса круга и боковой поверхности составленной из всех возможных образующих. Объединение образующих конуса называется образующей или боковой поверхностью конуса. Образующая поверхность конуса является конической поверхностью. Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания.
В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе, как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси. При этом боковая поверхность конуса образуется вращением гипотенузы, а основание — вращением катета, не являющимся осью. Радиусом конуса называется радиус его основания. Высотой конуса называется перпендикуляр или его длина , опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания.
Осью прямого кругового конуса называется прямая, содержащая его высоту, то есть прямая проходящая через центр основания и вершину. Если секущая плоскость проходит через ось конуса, то сечение равнобедренный треугольник, основание которого — диаметр основания конуса, а боковые стороны — образующие конуса. Такое сечение называется осевым. Если секущая плоскость проходит через внутреннюю точку высоты конуса и перпендикулярна ей, то сечением конуса является круг, центр которого есть точка пересечения высоты и этой плоскости. Высота h , радиус R и длина образующей l прямого кругового конуса удовлетворяют очевидному соотношению: Объем и площадь боковой и полной поверхностей конуса Теорема 1 о площади боковой поверхности конуса. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую: где: R — радиус основания конуса, l — длина образующей конуса.
Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности правильной пирамиды. Площадью полной поверхности конуса называется сумма площади боковой поверхности и площади основания. Следовательно, площадь полной поверхности конуса S полн. Объем конуса равен одной трети произведения площади основания на высоту: где: R — радиус основания конуса, h — его высота. Эта формула также легко выводится доказывается на основе формулы для объема пирамиды. Определения: Плоскость, параллельная основанию конуса и пересекающая конус, отсекает от него меньший конус.
Оставшаяся часть называется усеченным конусом. Основание исходного конуса и круг, получающийся в сечении этого конуса плоскостью, называются основаниями , а отрезок, соединяющий их центры - высотой усеченного конуса. Прямая проходящая через высоту усеченного конуса то есть через центры его оснований является его осью. Часть боковой поверхности конуса, ограничивающая усеченный конус, называется его боковой поверхностью , а отрезки образующих конуса, расположенные между основаниями усеченного конуса, называются его образующими. Все образующие усеченного конуса равны между собой. Формулы для усеченного конуса: Объем усеченного конуса равен разности объемов полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса.
Однако на практике, всё же удобнее искать объем усеченного конуса как разность объёмов исходного конуса и отсеченной части. Площадь боковой поверхности усеченного конуса также можно искать как разность между площадями боковой поверхности исходного конуса и отсеченной части. Действительно, площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса. Площадь полной поверхности усеченного конуса , очевидно, находится как сумма площадей оснований и боковой поверхности: Обратите внимание, что формулы для объема и площади боковой поверхности усеченного конуса получены на основе формул для аналогичных характеристик правильной усеченной пирамиды. Конус и сфера Конус называется вписанным в сферу шар , если его вершина принадлежит сфере границе шара , а окружность основания само основание является сечением сферы шара. При этом сфера шар называется описанной около конуса.
Вокруг прямого кругового конуса всегда можно описать сферу. Центр описанной сферы будет лежать на прямой содержащей высоту конуса, а радиус этой сферы будет равен радиусу окружности, описанной около осевого сечения конуса это сечение является равнобедренным треугольником. Примеры: Сфера шар называется вписанной в конус , если сфера шар касается основания конуса и каждой его образующей. При этом конус называется описанным около сферы шара.
Формулы стереометрии. Общий обзор!
Через любую точку пространства, не лежащую на данной прямой, проходит единственная прямая, параллельная данной прямой. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость. Теорема 3 признак параллельности прямых. Если две прямые параллельны третьей прямой, то они параллельны между собой. Теорема 4 о точке пересечения диагоналей параллелепипеда.
Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Возможны три случая взаимного расположения прямой и плоскости в стереометрии: Прямая лежит в плоскости каждая точка прямой лежит в плоскости. Прямая и плоскость пересекаются имеют единственную общую точку. Прямая и плоскость не имеют ни одной общей точки.
Определение: Прямая и плоскость называются параллельными , если они не имеют общих точек. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости. Однако, в пространстве то есть в стереометрии возможен и третий случай, когда не существует плоскости, в которой лежат две прямые при этом они и не пересекаются, и не параллельны. Определение: Две прямые называются скрещивающимися , если не существует плоскости, в которой они обе лежат.
Теоремы: Теорема 1 признак скрещивающихся прямых. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещивающиеся. Через каждую из двух скрещивающихся прямых проходит единственная плоскость, параллельная другой прямой. Теперь введем понятие угла между скрещивающимися прямыми.
