В этом проекте ученые занимаются расчетами пристеночной плазмы, а именно вопросами, как и какие примеси будут поступать в реактор, как будет перераспределяться мощность. • Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Плазменный пиролиз, по мнению разработчиков, поможет сделать переработку тяжелой нефти более экономичной и экологически чистой. Термоядерный реактор основан на реакции синтеза изотопов водорода, поэтому он гораздо более экологичный и безопасный по сравнению с существующими атомными реакторами.
НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР
Кроме того, можно задействовать для нагрева плазмы еще и центральный соленоид. Поднимая напряжение в соленоиде от нуля до 30 кВ, можно индуцировать в короткозамкнутом плазменном витке электрический ток. За счет омического нагрева выделяется дополнительное тепло. Такой способ нагрева называется индукционным. Electron Cyclotron Resonance Heating разогревает электроны плазменного шнура, а также используется для отвода тепла в определённых местах в плазме в качестве механизма минимизации нарастания определённых неустойчивостей, приводящих к охлаждению плазмы. Она выполняет роль «стартера» плазмы в начале выстрела, разогревая нейтральный газ, заполняющий вакуумную камеру. В качестве источников энергии применены гиротроны , каждый мощностью 1 МВт, рабочей частотой 170 ГГц и длительностью импульса более 500 с.
Всего гиротронов 24. Они расположены в Здании радиочастотного нагрева и передают свою энергию по волноводам, длина которых составляет 160 м. Производством гиротронов заняты Япония, Россия, Европа и Индия. В конце февраля 2015 года Япония продемонстрировала первый произведённый гиротрон. Все гиротроны предполагалось поставить в ITER в начале 2018 года [27]. Для ввода энергии в вакуумную камеру служат окна из поликристаллического искусственного алмаза.
Диаметр каждого алмазного диска 80 мм, а толщина 1,1 мм. Алмаз выбран потому, что прозрачен для СВЧ излучения, прочен, радиационно стоек и обладает теплопроводностью в пять раз выше, чем у меди. Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28]. Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи.
Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля. При столкновениях ионы передают энергию другим частицам плазмы. Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ. Эти атомы, сталкиваясь с частицами плазмы, передают им свою кинетическую энергию и тем самым нагревают плазму. Поскольку разогнать в электрическом поле нейтральный атом невозможно, его нужно сперва ионизировать.
Затем ион по сути, ядро дейтерия разгоняется в циклотроне до необходимой энергии. Теперь быстродвижущийся ион следует снова превратить в нейтральный атом. Если этого не сделать, ион будет отклонён магнитным полем токамака. Поэтому к разогнанному иону следует присоединить электрон.
Она позволит проверить прототипы облицовки камеры реактора, которые разрабатываются в России. Кроме того, НИУ «МЭИ» проведёт исследования по охлаждению компонентов экспериментального реактора, расположенных внутри камеры. Установка ПЛМ использует магнитную ловушку для получения и нагрева плазмы, и отличается высокой плотностью мощности и использованием импульсного лазера для достижения гигаваттных тепловых нагрузок.
Оно наносится на медную подложку, которая позволяет отводить тепло от стенки реактора с участием лёгкого металла лития. Изобретение уже получило патент. Разработка позволит решить одну из основных задач в области термоядерного синтеза - уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него.
Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму. В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу.
В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу. Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для «потеющей стенки» должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться. Самый тугоплавкий металл — вольфрам, однако его теплопроводности для эффективного охлаждения стенки недостаточно. Медь обладает очень высокой теплопроводностью, но её нельзя применять для стенок реактора из-за легкоплавкости — металл просто атомизируется при взаимодействии с плазмой и попадёт внутрь реактора, что ухудшит качество плазмы.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Все пятеро арестованы на два месяца, передает РИА «Новости». Число арестованных выросло до 31 человека. Напомним, ранее был арестован директор «Дагэнерго» Магомедхабиб Мухумаев. Всего задержано 36 человек. По его словам, злоупотребление алкоголем и курение вкупе с меньшей приверженностью заботе о своем здоровье сокращают продолжительность жизни российских мужчин, передает ТАСС. Также министр подчеркнул, что вопросы мужского здоровья являются одним из приоритетов государственной политики. Ранее премьер-министр Михаил Мишустин заявил, что по итогам 2023 года в России продолжительность жизни выросла до 73,5 лет.
