Серьёзность аварии на АЭС Три-Майл-Айленд заключалась в том, что расплавилось урановое ядерное топливо.
День в истории: 28 марта
Авария на АЭС Три-Майл-Айленд, произошедшая 28 марта 1979 года, является самой тяжёлой ядерной аварией в США. «Атомный эксперт» сделал обзор трех публикаций, вышедших в ведущих мировых СМИ и посвященных авариям на «Три-Майл-Айленд», Чернобыльской АЭС и «Фукусиме‑1». Уроки аварии реактора pwr на АЭС три-майл-айленд в США в 1979 г.
Авария на АЭС Три-Майл-Айленд в США. 28 марта 1979. Хронология событий
АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию. Авария на АЭС три-майл-айленд. 12+. 83 просмотра. Авария на АЭС Три-Майл-Айленд – крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции. Причина ав. 13:46. Авария на АЭС три-майл-айленд. 34 просмотра. Авария на АЭС Три-Майл-Айленд — Президент Джимми Картер покидает АЭС Три-Майл-Айленд после личного визита 1 апреля 1979 года. Авария на АЭС Три-Майл-Айленд (англ. Three Mile Island accident) — одна из крупнейших аварий в истории ядерной энергетики. Авария на Три-Майл-Айленде произошла в результате частичного расплавления реактора энергоблока 2 (ТМИ-2) в Пенсильвании.
Ядреный атом. Мир пугали Чернобылем, замалчивая масштабную аварию в США
В частности — недостаточным уровнем культуры безопасности. Всё началось ещё на этапе проектирования реактора РБМК реактор большой мощности канального типа , когда, ради экономии, было решено использовать природный уран, а не обогащённый уран-235. Это означало увеличение размеров реактора, что привело к принятию решения о том, что в конструкции реактора не нужен корпус, который имеется у реакторов других типов например — у корпусных водо-водяных энергетических реакторов, ВВЭР. Корпус РБМК оказался бы слишком большим и слишком дорогим. Но там не было чего-то такого, что не дало бы операторам реактора по собственному усмотрению отключить все эти системы безопасности. В результате то, что должно было стать простым испытанием турбогенератора в режиме выбега что предусматривало использование кинетической энергии, запасённой во вращающемся роторе турбогенератора, для выработки электроэнергии, необходимой для питания циркуляционных насосов в аварийной ситуации , превратилось в катастрофу. Они имеют отношение к реактивности реактора — к количеству нейтронов с определённой скоростью температурой нейтронов , присутствующих в некий момент времени в нейтронном эффективном сечении используемого в реакторе топлива. В случае с ураном-235 необходимы так называемые тепловые нейтроны, но в ходе цепной ядерной реакции производится множество более быстрых нейтронов их называют «быстрыми нейтронами». Быстрые нейтроны могут быть замедлены до состояния тепловых нейтронов с использованием замедлителей нейтронов. Это повышает реактивность реактора.
Для снижения реактивности реактора используются поглотители нейтронов , которые могут быть представлены водой и управляющими стержнями, которые часто делают из карбида бора. В большинстве легководных реакторов обычная вода используется и для замедления нейтронов, и для поглощения нейтронов. А это значит, что если реактивность реактора возрастает, повышается скорость закипания воды, что увеличивает количество пара. Появление пара означает ухудшение возможностей замедления нейтронов, а это, в свою очередь, приводит к уменьшению количества имеющихся тепловых нейтронов, что создаёт цикл отрицательной обратной связи. Это — то, что называется отрицательным паровым коэффициентом реактивности. Собственно говоря, в РБМК графит тоже использовался в роли замедлителя нейтронов. Хотя это позволяло применять природный уран, это ещё и означало то, что РБМК работал с положительным паровым коэффициентом реактивности. Когда вода в контуре охлаждения реактора закипала и в ней возникали пузырьки, её возможности по поглощению нейтронов ухудшались, а эффект замедления нейтронов не менялся, что создавало возможность возникновения бесконтрольной ядерной реакции. Эта неоднозначная особенность была признана приемлемой, так как она позволяла реакторам РБМК выдавать тепловую мощность, значительно превышающую ту, которую обеспечивали западные реакторы того времени.
Предполагалось, что у хорошо обученного персонала не будет проблем с управлением реактором РБМК. Как уже было бесчисленное количество раз доказано, например, когда затонул Титаник, менеджеры и маркетологи регулярно берут верх над инженерами. Любая катастрофа, которой можно было бы избежать за счёт правильного обслуживания техники и тщательного обучения персонала, становится неизбежной в условиях отсутствия культуры безопасности. Но, прямо перед тем, как было запланировано начать эксперимент, решено было оставить реактор в работающем состоянии ещё на 11 часов, так как энергосеть нуждалась в энергии, вырабатываемой энергоблоком. Эта задержка привела к тому, что персонал дневной смены, который и должен был проводить эксперимент, сменился сотрудниками вечерней смены. Им, как результат, из-за отключённой САОР, пришлось вручную регулировать вентили гидравлической системы реактора.
Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось. По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67].
За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды. В любом случае поставленная цель была принципиально ошибочной, так как система планового расхолаживания не предназначена для работы с первым контуром, лишь частично заполненным жидкостью [62]. Положительным следствием принятой стратегии явилось то, что большой объём неконденсирующихся газов, прежде всего водорода, был удалён из первого контура в атмосферу защитной оболочки [68]. Таким образом содержание газов в пределах реакторной установки было существенно уменьшено, хотя для этого и не требовалось поддерживать низкое давление так долго [62]. С другой стороны, возможно, в это время имело место повторное осушение части активной зоны [69] , подача охлаждающей воды в реактор была снижена [70] и в целом реакторная установка была близка к состоянию, которое существовало перед закрытием отсечного клапана в 06:22 [71]. Учитывая безуспешность попыток снизить давление в первом контуре до 2 МПа и риск осушения активной зоны, было принято решение вернуться к стратегии восстановления принудительной циркуляции в первом контуре, как к хорошо известному для персонала способу охлаждения реактора [72]. Успех в возобновлении принудительной циркуляции теплоносителя был обусловлен тем, что контур уже был достаточно заполнен водой, а газовые пробки были существенно уменьшены при предыдущей попытке снизить давление. Стабильное охлаждение активной зоны было наконец-то восстановлено [75].
Остаточное энерговыделение в топливе постепенно снижалось, и 27 апреля единственный работающий главный циркуляционный насос был остановлен, после чего в первом контуре установилась естественная циркуляция. К этому времени тепло, производимое работой насоса, в два раза превышало энерговыделение в активной зоне [76]. Уже к вечеру 27 апреля теплоноситель остыл настолько, что было достигнуто состояние «холодного останова» [примечание 5] реактора. Только к ноябрю 1980 года тепловыделение в активной зоне упало до столь незначительных величин порядка 95 кВт , что позволило отказаться от использования парогенераторов. В январе 1981 года реакторная установка была изолирована от второго контура и охлаждалась исключительно за счёт передачи тепла от поверхности оборудования к атмосфере герметичной оболочки [77]. Удаление водорода из первого контура [ править править код ] К концу 29 марта стало очевидным, что в теплоносителе первого контура всё ещё имеется большое содержание газов, в первую очередь водорода, образовавшегося ранее при пароциркониевой реакции [78] [79]. Эта информация вызвала в СМИ совершенно беспочвенную панику о возможности взрыва внутри корпуса реактора, тогда как фактически в объёме первого контура отсутствовал кислород, что делало такой взрыв невозможным [81]. Тем не менее из-за риска нарушить циркуляцию в первом контуре от водорода решено было избавиться [76].
Растворимость водорода в воде падает при снижении давления. Теплоноситель из первого контура отводился через линию продувки в бак подпитки, давление в котором значительно ниже, чем в реакторе, в баке происходила дегазация теплоносителя: газ удалялся в систему газоочистки и по временным трубопроводам под гермооболочку [82] [83]. Использовался также и другой способ: теплоноситель распылялся в компенсаторе объёма в котором электронагревателями поддерживалась высокая температура при открытом отсечном клапане, при этом газы удалялись в объём герметичной оболочки. Уже к 1 апреля измерения показали отсутствие газообразного водорода под крышкой реактора [84]. Добровольная эвакуация [ править править код ] Тридцатого марта проблема наличия растворённого и газообразного водорода в первом контуре начала давать о себе знать, но согласованной стратегии по решению этой проблемы ещё не существовало. Опасность заключалась в неконтролируемом повышении давления в баке подпитки, где водород выделялся из теплоносителя и скапливался над уровнем жидкости. По решению начальника смены второго энергоблока был проведён сброс давления из бака в систему газоочистки, хотя в последней уже были выявлены серьёзные протечки. Это решение не было заранее согласовано с другими официальными лицами станции.