Пусть a и b O в пространстве и проведем через нее прямые a 1 и b 1 , параллельные прямым a и b соответственно. Углом между скрещивающимися прямыми a и b называется угол между построенными пересекающимися прямыми a 1 и b 1. Однако на практике точку O чаще выбирают так, чтобы она принадлежала одной из прямых. Это обычно не только элементарно удобнее, но и рациональнее и правильнее с точки зрения построения чертежа и решения задачи.
Поэтому для угла между скрещивающимися прямыми дадим такое определение: Определение: Пусть a и b — две скрещивающиеся прямые. Возьмем произвольную точку O на одной из них в нашем случае, на прямой b и проведем через неё прямую параллельную другой из них в нашем случае a 1 параллельна a. Перпендикулярными могут быть как скрещивающиеся прямые, так и прямые лежащие и пересекающиеся в одной плоскости. Если прямая a перпендикулярна прямой b , то пишут: Определение: Две плоскости называются параллельными , если они не пересекаются, то есть не имеют общих точек.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Теорема 2 о свойстве противолежащих граней параллелепипеда. Противолежащие грани параллелепипеда лежат в параллельных плоскостях. Теорема 3 о прямых пересечения двух параллельных плоскостей третьей плоскостью.
Если две параллельные плоскости пересечены третьей, то прямые их пересечения параллельны между собой. Теорема 4. Отрезки параллельных прямых, расположенные между параллельными плоскостями, равны. Теорема 5 о существовании единственной плоскости, параллельной данной плоскости и проходящей через точку вне ее.
Через точку, не лежащую в данной плоскости, проходит единственная плоскость, параллельная данной. Определение: Прямая, пересекающая плоскость, называется перпендикулярной плоскости, если она перпендикулярна каждой прямой, лежащей в этой плоскости. Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая прямая перпендикулярна этой прямой. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости.
Теорема 3 о параллельности прямых, перпендикулярных плоскости. Если две прямые перпендикулярны одной плоскости, то они параллельны. Теорема 4 признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.
Теорема 5 о плоскости, проходящей через данную точку и перпендикулярной данной прямой. Через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой. Теорема 6 о прямой, проходящей через данную точку и перпендикулярной данной плоскости. Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Теорема 7 о свойстве диагонали прямоугольного параллелепипеда. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, имеющих общую вершину: Следствие: Все четыре диагонали прямоугольного параллелепипеда равны между собой. Теперь приведем теорему, которая играет важную роль при решении многих задач. Теорема 1 о трех перпендикулярах : Прямая, проведенная в плоскости и перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и самой наклонной.
Верно и обратное утверждение: Теорема 2 о трех перпендикулярах : Прямая, проведенная в плоскости и перпендикулярная наклонной, перпендикулярна и ее проекции на эту плоскость. Данные теоремы, для обозначений с чертежа выше можно кратко сформулировать так: Теорема: Если из одной точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и две наклонные, то: две наклонные, имеющие равные проекции, равны; из двух наклонных больше та, проекция которой больше. Определения расстояний объектами в пространстве: Расстоянием от точки до плоскости называется длина перпендикуляра, проведенного из этой точки к данной плоскости. Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости.
Расстоянием между прямой и параллельной ей плоскостью называется расстояние от произвольной точки прямой до плоскости. Расстоянием между скрещивающимися прямыми называется расстояние от одной из скрещивающихся прямых до плоскости, проходящей через другую прямую и параллельной первой прямой. Замечание: Как видно из предыдущего определения, проекций бывает много. Другие кроме ортогональной проекции прямой на плоскость можно построить если прямая определяющая направление проецирования будет не перпендикулярна плоскости.
Однако, именно ортогональную проекцию прямой на плоскость в будущем мы будем встречать в задачах. А называть ортогональную проекцию будем просто проекцией как на чертеже. Теорема: Угол между прямой и плоскостью является наименьшим из всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости и проходящими через точку пересечения прямой и плоскости. Определения: Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой и частью пространства, для которой эти полуплоскости служат границей.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру. Таким образом, линейный угол двугранного угла — это угол, образованный пересечением двугранного угла плоскостью, перпендикулярной его ребру. Все линейные углы двугранного угла равны между собой. Градусной мерой двугранного угла называется градусная мера его линейного угла.