Ван И заявил, что Вашингтон не должен «подавлять развитие Китая и переступать красные линии, когда речь идет о суверенитете, безопасности и интересах развития Китая». Он заявил, что сотрудничество двух стран приведет к обоюдному выигрышу, а конфликт — к обоюдному проигрышу. Негативные факторы в китайско-американских отношениях по-прежнему усиливаются, поскольку США продолжают попирать законные права Китая на развитие, сказал Ван И. В среду Блинкен прибыл в Шанхай, начав свой рабочий визит в Китай. Его встречал председатель Шанхайского партийного комитета Чэнь Цзинин. Встреча главы Госдепа китайской стороной оказалась весьма сдержанной.
Одна из них действительно заключается в эффективности российских дронов против бронированной техники, сказал газете ВЗГЛЯД военный эксперт Александр Бартош. Если говорить о танках Abrams, то больше всего проблем им создают «Ланцеты». За время спецоперации они продемонстрировали высокую эффективность в борьбе с бронированными целями. Так как аппарат работает в паре с дроном-разведчиком, беспилотник способен сначала выявить цель, а затем нанести удар аккурат в уязвимое место танка», — сказал Александр Бартош, член-корреспондент Академии военных наук. Впрочем, по мнению собеседника, российские дроны хотя и являются основной причиной отвода Abrams, есть еще несколько немаловажных аспектов. Эксперт допускает, что решение было принято также из-за складывающегося не в пользу ВСУ положения на поле боя.
Пентагон попросту опасается, что кадры с горящей американской техникой, которую они представляют как неуязвимую, нанесут существенный ущерб коммерческим интересам США», — уточнил Бартош. Кроме того, ВСУ могут на время спрятать танки в расчете на то, что ими можно будет воспользоваться при отражении полномасштабного наступления ВС России, добавил спикер. По словам Бартоша, противник опасается продвижения российских военных в районе Одессы и Харькова. Как показали предыдущие месяцы, мы успешно уничтожаем эту технику», — подчеркнул военный эксперт.
Такие испытания необходимы, например, при разработке бортовой аппаратуры космических аппаратов, элементной базы радиоэлектроники. Также можно исследовать воздействие импульсного излучения разного типа на биологические объекты, выполнять нейтронно-активационный анализ вещества. Это многотонные громадины со множеством управляющих систем.
Наша установка весит всего 150 кг, перемещать ее могут два подготовленных инженера. Решения, положенные в основу генератора, позволили добиться рекордных показателей выхода нейтронов и эффективности генерации.
Это многотонные громадины со множеством управляющих систем.
Наша установка весит всего 150 кг, перемещать ее могут два подготовленных инженера. Решения, положенные в основу генератора, позволили добиться рекордных показателей выхода нейтронов и эффективности генерации. Блок излучателя выдает суперкороткий импульс 15 нс, выход нейтронов при этом составляет до 107.
Кроме нейтронного блок излучателя генерирует другие виды ионизирующего излучения: мягкий и жесткий рентген, плазменные струи, электронные и ионные пучки.
Катушки реактора могут генерировать очень сильное комбинированное магнитное поле, что и позволяет так долго удерживать разогретую плазму. В результате нагрева материала в камере реактора до очень высокой температуры, он превращается в плазму, при этом от атомов вещества начинают отделяться электроны. Далее электроны, представляющие собой свободно движущиеся заряженные частицы, удерживаются сильным магнитным полем. Разогрев плазменного шнура происходит за счет пропускания сквозь него очень сильного электрического тока, что также способствует удержание шнура в равновесии в вакууме камеры, за счет создания разности магнитных потенциалов.
Российские ученые масштабировали установку плазменного пиролиза нефти
Исследователи использовали метрику под названием H98 (y, 2) для оценки эффективности, с которой реактор токамака удерживает плазму. НИУ "МЭИ" также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе. Специалисты Национального исследовательского университета «МЭИ» запустили плазменную установку, которая позволит испытать облицовку камеры будущего термоядерного реактора. Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год. В последний день 2021 года китайские учёные сообщили, что их опытный термоядерный реактор EAST нагрел плазму до 70 миллионов градусов и удерживал её 1056 секунд. Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год.