Это стало вторым по величине измеренным значением на всём протяжении аварии [86]. В это время в управлении комиссии по ядерному регулированию существовало серьёзное опасение о вероятности больших выбросов радиоактивности от АЭС. Источником этих выбросов могли стать газгольдеры , накапливавшие в себе радиоактивные газы из системы газоочистки. По информации, располагаемой комиссией, эти газгольдеры были практически заполнены, и в любой момент могли сработать их предохранительные устройства. По случайности эта цифра совпала со значением, полученным с вертолёта. Комиссия, узнав эту цифру, не сделала никаких попыток связаться со станцией и уточнить конкретную точку замеров либо причину сброса. Информация о переполнении газгольдеров также являлась недостоверной. Тем не менее руководство комиссии по ядерному регулированию сочло нужным выдать губернатору штата Пенсильвания рекомендацию эвакуировать население из района АЭС.
По мере прохождения этого указания через различные заинтересованные службы мнения сильно разделились, и в условиях крайне противоречивой информации губернатор Торнберг 30 марта около 12:30 объявил о добровольной эвакуации для беременных женщин и детей дошкольного возраста из района в радиусе 8 км вокруг АЭС [87]. К двум часам дня, по требованию властей штата и самого президента Картера, руководство комиссии по ядерному регулированию прибыло на станцию, чтобы разобраться со всем на месте. В результате к вечеру 30 марта состоялась совместная конференция губернатора Пенсильвании и представителей комиссии. На этой встрече было официально объявлено, что никакой необходимости в обязательной эвакуации населения нет. Тем не менее губернатор не стал отменять своих ранее выданных рекомендаций [88]. В связи с противоречивой информацией от СМИ и из-за самого факта появления рекомендации от губернатора, в течение нескольких дней после аварии около 195 000 человек добровольно покинули 32-километровую зону АЭС. Большинство из них расположилось у своих родственников и друзей, лишь малая часть отправилась в специальные эвакуационные центры. Практически все люди вернулись в свои дома через три недели после аварии [89] [90].
Расследование аварии [ править править код ] Авария на АЭС имела широкий общественный резонанс, и для определения её причин и последствий было проведено сразу несколько независимых расследований [91]. Наиболее масштабными из них можно назвать расследование комиссии президента США и специальное расследование комиссии по ядерному регулированию. Другие отчёты по аварии, выполненные комитетом сената США по вопросам окружающей среды , комиссией губернатора штата Пенсильвания и институтом электроэнергетических исследований EPRI были ограничены определённой тематикой. В рамках расследования [93] [94] несколько сотен человек дали официальные показания и значительно большее количество лиц было опрошено, в том числе на публичных слушаниях. Рассмотрению подверглась организационная структура эксплуатирующей организации и механизмы принятия решений в аварийных ситуациях. Проанализированы тысячи страниц документации на АЭС. Расследование не ограничилось самой станцией. Отдельное внимание было уделено работе комиссии по ядерному регулированию США, также была оценена готовность различных государственных служб к радиационным авариям.
Выводы были сделаны из анализа реакции СМИ и достоверности предоставляемой ими информации. По заказу комиссий были проведены детальные научно-технические экспертизы и исследования в областях ядерной физики, теплогидравлики, эргономики и др. Собранный одной только президентской комиссией материал занял более 90 погонных метров библиотечных полок [94]. Интересно, что многие необходимые для анализа произошедшего точные параметры состояния реакторной установки были получены из записей специального диагностического прибора, который лишь случайно не был демонтирован после окончания пусконаладочных работ на станции [95]. Основное заключение о причинах и последствиях аварии [ править править код ] Комиссия президента США весьма критично сформулировала свои выводы. По мнению комиссии, для предотвращения таких серьёзных аварий, как на Три-Майл-Айленд, необходимы фундаментальные изменения в организации, процедурах и практиках, и, сверх этого, в положении атомного регулятора, а также всей атомной отрасли.