В дальнейшем, при решении задач по стереометрии, под двугранным углом будем понимать всегда тот линейный угол, градусная мера которого удовлетворяет условию: Определения: Двугранным углом при ребре многогранника называется двугранный угол, ребро которого содержит ребро многогранника, а грани двугранного угла содержат грани многогранника, которые пересекаются по данному ребру многогранника. Углом между пересекающимися плоскостями называется угол между прямыми, проведенными соответственно в данных плоскостях перпендикулярно их линии пересечения через некоторую ее точку. Теоремы: Теорема 1 признак перпендикулярности плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Прямая, лежащая в одной из двух перпендикулярных плоскостей и перпендикулярная прямой, по которой они пересекаются, перпендикулярна другой плоскости. Точки M и M 1 называются симметричными относительно прямой l , если прямая l MM 1 и перпендикулярна ему. Выпуклый многогранник называется правильным , если все его грани — равные между собой правильные многоугольники и в каждой вершине сходится одно и то же число ребер. Призма Определения: Призма — многогранник, две грани которого являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками.
Основания — это две грани, являющиеся равными многоугольниками, лежащими в параллельных плоскостях. Боковые грани — все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. Боковая поверхность — объединение боковых граней.
Полная поверхность — объединение оснований и боковой поверхности. Боковые ребра — общие стороны боковых граней. Высота — отрезок, соединяющий основания призмы и перпендикулярный им. На чертеже это, например, KR.
Диагональ — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. На чертеже это, например, BP. Диагональная плоскость — плоскость, проходящая через боковое ребро призмы и диагональ основания. Другое определение: диагональная плоскость — плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани.
Диагональное сечение — пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе, иногда, его частные случаи — ромб, прямоугольник, квадрат. На чертеже это, например, EBLP. Перпендикулярное ортогональное сечение — пересечение призмы и плоскости, перпендикулярной ее боковому ребру.
Свойства и формулы для призмы: Основания призмы являются равными многоугольниками. Боковые грани призмы являются параллелограммами. Боковые ребра призмы параллельны и равны. Объём призмы равен произведению её высоты на площадь основания: где: S осн — площадь основания на чертеже это, например, ABCDE , h — высота на чертеже это MN.
Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания: Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы на чертеже ниже перпендикулярное сечение это A 2 B 2 C 2 D 2 E 2. Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах. Перпендикулярное ортогональное сечение перпендикулярно ко всем боковым граням. Объем наклонной призмы равен произведению площади перпендикулярного сечения на длину бокового ребра: где: S сеч — площадь перпендикулярного сечения, l — длина бокового ребра на чертеже ниже это, например, AA 1 или BB 1 и так далее.
Площадь боковой поверхности произвольной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра: где: P сеч — периметр перпендикулярного сечения, l — длина бокового ребра. Виды призм в стереометрии: Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной изображены выше. Основания такой призмы, как обычно, расположены в параллельных плоскостях, боковые рёбра не перпендикулярны этим плоскостям, но параллельны между собой. Боковые грани — параллелограммы.
В прямой призме боковые ребра являются высотами. Боковые грани прямой призмы - прямоугольники. А площадь и периметр основания равны соответственно площади и периметру перпендикулярного сечения у прямой призмы, вообще говоря, перпендикулярное сечение целиком является такой же фигурой, как и основания. Поэтому, площадь боковой поверхности прямой призмы равна произведению периметра основания на длину бокового ребра или, в данном случае, высоту призмы : где: P осн — периметр основания прямой призмы, l — длина бокового ребра, равная в прямой призме высоте h.
Правильная призма — призма в основании которой лежит правильный многоугольник то есть такой, у которого все стороны и все углы равны между собой , а боковые ребра перпендикулярны плоскостям основания. Примеры правильных призм: Свойства правильной призмы: Основания правильной призмы являются правильными многоугольниками. Боковые грани правильной призмы являются равными прямоугольниками. Боковые ребра правильной призмы равны между собой.
К сожалению, их действительно много. Именно поэтому я рекомендую не учить формулы, а выводить. Это очень удобно тем более, что в профильном ЕГЭ по математике весь справочный материал состоит из 5-ти формул тригонометрии, из которых очень легко выводятся все остальные. Но прежде чем я расскажу вам, как выводятся тригонометрические формулы, пообещайте, что обязательно отработаете все правила выведения! Для этого нужно будет регулярно выводить формулы по указанным ниже схемам. Она связывает синус и косинус и помогает найти одну функцию через другую. С этой формулой косвенно связана другая ее нет в справочном материале , которая тоже легко дается школьникам: Тригонометрия: теория для ЕГЭ Эту формулу очень легко запомнить, если знать, как можно расписать тангенс и котангенс через синус и косинус: Тригонометрия: теория для ЕГЭ Эти 2 формулы связывают по отдельности синус с косинусом и тангенс с котангенсом. Для начала нужно выразить квадрат синуса и квадрат косинуса из ОТТ Шаг 1 : Тригонометрия: теория для ЕГЭ — как еще найти косинус двойного угла Шаг 1 А потом нужно подставить эти значения в формулу 6, или третья формула справочного материала Шаг 2 : Тригонометрия: теория для ЕГЭ — как еще найти косинус двойного угла Шаг 2 Вот мы вывели ещё 2 формулы! А сейчас я покажу вам как практически ничего не делая получить ещё 2.
Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах. Содержание Формулы для ЕГЭ по профильной математике.
Вычислите объём цилиндра, если объём конуса равен 57. Тип 2. Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Найдите площадь боковой поверхности цилиндра.
В общем как бы всё как всегда в любимых ваших традициях обучение будет с абсолютного нуля задавайте абсолютно любые вопросы я буду на них с удовольствием отвечать....
Формулы по стереометрии для ЕГЭ
Основные теоремы и формулы стереометрии. Формулы площадей и объёмов для решения задач по стереометрии. Формула сложения вероятностей для несовместных событий: вероятность наступления какого-либо из двух несовместных событий равна сумме вероятностей наступления этих событий (по отдельности), то есть (или) = () + (). Стереометрия ЕГЭ формулы объемов и площадей.
Справочный материал по стереометрии
Производные; Первообразные. Список внушительный, но вполне реальный, чтобы его выучить. Для того, чтобы лишний раз не гуглить в интернете «формулы для ЕГЭ по математике профильный уровень», приложим их ниже. А начнем по порядку из списка выше.
Вам встретятся задачи на преобразование выражений, поэтому умение это делать будет вознаграждено баллами.
Формулы площади и объема фигур 11 класс. Формулы объёмов фигур 11 класс. Многогранники формулы площадей и объемов. Формулы геометрии и стереометрии шпаргалка. Формулы площадей для ЕГЭ по математике профильный уровень.
Формулы объемов фигур для ЕГЭ шпаргалка. Вся теория по геометрии планиметрия таблица. Основные формулы геометрии таблица. Справочный материал по стереометрии. Формулы по геометрии для ЕГЭ. Формулы объемов многогранников и тел вращения.
Формулы площадей и объемов всех фигур. Все формулы объемов и площадей фигур. Формулы площади и объёма геометрических фигур. Объёмы фигур формулы ЕГЭ математика. Шпаргалка ЕГЭ формулы площадей и объемов стереометрических фигур. Площади геометрических фигур формулы таблица.
Формулы нахождения площадей плоских фигур. Формулы площадей плоских фигур по геометрии. Формулы площадей всех геометрических фигур в таблице. Формулы площадей и объемов фигур. Формулы площадей и объемов геометрических фигур таблица. Формулы объема и площади геометрических фигур для ЕГЭ.
Формулы объемов Призмы и пирамиды. Стереометрия Призма формулы. Формулы площадей поверхности многогранников Призма. Площадь поверхности и объем многогранника. Формулы площадей геометрических фигур стереометрия. Формулы геометрия 11 класс.
Формулы геометрия 11 класс ЕГЭ. Формулы объёма геометрических фигур таблица. Формулы объёмов всех фигур. Объемы фигур формулы таблица шпаргалка 11 класс. Таблица площадей и объемов многогранников и тел вращения. Формулы тел вращения геометрия 11 класс.
Стереометрия тела вращения формулы. Формулы по стереометрии Призма. Основные формулы геометрия 11 класс. Шпаргалка по стереометрии ЕГЭ. Формулы по стереометрии таблица. Стереометрия шпаргалка.
Формулы нахождения площади и объема геометрических фигур. Геометрия формулы площадей и объемов. Формулы площадей объемных фигур таблица. Площади и объемы тел формулы. Стереометрия профильная математика. Стереометрия ЕГЭ профиль.
Формулы двойного и тройного аргумента Формулы половинного аргумента Сумма и разность тригонометрических функций Произведение тригонометрических функций Формулы векторной алгебры из школьного курса математики Формулы арифметической и геометрической прогрессии Геометрические формулы школьного курса математики для ЕГЭ Планиметрия Стереометрия Выучить формулы по математике — это еще не все, что надо для успешной сдачи ЕГЭ. Опыт решения задач, знания правил оформления заданий на экзамене не менее важны.
Часть 2 Математика на отлично ЕГЭ 2022. Прямоугольный параллелепипед. Часть 1 Математика на отлично ЕГЭ 2022. Часть 3 Математика на отлично Облегчи жизнь другим ученикам — поделись!
ЕГЭ-2022 по математике, профильный и базовый уровни
- Формулы для ЕГЭ по профильной математике
- Формулы стереометрии. Общий обзор! - ЕГЭ Live
- Формулы по стереометрии
- Формулы по стереометрии
- Школково - Подготовка к ЕГЭ
Смотрите также
- Шпаргалка по задачам профильного ЕГЭ по математике
- Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?