В РФ успешно получена первая термоядерная плазма на токамаке Т-15МД
Рогалева: на кафедре Общей физики и ядерного синтеза НИУ МЭИ разрабатываются системы термоядерных реакторов и решаются проблемы диагностики плазмофизических процессов; сегодня наши ученые решают глобальные вопросы, участвуют в экспериментальных разработках международного уровня и вносят существенный вклад в развитие атомных энергетических установок; Россия занимает одну из ключевых позиций в реализации международного проекта ИТЭР; еще в 1950 г. Сахаров, преподававший в МЭИ на кафедре электрофизики, предложил использовать магнитное поле для удержания плазмы с целью достижения управляемого термоядерного синтеза, а сейчас уже мы смогли найти многие решения этих проблем и предложений. Сейчас в НИУ МЭИ проводятся экспериментальные исследования и испытания не только в плазменной установке, но и разработки и испытания эффективных методов охлаждения внутрикамерных компонентов будущего токамака-реактора.
Ох как не просто... Один мой приятель позвонил мне по этому поводу и стал ругаться. Типа: «Ну зачем все так сложно? Может тебе еще и размер ботинок написать?! Заходи и читай. Мы всем рады.
А вот если после прочтения ты вдруг решишь со мной жестко поспорить, то вот тут-то надо оставить о себе немного информации.
Кроме того, НИУ «МЭИ» проведёт исследования по охлаждению компонентов экспериментального реактора, расположенных внутри камеры. Установка ПЛМ использует магнитную ловушку для получения и нагрева плазмы, и отличается высокой плотностью мощности и использованием импульсного лазера для достижения гигаваттных тепловых нагрузок. Системы термоядерных реакторов и технологии диагностики плазмофизических процессов — основные объекты исследований на кафедре «Общая физика и ядерный синтез» в университете.
Ожидается, что работы завершат в декабре 2025 года, тогда же произойдет и получение первой плазмы При этом эксперименты с плазмой начнутся не ранее 2035 года. В случае успеха, ITER положит начало использования человечеством нового экологически чистого и эффективного источника энергии. Он считается одной из самых сложных физических установок, которые когда-либо создавались человеком.
На российском токамаке Т-15МД получена первая термоядерная плазма
Главные проблемы в разработке промышленного реактора — нагрев и удержание плазмы с термоядерными параметрами."Идея эксперимента такая. Кубок Жизни 1, CO2, CuO2, CH3, ZnO, MgO. Развитие теории магнитного удержания плазмы (Magnetic Fusion Confinement, или MFE) в реакторе прошло три этапа.
Эра термоядерного синтеза
Работа ведется в рамках федерального проекта «Разработка технологий управляемого термоядерного синтеза и инновационных плазменных технологий», включенного в комплексную программу «Развитие техники, технологий и научных исследований в области использования атомной энергии в Российской Федерации на период до 2024 года» КП РТТН. В 2022 — 2023 годах планируется провести эксперименты по встречному столкновению высокоскоростных потоков плазмы дейтерия, генерируемых новыми ускорителями. В частности, будут исследованы механизмы взаимодействия плазменных потоков и характеристики нейтронного излучения реакции DD-синтеза. Это позволит уточнить параметры плазменных потоков, необходимые для достижения заданных значений нейтронного выхода.
Быстрое охлаждение электронов может воспрепятствовать нагреву плазмы. Стартап Zap Energy был основан как раз для решения проблемы преждевременного охлаждения электронов.
В основу своего подхода физики положили известный Z-пинча, который вместо сложных и дорогих магнитных катушек использует для фиксации плазмы электромагнитное поле, возникающее внутри нее самой. Сильные токи, проходя через жгуты плазмы, нагревают и сжимают ее.
Преодоление предела Гринвальда Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как "предел Гринвальда". При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте.
Эта установка является первой такого рода в России и одной из самых мощных в мире. Она позволит проверить прототипы облицовки камеры реактора, которые разрабатываются в России. Кроме того, НИУ «МЭИ» проведёт исследования по охлаждению компонентов экспериментального реактора, расположенных внутри камеры.