Когда давление упало до точки насыщения , в активной зоне начали образовываться пузырьки пара , которые начали вытеснять из неё воду в компенсатор давления, тем самым ещё больше увеличивая ложные показания уровнемера. Всё ещё обеспокоенные необходимостью не допустить переполнения компенсатора, операторы начали сливать воду из него ещё и через дренажную линию первого контура. Персонал понял, что аварийная питательная вода не поступает в парогенераторы, задвижки открыли и началось её поступление. То обстоятельство, что подача питательной воды в парогенераторы была прервана на 8 минут, само по себе не могло привести к серьёзным последствиям, но прибавило замешательства в действия персонала и отвлекло их внимание от опасных последствий заедания в открытом положении импульсного клапана в системе компенсации давления. Также в это время было замечено срабатывание предохранительных мембран на барботёре из-за превышения в нём давления, в результате чего пар с высокими параметрами стал поступать в помещения гермооболочки. Операторы на щите управления выключили их, всё ещё не понимая, что в помещениях гермообъёма большое количество воды. Также в это время было замечена ещё одна странность — концентрация жидкого поглотителя, борной кислоты , в контуре сильно снизилась и, несмотря на полностью погружённые регулирующие стержни , начали расти показания приборов контроля нейтронного потока. Снижение концентрации борной кислоты также было последствием сильной течи. Операторы приступили к экстренному вводу бора, чтобы не допустить повторной критичности реактора, что было частично правильным решением, но не решающим главную проблему, которая до сих пор не была определена. Операторы выключили насосы, чтобы предотвратить их разрушение или повреждение трубопроводов первого контура. Принудительная циркуляция теплоносителя прекратилась. Можно отметить, что отключение циркуляционных насосов в первом контуре реакторов с водой под давлением не должно приводить к прекращению циркуляции теплоносителя, должна продолжаться естественная циркуляция. Однако под крышкой реактора на этот момент накопился парогазовый пузырь, наличие которого вкупе с геометрическим расположением активной зоны и парогенераторов в конструкции данной ядерной установки воспрепятствовало возникновению естественной циркуляции в первом контуре. Операторы закрыли отсечной клапан на линии импульсного клапана, заклинившего в открытом положении. Истечение теплоносителя из первого контура прекратилось. К счастью, разрешение не было получено, вошедшие туда люди могли погибнуть. К управляющему энергоблоком персоналу пришло первое понимание масштаба аварии. Однако она успела накрыть активную зону, предотвращая её дальнейшее разрушение, но это была лишь временная мера.
Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду она скапливалась в специальной емкости — барботере. Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа — за это время барботер переполнился, из-за критического уровня давления лопнули расположенные на нем предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой. Сработала система аварийного охлаждения реактора — в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку. Первая грубая ошибка операторов. Несмотря на то, что реактор был практически пуст, приборы показывали, что в нем слишком много воды, а поэтому операторы постепенно отключили все аварийные насосы, закачивающие воду в первый контур. Операторы, наконец, обнаружили, что аварийные насосы второго контура не работают, но их запуск не особо исправил ситуацию. Вплоть до 6. В результате активная зона реактора, лишенная охлаждения, начала в прямом смысле слова плавиться, хотя цепная ядерные реакции уже были остановлены. Перегрев был обусловлен распадом высокоактивных продуктов деления урана именно из-за этого ядерный реактор не может быть остановлен сразу, в одно мгновение. Лишь в 6. Однако насосы аварийного охлаждения, остановленные двумя часами ранее, по разным причинам удалось запустить лишь в 7. Казалось бы, авария предотвращена, и теперь можно спокойно заниматься полной остановкой реактора. Однако уже днем 28 марта выяснилось, что в корпусе реактора образовался огромный водородный пузырь, который мог в любую секунду вспыхнуть и взорваться — такой взрыв на АЭС привел бы к страшной катастрофе. Но откуда взялся этот водород? Он образовался из-за реакции раскаленного циркония с раскаленным же водяным паром, который буквально распадался на атомы кислорода и водорода. Кислород окислял цирконий, а свободный водород скапливался под крышкой реактора — так и образовался взрывоопасный пузырь. Вечером, в 19.
СМИ вспомнили аварию на американской АЭС
13:46. Авария на АЭС три-майл-айленд. 34 просмотра. Авария на Три-Майл-Айленде произошла в результате частичного расплавления реактора энергоблока 2 (ТМИ-2) в Пенсильвании. Авария на АЭС Три Майл Айленд не только показала насколько опасна. Причины и анализ аварии на АЭС Три-Майл-Айленд детально рассмотрены в книге в, Е.А Андреев, ков Физика реакторов для персонала АЭС с ВВЭР и РБМК. (под редакцией д.ф.-м. н. ва). Авария на станции «Три-Майл Айленд» могла бы привести к ещё большей катастрофе.
«Американскому Чернобылю» приписывали катастрофу для Китая
Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками. Повышение температуры и давления в реакторе запустило систему аварийной защиты, которая заглушила атомный котел. Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду. Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа. Из-за критического уровня давления лопнули расположенные предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой. Сработала система аварийного охлаждения реактора - в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку.
Несмотря на то, что реактор был практически пуст, приборы показывали, что в нем слишком много воды, а поэтому операторы постепенно отключили все аварийные насосы, закачивающие воду в первый контур. Вплоть до 6:18 люди, опираясь на неверные показания приборов, и в то же время, почему-то не замечая другие важные показатели, говорившие о характере аварии, пытались определить проблему и выполняли разнообразные действия, но лишь усугубили ситуацию. В результате активная зона реактора, лишенная охлаждения, начала плавиться. Прибывший в 6:18 инженер определил истинную причину аварии, и слив воды из активной зоны реактора был прекращен.