- Вся стереометрия для егэ 2022 профиль
- 5 задание Формулы стереометрии -2 - Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ — ЭкзаменТВ
Формулы для ЕГЭ по математике профиль
Формулы стереометрии. Общий обзор! - ЕГЭ Live | Стереометрия. ЕГЭ №8. Расстояния и углы в пространстве на примере куба, параллелепипеда и призмы. |
Математика Подборка основных геометрических формул для и егэ по математике | К этой теме относятся почти все задачи по стереометрии, предлагавшиеся на ЕГЭ и в различных работах МИОО начиная с 2009–2010 учебного года. |
Все формулы стереометрии для егэ
Площади фигур стереометрия. Теория по стереометрии формулы. Стереометрия ЕГЭ. ЕГЭ по математике геометрия стереометрия. Задачи стереометрия ЕГЭ. Лайфхаки по ЕГЭ стереометри. Шпаргалка по стереометрии ЕГЭ профиль.
Ыормулыпо стереометрии. Формулы объёмных фигур стереометрия. Стереометрия профильная математика. Стереометрия ЕГЭ профиль. Основные формулы по геометрии планиметрия. Формулы геометрии и стереометрии шпаргалка.
Стереометрия 10 класс шпаргалка ЕГЭ. Справочный материал по стереометрии. Теория по стереометрии. Вся стереометрия для ЕГЭ. Объемы фигур стереометрия ЕГЭ. Площади фигур формулы ЕГЭ стереометрия.
Формулы для ЕГЭ по математике профиль 2022. Предмет стереометрии. Шпаргалка по стереометрии. Стереометрия чертежи. Все фигуры стереометрии. Площади геометрических фигур формулы таблица.
Формулы нахождения площадей плоских фигур. Формулы площадей плоских фигур по геометрии. Формулы площадей всех геометрических фигур в таблице. Формулы площадей для ЕГЭ профильная математика. Формулы вычисления площадей и объемов геометрических фигур. Формулы объёмов и площадей фигур для ЕГЭ.
Формулы площадей всех фигур для ЕГЭ. Основные формулы планиметрии для ЕГЭ профиль. Планиметрия теория для ЕГЭ формулы. Шпаргалка планиметрия ЕГЭ профиль. Основные формулы планиметрии для ЕГЭ. Формулы площади и объёма геометрических фигур.
Объемы геометрических тел формулы. Формулы объема и площади поверхности геометрических фигур. Формулы объёма геометрических фигур 11 класс. Формулы объёмов и площадей поверхности стереометрических фигур. Основные формулы геометрия 11 класс. Формулы геометрия 11 класс ЕГЭ.
Формулы площадей фигур планиметрия. Планиметрия формулы шпаргалка. Формулы планиметрии для ЕГЭ.
Учите формулы по математике и сдавайте ЕГЭ на максимальные баллы! Группы разного уровня подготовки Группы для обучения подбираются согласно текущему уровню подготовки к ЕГЭ Вашего ребенка Это позволяет сделать обучение максимально эффективным для каждого Полный контроль за процессом обучения Вам предоставляется доступ в облачный личный кабинет с полной информацией о посещаемости и успеваемости ученика,а также домашними заданиями и тестами Уникальный преподавательский коллектив К работе с Вашими детьми допускаются только опытные и харизматичные профессиональные репетиторы и преподаватели ВУЗов, способные зажечь искру любви к предмету Авторские методики обучения и мотивации Система тестов, уникальная аттестация, целеполагание и тьюторская поддержка учеников позволяют увеличить эффективность обучения и мотивировать Вашего ребенка на успех Остались вопросы?
Шпаргалки на ЕГЭ по математике планиметрия. Шпаргалки по стереометрии 11 класс для ЕГЭ. Шпаргалка по планиметрии на ЕГЭ. Площади всех фигур стереометрии. Формулы ЕГЭ математика стереометрия. Стереометрия 11 класс формулы ЕГЭ. Формулы для ЕГЭ профильная математика геометрия. Формулы ЕГЭ математика профильный уровень геометрия. Основные формулы стереометрии для ЕГЭ. Геометрические формулы для ЕГЭ база математика. Формулы площадей фигур стереометрия. Площади фигур стереометрия формулы таблица. Шпаргалка по стереометрии 10 класс. Стереометрия формулы 9 класс. Справочные материалы по стереометрии. Стереометрия таблица. Стереометрия 10 класс формулы. Площади фигур стереометрия. Теория по стереометрии формулы. Стереометрия ЕГЭ. ЕГЭ по математике геометрия стереометрия. Задачи стереометрия ЕГЭ. Лайфхаки по ЕГЭ стереометри. Шпаргалка по стереометрии ЕГЭ профиль. Ыормулыпо стереометрии. Формулы объёмных фигур стереометрия. Стереометрия профильная математика. Стереометрия ЕГЭ профиль. Основные формулы по геометрии планиметрия. Формулы геометрии и стереометрии шпаргалка. Стереометрия 10 класс шпаргалка ЕГЭ. Справочный материал по стереометрии. Теория по стереометрии. Вся стереометрия для ЕГЭ. Объемы фигур стереометрия ЕГЭ. Площади фигур формулы ЕГЭ стереометрия. Формулы для ЕГЭ по математике профиль 2022. Предмет стереометрии. Шпаргалка по стереометрии. Стереометрия чертежи. Все фигуры стереометрии. Площади геометрических фигур формулы таблица. Формулы нахождения площадей плоских фигур. Формулы площадей плоских фигур по геометрии. Формулы площадей всех геометрических фигур в таблице. Формулы площадей для ЕГЭ профильная математика.