В РФ успешно получена первая термоядерная плазма на токамаке Т-15МД
вы делаете те новости, которые происходят вокруг нас. Развитие теории магнитного удержания плазмы (Magnetic Fusion Confinement, или MFE) в реакторе прошло три этапа. Одним из основных препятствий является успешное управление нестабильной и перегретой плазмой в реакторе, но новый подход показывает, как мы можем это сделать. Впервые термоядерный реактор KSTAR Корейского института термоядерной энергетики (KFE) достиг температуры, в семь раз превышающей температуру ядра Солнца.
Во Франции стартовала последняя фаза сборки крупнейшего в мире термоядерного реактора
При плазменной обработке, в частности, образуется угарный газ, который надо тщательно дожигать или пускать в переработку в химическую промышленность», — объяснил ученый. Строительство первого в мире международного термоядерного реактора вышло на новый этап. В частности, будут исследованы механизмы взаимодействия плазменных потоков и характеристики нейтронного излучения реакции DD-синтеза. Им удалось разогреть плазму в собственном термоядерном реакторе HL-2M Tokamak (EAST), размещенном в городе Хэфэй. Вот что касается ее плазменного тока (течения электрического тока по плазме), тут проектные параметры действительно больше, чем на других российских токамаках.
Как плазменные технологии помогут ускорить развитие ядерных реакторов
Он [токамак] с первого момента запустился. Сложнейшая дорогостоящая установка запустилась сразу и сейчас работает, набирает мощность и выходит на мировые параметры. Устойчиво работает», — сказал Ковальчук.
Например, сдвиги средней энергии нейтронов от номинального значения в 14 мегаэлектронвольт связаны с температурой ионов, средней кинетической энергией ионов и скоростью плазмы. Материалы по теме:.
Отмечается, что установка работает устойчиво, сообщил президент исследовательского центра «Курчатовский институт» Михаил Ковальчук, сообщает ТАСС. Он [прим. Сложнейшая дорогостоящая установка запустилась сразу и сейчас работает, набирает мощность и выходит на мировые параметры. Вещество представляет собой плазму с температурой в несколько млн градусов.
Такие установки позволят снизить стоимость термоядерного реактора-токамака такого как ИТЭР, который сейчас строят во Франции и скорее внедрить технологии управляемого термоядерного синтеза в энергетику, подарив человечеству еще один альтернативный источник энергии. Исследование проведено при поддержке гранта Президентской программы Российского научного фонда РНФ и опубликовано в журнале Nuclear Fusion. Токамак Глобус-М2 с подключенными источниками дополнительного нагрева. Вид сверху «Эксперименты показали, что в токамаке Глобус-М2 устойчивость плазмы выше, возрастают давление и эффективность использования магнитного поля. Благодаря этому растет экономическая производительность реактора. Исследования плазмы на Глобус-М2 проводятся при температуре выше 10 миллионов градусов, и в этих условиях получена рекордная для компактных сферических токамаков плотность плазмы. По сравнению с установкой предыдущего поколения — токамаком Глобус-М — температура плазмы возросла вчетверо, а эффективность удержания — втрое. Как результат — десятикратное увеличение так называемого тройного произведения — основного критерия эффективности термоядерного реактора. При этом вывод установки на максимальные параметры еще предстоит осуществить в ближайшие годы», — рассказывает Глеб Курскиев, руководитель проекта по гранту РНФ, кандидат физико-математических наук, научный сотрудник лаборатории физики высокотемпературной плазмы Физико-технического института имени А.
Государственная фельдъегерская служба Российской Федерации
Сварка защитной оболочки плазменного реактора установки плазменной газификации ПЛАЗАРИУМ MGS-100. При плазменной обработке, в частности, образуется угарный газ, который надо тщательно дожигать или пускать в переработку в химическую промышленность», — объяснил ученый. • Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. О том, сможет ли реактор обеспечить страну практически неограниченным количеством чистой и безопасной энергии, — в материале По сути, Plasma Liner Experiment – это реактор, включающий в себя 36 плазменных «пушек», окружающих сферическую камеру.