Но тут сплоховали кожаные мешки. Операторы, глядя на контрольную панель о ней чуть позже, это отдельная песня и видя рост уровня воды в компенсаторе, решили, что автоматика лажает, и УМЕНЬШИЛИ подачу воды. Давление в системе продолжало падать клапан-то открыт! В какой-то момент через пять с половиной минут после отключения штатной циркуляции давление упало до величины, при которой вода, нагретая до 300 градусов, закипает.
ВВЭР не рассчитаны на пар в качестве теплоносителя первого контура, это обязательно должна быть жидкая вода. Именно поэтому вода в первом контуре реакторов такого типа должна быть под большим давлением. Итак, давление в системе упало ниже критического и вода вскипела, превращаясь в пар, который заполнил трубопроводы. Вода продолжала утекать через неисправный клапан, но с пульта казалось, что воды в системе достаточно, ибо пар вытеснил воду в компенсатор, а количество воды в системе измерялось именно по уровню в компенсаторе. Давление продолжало падать, температура — расти. Операторы — хлопать ушами, пытаясь понять, что же там унутре вообще происходит. И вот тут самое время объяснить, почему Рафик неуиноуен то есть, канеш, уиноуен, но в меньшей степени, чем могло показаться из предыдущих абзацев. Дело в том, что юзер-френдли интерфейс в те годы на АЭС ещё не завезли, и контрольная панель представляла из себя бессистемное скопище неонок унутре и кривых осциллографов, отлично подходивших для создания радостной рождественской атмосферы, и плохо — для контроля и понимания состояния реактора в нештатной ситуации.
Маленький показательный факт: авария развивалась считанные минуты, а принтер, печатавший диагностические данные, столь нужные в реальном времени, отставал от течения событий на пару часов, ибо работал слишком медленно. Мануалы тоже не блистали внятностью и доходчивостью, так что универсальный способ RTFM в условиях аварии был не особо применим. Вкупе же с недостаточной подготовкой операторов и наплевательским отношением к разбору и анализу имеющегося опыта нештатных ситуаций это привело к тому, что ни распознать аварию, ни принять эффективных мер по её предотвращению персонал станции не смог. Итак, вернёмся на место событий. Пока операторы пырились на панель управления, пытаясь постичь логику происходящего, началась сильная вибрация циркуляционных насосов. Это в трубопроводе заканчивалась вода и начинался пар. Насосы пришлось отключить.
Проще говоря, штатная циркуляция воды в первом контуре и, соответственно, охлаждение активной зоны оказалась перекрыта. Температура и давление поползли вверх. Умная автоматика распознала аварийную ситуацию. На такие случаи в системе была предусмотрена аварийная подача воды в активную зону. Произошло аварийное глушение реактора отреагировав на рост давления , запустились насосы аварийной подачи воды, открылся клапан компенсатора см. Казалось бы, вин? Именно с этого момента начинает работать эффект кумулятивного действия. Барахливший клапан 1 не закрылся по достижении номинальных значений давления, вода продолжала утекать, а давление — падать. Умная автоматика и в этот раз не сплоховала, запустив насосы аварийной подачи воды. Ситуация проблемная, но еще не критическая. Но тут сплоховали кожаные мешки. Операторы, глядя на контрольную панель о ней чуть позже, это отдельная песня и видя рост уровня воды в компенсаторе, решили, что автоматика лажает, и УМЕНЬШИЛИ подачу воды. Давление в системе продолжало падать клапан-то открыт! В какой-то момент через пять с половиной минут после отключения штатной циркуляции давление упало до величины, при которой вода, нагретая до 300 градусов, закипает. ВВЭР не рассчитаны на пар в качестве теплоносителя первого контура, это обязательно должна быть жидкая вода. Именно поэтому вода в первом контуре реакторов такого типа должна быть под большим давлением. Итак, давление в системе упало ниже критического и вода вскипела, превращаясь в пар, который заполнил трубопроводы. Вода продолжала утекать через неисправный клапан, но с пульта казалось, что воды в системе достаточно, ибо пар вытеснил воду в компенсатор, а количество воды в системе измерялось именно по уровню в компенсаторе. Давление продолжало падать, температура — расти.