Профиматика - Игорь Уколов, Владислав Вуль 17. Задание 3. Ященко 36 вариантов. Мы с вами Шли шли и дошли до стереометрии Это задание номер три вариант первый Итак В цилиндрический сосуд налили 2100 см кубических воды уровень жидкости оказался.... Все типы 3 задание егэ математика профиль стереометрия Умскул - Артур Шарафиев 20. Вечно ступор то на пирамиде, то на цилиндре, какие-то непонятные коэффициенты в формулах.
Формулы стереометрии для егэ профиль - фото сборник
Стереометрия. Е. А. Ширяева (). lреб = 4(a+ b+ c) d2 =a2+ b2+ c2 1 Sбок = 2. Формулы нахождения площадей поверхностей и объемов фигур: таблица. Формулы нахождения площади фигур Треугольник Трапеция Параллелограмм Прямоугольник Квадрат Ромб Многоугольник Окружность Теорема косинусов Теорема синусов. 1. «Все формулы геометрии» 2. «Многоугольники» 3. «Топ-5 заданий №21 с реального ЕГЭ» 4. «Логарифмы и их свойства».
Формулы стереометрии для егэ профиль - фото сборник
Все формулы которые понадобятся на егэ по математике профиль На нашем сайте Вы найдете все необходимые формулы и примеры решения, которые помогут успешно. Для ЕГЭ по математике профиль. : Все необходимые формулы и помощь в решении задач ЕГЭ 2024 по математике профильный уровень. Подготовка к экзамену по формулам стереометрии для ЕГЭ профиль 2023 требует систематического изучения материала, практических заданий и проверки своих знаний. Формулы нахождения площади фигур Треугольник Трапеция Параллелограмм Прямоугольник Квадрат Ромб Многоугольник Окружность Теорема косинусов Теорема синусов.
Теория по математике на тему "Формулы стереометрии"
Что еще пригодится вам для тригонометрии на ЕГЭ Скажу по секрету, что это далеко не все формулы тригонометрии, которые существуют. Есть и другие: некоторые можно вывести из вышеуказанных, некоторые можно обобщить и вместо огромного количества формул использовать короткое правило. Но мне кажется, что пока этого и так много! Советую сначала хорошо отработать формулы, которые я перечислила в этой статье, и только потом браться за другие. Так вы не загрузите свою память и будете быстрее решать сложные задания по тригонометрии из ЕГЭ. Это, кстати, касается любой темы на экзамене по математике: а в ЕГЭ их очень много. Поэтому чтобы получить высокий балл, надо правильно и системно отработать их все. Именно так я и строю подготовку к ЕГЭ по математике вместе со своими учениками : строгая система подготовки — ключ к успеху на экзамене. Сначала мы разбираем простые темы и задания и учимся решать их самыми удобными способами — почти на автомате.
Важное свойство: Пирамида и цилиндр Цилиндр называется вписанным в пирамиду , если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды. Цилиндр называется описанным около пирамиды , если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник необходимое и достаточное условие. Сфера и шар Определения: Сфера — замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы. Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра. Радиусом сферы называется отрезок, соединяющий центр сферы с какой-либо точкой сферы.
Хордой сферы называется отрезок, соединяющий две точки сферы. Диаметром сферы называется хорда, проходящая через ее центр. Центр сферы делит любой его диаметр на два равных отрезка. Любой диаметр сферы радиусом R равен 2R. Шар — геометрическое тело; совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от некоторого центра. Это расстояние называется радиусом шара.
Шар образуется вращением полукруга около его неподвижного диаметра. Обратите внимание: поверхность или граница шара называется сферой. Можно дать и такое определение шара: шаром называется геометрическое тело, состоящее из сферы и части пространства, ограниченного этой сферой. Радиусом , хордой и диаметром шара называются радиус, хорда и диаметр сферы, которая является границей данного шара. Разница между шаром и сферой аналогична разнице между кругом и окружностью. Окружность — это линия, а круг — это ещё и все точки внутри этой линии.
Сфера — это оболочка, а шар — это ещё и все точки внутри этой оболочки. Плоскость, проходящая через центр сферы шара , называется диаметральной плоскостью. Сечение сферы шара диаметральной плоскостью называется большой окружностью большим кругом. Теоремы: Теорема 1 о сечении сферы плоскостью. Сечение сферы плоскостью есть окружность. Заметим, что утверждение теоремы остается верным и в случае, если плоскость проходит через центр сферы.
Теорема 2 о сечении шара плоскостью. Сечение шара плоскостью есть круг, а основание перпендикуляра, проведенного из центра шара к плоскости сечения, есть центр круга, полученного в сечении. Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB.
Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра на рис. A и B , можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов. Определения: Касательной плоскостью к сфере называется плоскость, имеющая со сферой только одну общую точку, а их общая точка называется точкой касания плоскости и сферы. Касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара.
Любая прямая, лежащая в касательной плоскости сферы шара и проходящая через точку касания, называется касательной прямой к сфере шару. По определению касательная плоскость имеет со сферой только одну общую точку, следовательно, касательная прямая также имеет со сферой только одну общую точку — точку касания. Теоремы: Теорема 1 признак касательной плоскости к сфере. Плоскость, перпендикулярная радиусу сферы и проходящая через его конец, лежащий на сфере, касается сферы. Теорема 2 о свойстве касательной плоскости к сфере. Касательная плоскость к сфере перпендикулярна радиусу, проведенному в точку касания.
Многогранники и сфера Определение: В стереометрии многогранник например, пирамида или призма называется вписанным в сферу , если все его вершины лежат на сфере. При этом сфера называется описанной около многогранника пирамиды, призмы. Аналогично: многогранник называется вписанным в шар , если все его вершины лежат на границе этого шара. При этом шар называется описанным около многогранника. Важное свойство: Центр сферы, описанной около многогранника, находится на расстоянии, равном радиусу R сферы, от каждой вершины многогранника. Приведем примеры вписанных в сферу многогранников: Определение: Многогранник называется описанным около сферы шара , если сфера шар касается всех граней многогранника.
При этом сфера и шар называются вписанными в многогранник. Важно: Центр сферы, вписанной в многогранник, находится на расстоянии, равном радиусу r сферы, от каждой из плоскостей, содержащих грани многогранника. Приведем примеры описанных около сферы многогранников: Объем и площадь поверхности шара Теоремы: Теорема 1 о площади сферы. Площадь сферы равна: где: R — радиус сферы. Теорема 2 об объеме шара. Объем шара радиусом R вычисляется по формуле: Шаровой сегмент, слой, сектор В стереометрии шаровым сегментом называется часть шара, отсекаемая секущей плоскостью.
Площадь основания шарового сегмента: Площадь внешней поверхности шарового сегмента: Площадь полной поверхности шарового сегмента: Объем шарового сегмента: В стереометрии шаровым слоем называется часть шара, заключенная между двумя параллельными плоскостями. Объем шарового слоя проще всего искать как разность объемов двух шаровых сегментов. В стереометрии шаровым сектором называется часть шара, состоящая из шарового сегмента и конуса с вершиной в центре шара и основанием, совпадающим с основанием шарового сегмента. Здесь подразумевается, что шаровой сегмент меньше чем пол шара. Объем шарового сектора вычисляется по формуле: Определения: В некоторой плоскости рассмотрим окружность с центром O и радиусом R. Через каждую точку окружности проведем прямую, перпендикулярную плоскости окружности.
Цилиндрической поверхностью называется фигура, образованная этими прямыми, а сами прямые называются образующими цилиндрической поверхности. Все образующие цилиндрической поверхности параллельны друг другу, так как они перпендикулярны плоскости окружности. Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим цилиндрической поверхности. Неформально, можно воспринимать цилиндр как прямую призму, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности цилиндра. Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между секущими плоскостями, которые перпендикулярны ее образующим, а части круги , отсекаемые цилиндрической поверхностью на параллельных плоскостях, называются основаниями цилиндра.
Основания цилиндра — это два равных круга. Образующей цилиндра называется отрезок или длина этого отрезка образующей цилиндрической поверхности, расположенный между параллельными плоскостями, в которых лежат основания цилиндра. Все образующие цилиндра параллельны и равны между собой, а также перпендикулярны основаниям. Осью цилиндра называется отрезок, соединяющий центры кругов, являющихся основаниями цилиндра. Высотой цилиндра называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания цилиндра к плоскости другого основания. В цилиндре высота равна образующей.