Three Mile Island accident — одна из крупнейших аварий в истории ядерной энергетики, произошедшая 28 марта 1979 года на атомной станции Три-Майл-Айленд, расположенной на реке Саскуэханна, недалеко от Гаррисберга Пенсильвания, США. До Чернобыльской аварии, случившейся через семь лет, авария на АЭС «Три-Майл Айленд» считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией в США, в ходе неё была серьёзно повреждена активная зона реактора, часть ядерного топлива расплавилась. Хронология и последовательность событий На АЭС «Три-Майл Айленд» использовались водо-водяные реакторы с двухконтурной системой охлаждения, эксплуатировались два энергоблока, мощностью 802 и 906 МВт, авария произошла на блоке номер два TMI-2 28 марта 1979 года примерно в 4:00. Для простоты в дальнейшем отсчёт ровно от 4:00:00. Автоматически отключился турбогенератор и включилась аварийная система подачи питательной воды в парогенераторы, однако, несмотря на нормальное функционирование всех трёх аварийных насосов, вода в парогенераторы не поступала. Оказалось, что задвижки на напоре насосов были закрыты. Это состояние сохранилось с планового ремонта, проходившего на блоке за несколько дней до аварии. Давление стало повышаться гораздо медленнее. Высокое давление в первом контуре, примерно 17 МПа, послужило причиной остановки реактора действием аварийной защиты через 9 секунд после исходного события. Теплоноситель в контуре перестал нагреваться, средняя температура упала, и вода стала сжиматься. Рост давления резко перешёл в его падение. В этот момент проявилась ещё одна техническая неисправность — предохранительный клапан должен был закрыться по нижней уставке срабатывания, но этого не произошло и сброс теплоносителя первого контура продолжался. Индикатор на пульте оператора при этом показывал, что клапан закрыт, хотя, на самом деле, лампочка сигнализировала лишь о том, что с клапана было снято питание. Других средств контроля не было предусмотрено. Утечка теплоносителя продолжалась почти 2,5 часа, пока не был закрыт отсечной клапан. Поэтому на несколько минут теплоотвод из первого контура практически полностью прекратился. Они отключили один, а затем и второй аварийный насос из трёх работающих, а на оставшемся вручную уменьшили расход более чем в 2 раза, такого количества воды было недостаточно для компенсации течи. Причиной такого решения послужили показания уровнемера компенсатора объёма, из которых следовало, что вода подаётся в первый контур быстрее, чем выходит через неисправное предохранительное устройство. Управляющий реактором персонал был обучен предотвращать заполнение водой компенсатора давления не «вставать на жёсткий контур» , так как при этом затрудняется регулирование давления в контуре, что опасно с точки зрения его целостности, поэтому они отключили «лишние» по их мнению насосы высокого давления.
Три-Майл-Айленд– крупнейшая авария на АЭС в США
О целой совокупности версий, включая шпионские и прочие конспирологические, в сухом остатке которых — цепь роковых случайностей, упершаяся в конструктивные недостатки реактора, что первоначально попытались скрыть. Не так в Пенсильвании. Сотни и тысячи людей рисковали умереть мучительной смертью по причине профнепригодности персонала станции, совершившего ряд недопустимых ошибок. Работавшие на АЭС специалисты не обладали должным набором знаний, инструкции были неполны и противоречивы. Пытаясь взять ситуацию под контроль, ядерщики действовали буквально наугад — «методом научного тыка». У них было несколько возможностей предотвратить аварию на раннем этапе, но они не догадались ими воспользоваться.
Все это шокировало американцев особенно сильно. Многие из них были абсолютно убеждены, что Пенсильванию спасло лишь божественное вмешательство, и в каком-то смысле так оно и есть. Если бы не ряд счастливых случаев, Америка получила бы как минимум утечку зараженной воды и массированный выброс радиоактивных газов. Со своей стороны власти и тут надо отдать им должное сделали все, чтобы успокоить нацию и предотвратить настоящую панику. В значительной степени нервный срыв у целой страны был спровоцирован губернаторским распоряжением о добровольной эвакуации, не отмененном даже после заверений Комиссии по ядерному регулированию о том, что опасность миновала и в эвакуации нет нужды к этому не прислушались почти 200 тысяч человек.
Но руководство и Комиссии, и штата, и страны в целом намеренно сделали ставку на максимальную открытость для прессы. А спустя четыре дня после аварии на Три-Майл-Айленд, ряд помещений которой подверглись существенному радиоактивному загрязнению, АЭС лично посетил президент Джимми Картер.
Причины Можно выделить две причины катастрофы на АЭС Three Mile Island: «Спусковым механизмом» аварии стал вышедший из строя питательный насос второго контура охлаждения реактора. Аварийное развитие событий было обусловлено просто невероятным сочетанием целого ряда технических неполадок заклинивание клапана, неправильные показания приборов, отказ нескольких насосов , грубых нарушений правил ремонта и эксплуатации, и пресловутого «человеческого фактора».