Радиусом цилиндра называется радиус его оснований. Цилиндр называется равносторонним , если его высота равна диаметру основания. Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого — образующие, а две другие — хорды оснований цилиндра. Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось. Осевое сечение цилиндра — прямоугольник, две стороны которого есть образующие цилиндра, а две другие — диаметры его оснований. Если секущая плоскость, перпендикулярна оси цилиндра, то в сечении образуется круг равный основаниям.
На чертеже ниже: слева — осевое сечение; в центре — сечение параллельное оси цилиндра; справа — сечение параллельное основанию цилиндра. Цилиндр и призма Призма называется вписанной в цилиндр , если ее основания вписаны в основания цилиндра. В этом случае цилиндр называется описанным около призмы. Высота призмы и высота цилиндра в этом случае будут равны. Все боковые ребра призмы будут принадлежать боковой поверхности цилиндра и совпадать с его образующими. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать в такой цилиндр можно также только прямую призму.
Примеры: Призма называется описанной около цилиндра , если ее основания описаны около оснований цилиндра. В этом случае цилиндр называется вписанным в призму. Высота призмы и высота цилиндра в этом случае также будут равны. Все боковые ребра призмы будут параллельны образующим цилиндра. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать такой цилиндр можно только в прямую призму. Примеры: Цилиндр и сфера Сфера шар называется вписанной в цилиндр , если она касается оснований цилиндра и каждой его образующей.
При этом цилиндр называется описанным около сферы шара. Сферу можно вписать в цилиндр, только если это равносторонний цилиндр, то есть диаметр его основания и высота равны между собой. Центром вписанной сферы будет служить середина оси цилиндра, а радиус этой сферы будет совпадать с радиусом цилиндра. Пример: Цилиндр называется вписанным в сферу , если окружности оснований цилиндра являются сечениями сферы. Цилиндр называется вписанным в шар, если основания цилиндра являются сечениями шара. При этом шар сфера называется описанным около цилиндра.
Вокруг любого цилиндра можно описать сферу. Центром описанной сферы также будет служить середина оси цилиндра. Пример: На основе теоремы Пифагора легко доказать следующую формулу, связывающую радиус описанной сферы R , высоту цилиндра h и радиус цилиндра r : Объем и площадь боковой и полной поверхностей цилиндра Теорема 1 о площади боковой поверхности цилиндра : Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту: где: R — радиус основания цилиндра, h — его высота. Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности прямой призмы. Площадью полной поверхности цилиндра , как обычно в стереометрии, называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра то есть просто площадь круга вычисляется по формуле: Следовательно, площадь полной поверхности цилиндра S полн.
Эта формула также легко выводится доказывается на основе формулы для объема призмы. Теорема 3 Архимеда : Объём шара в полтора раза меньше объёма, описанного вокруг него цилиндра, а площадь поверхности такого шара в полтора раза меньше площади полной поверхности того же цилиндра: Конус Определения: Конусом точнее, круговым конусом называется тело, которое состоит из круга называемого основанием конуса , точки, не лежащей в плоскости этого круга называемой вершиной конуса и всех возможных отрезков, соединяющих вершину конуса с точками основания. Неформально, можно воспринимать конус как правильную пирамиду, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности конуса. Отрезки или их длины , соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Все образующие прямого кругового конуса равны между собой.
Поверхность конуса состоит из основания конуса круга и боковой поверхности составленной из всех возможных образующих.
Скачать ее можно здесь. Кроме того в задачах могут встретиться прогрессии, о них подробнее мы рассказывали в статье. Геометрия В этом разделе находятся все задачи, которые связаны с геометрическими фигурами. И для их решения тоже есть разные формулы. Как вычислить площадь различных фигур, какие теоремы и свойства помогут в решении задач, — всю необходимую для сдачи ЕГЭ информацию ты можешь найти в нашей «Шпаргалке по планиметрии». Тригонометрия Синусы и косинусы — одна из самых нелюбимых школьниками тем, но создатели экзамена должны проверить знания. Поэтому и формулы тригонометрии стоит изучить.
Профиматика - Игорь Уколов, Владислав Вуль 17. Задание 3. Ященко 36 вариантов. Мы с вами Шли шли и дошли до стереометрии Это задание номер три вариант первый Итак В цилиндрический сосуд налили 2100 см кубических воды уровень жидкости оказался....
Все типы 3 задание егэ математика профиль стереометрия Умскул - Артур Шарафиев 20. Вечно ступор то на пирамиде, то на цилиндре, какие-то непонятные коэффициенты в формулах.