Люди, впервые столкнувшиеся с такой аварией, просто-напросто растерялись, у них не было ни соответствующей подготовки к подобного рода нештатным ситуациям в то время вообще никто не был готов , ни понимания того, что происходит. Усугубили ситуацию безбожно вравшие приборы и большое количество проблем технического плана. Поэтому и получилось то, что получилось — первая серьезная авария на АЭС, которая до трагических событий на Чернобыльской АЭС оставалась крупнейшей в мире. Хроника событий Авария на втором энергоблоке АЭС началась примерно в четыре утра 28 марта, и борьба за реактор велась до самого вечера, а полностью устранить опасность удалось лишь ко 2 апреля.
Хроника событий этой аварии обширна, однако имеет смысл остановиться только на ее ключевых моментах. Примерно 4. Остановка питательного насоса второго контура, в результате чего циркуляция воды прекратилась, а реактор начал перегреваться. Именно здесь случилось главное событие, послужившее началом аварии: из-за грубой ошибки, допущенной во время ремонта, не запустились аварийные насосы второго контура.
Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками! Первые 12 секунд после аварии. Повышение температуры и давления в реакторе запустило систему аварийной защиты, которая заглушила атомный котел. Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду она скапливалась в специальной емкости — барботере.
Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа — за это время барботер переполнился, из-за критического уровня давления лопнули расположенные на нем предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой. Сработала система аварийного охлаждения реактора — в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку. Первая грубая ошибка операторов.
Однако, в отличие от аварии на Чернобыльской АЭС или Фукусиме, в этом случае большая часть радиоактивных материалов осталась внутри контейнмента, что смягчило масштаб выбросов. Последствия для окружающей среды были ограниченными, но влияние на общественное мнение и отношение к ядерной энергетике в США было значительным. Эта авария спровоцировала изменения в системе безопасности атомных станций и привлекла больше внимания к необходимости строгого контроля и мониторинга ядерных установок. Прошло много лет с тех пор, и многие уроки из этой аварии были использованы для улучшения безопасности атомных станций, а также разработки более строгих протоколов контроля и реагирования на подобные ситуации. Steve Wing of the University of North Carolina. It graphically shows higher incidences of cancer up and down the Susquehanna River Valley, which was the direction of the prevailing wind at the time of the 1979 accident. Апрель 1988 года: Эндрю Баум, профессор медицинской психологии Университета медицинских наук в Бетесде, рассказал о результатах своего исследования жителей TMI в журнале Psychology Today. Мы также обнаружили долгосрочные изменения в уровнях гормонов... Исследование фактически показывает более чем удвоение всех наблюдаемых случаев рака после несчастного случая в TMI-2, включая: лимфому, лейкемию, толстую кишку и гормональную категорию молочной железы, эндометрия, яичников, предстательной железы и семенников. Количество случаев лейкемии и рака легких на дистанции от шести до 12 км было почти в четыре раза больше. На дистанции от 0 до шести км количество случаев рака толстой кишки было в четыре раза больше. Выводы: Изучая данные о состоянии здравоохранения штата, Левин обнаружил больше случаев рака щитовидной железы, чем ожидалось, в округе Йорк за каждый год, за исключением одного случая в период с 1995 по 2002 год. По его словам, одной из вероятных причин может быть то, что люди подверглись воздействию радиации во время аварии на Три-Майл-Айленде в 1979 году. Меры безопасности и реформы в энергетике После аварии на Три-Майл-Айленд были предприняты значительные меры по усилению безопасности и реформированию в ядерной энергетике. Некоторые из ключевых мероприятий включают: Ужесточение норм и стандартов безопасности: Произошло пересмотр и ужесточение нормативных документов, регулирующих ядерную энергетику. Это включало в себя разработку более строгих требований к проектированию, строительству и эксплуатации ядерных установок. Улучшение систем безопасности: Были внесены существенные улучшения в системы мониторинга, контроля и предотвращения аварий.
Вы пишете о 1976 годе. Что же было тремя годами раньше? Привело ли это событие к диверсии, саботажу? Но человеческий фактор, несомненен.
Знаменитая АЭС «Три-Майл-Айленд» наконец прекращает свою работу
Вторую — на Фукусиме — ученые часто называют еще более разрушительной. Давайте сравним их между собой. Авария на Чернобыле унесла больше жизней, чем авария на Фукусиме Хотя оценка человеческих потерь от ядерной катастрофы — сложная задача, научный консенсус состоит в том, что Чернобыль превосходит другие аварии применение ядерного оружия мы здесь не рассматриваем по разрушительности. Эта катастрофа, которую снова начали обсуждать, благодаря сериалу от HBO, развернулась 26 апреля 1986 года, когда на Чернобыльской АЭС открылась активная зона реактора и в воздух попали струи радиоактивного материала. Ядовитые пары не только загрязнили местную растительность и водоснабжение возле Припяти, но и отравили близлежащих жителей, у некоторых из которых развился рак. В течение трех месяцев после аварии более 30 человек умерли от острой лучевой болезни. По сегодняшним оценкам ученых, от аварии серьезно пострадали десятки, а то и сотни тысяч людей. Фукусима не была столь же разрушительной — во всяком случае, если отталкиваться от того, что нам известно. В результате события никто не погиб непосредственно от взрывов, однако около 1600 человек погибли от стресса в основном пожилые люди после аварии. Воздействие на окружающую среду также было менее серьезным.
Безлюдная улица города Голдсборо, Пенсильвания 31 марта 1979 года. Часть населения этого города уехала подальше от аварийной АЭС, те же, кто не смог или не захотел уехать, старались не выходить на улицу без особой необходимости. Власти утверждали, что в результате этой аварии жители 16-километровой зоны вокруг АЭС получили эквивалентную дозу облучения не более 100 миллибэр, что составляет примерно одну треть от годовой дозы облучения, получаемой американцами за счет естественного фонового излучения. Расплавившееся ядерное топливо все-таки не смогло прожечь корпус реактора, но радиоактивная вода просочилась в бетон защитной оболочки, и удалить это радиоактивное загрязнение оказалось практически невозможно. Снимок сделан 11 февраля 1980 года. Этот энергоблок после аварии был остановлен и находится под постоянным наблюдением. Снимок сделан 22 августа 1980 года. Технические эксперты высказывают предположение, что головка повреждена изнутри. Снимок сделан 3 марта 1999 года.
В итоге в связи с аварией был выплачен 71 миллион долларов компенсации пострадавшим американским гражданам: по искам предпринимателей и физических лиц, понёсших убытки из-за эвакуации или вынужденного простоя; на создание фонда по исследованию медицинских и психологических последствий аварии; а также пострадавшим, заявившим о психологическом или физическом ущербе от радиации. А что в СССР? Помимо халатности персонала, советский реактор РБМК был несовершенным и недоработанным такие реакторы не строили нигде, кроме СССР , что в итоге привело к т. В итоге активная зона реактора была полностью разрушена, а в окружающую среду начал выбрасываться большой объём радиоактивных веществ. И что советские власти? Они до последнего пытались скрыть катастрофу, а когда стало ясно, что проводить эвакуацию всё же придётся, жителей не предупредили о существующей опасности и не дали никаких рекомендаций о том, как следует себя вести, чтобы уменьшить влияние радиоактивного загрязнения. Более того — несмотря на факт, что с момента катастрофы на Чернобыльской АЭС прошло всего 5 дней, а уровень радиации продолжал расти, советская власть приказала проводить традиционный парад к 1 мая в Киеве и вывела на него ни о чём не подозревающих граждан, в том числе женщин и детей.
Так что, теплоотвод уже спустя минуту полностью прекратился. Но уровнемер давал некорректные показания и падение давления в реакторе продолжалось из-за некомпенсированной течи. Это привело давление к точке насыщения, когда из воды стали появляться пузырьки пара, еще больше увеличивая неверные показания уровнемера. Тогда операторы стали сливать воду также через дренажную линию первого контура реактора. Операторы поняли, что вода в парогенератор не поступает и открыли эти задвижки. Отсутствие воды в парогенераторе в течение восьми минут не могло сильно навредить реактору, но отвлекло персонал, который решил, что проблема на реакторе решена. Хотя датчик температуры показывал превышение 100 градусов, операторы посчитали это остаточным разогревом от сброса пара в начале инцидента, что считалось нормой. Через 14 минут операторы обратили внимание на срабатывание предохранителей в барботере из-за роста давления. Это означало поступление пара в помещение гермооболочки реактора. Насосы были выключены, так как не было понимания о большом количестве воды в баке. Было замечено снижение поглотителя — борной кислоты. А нейтронный поток наоборот стал усиливаться, хотя регулирующие стержни были полностью погружены. Все эти факторы указывали на появление сильной течи внутри реактора. Операторы приняли решение ввести бор для снижения критичности реактора. В целях сохранения целостности их и трубопроводов, насосы отключили.
АВАРИЯ НА АЭС ТРИ-МАЙЛ-АЙЛЕНД
Пять самых опасных аварий на ядерных объектах в мире | 28 марта 1979 года на АЭС Три-Майл-Айленд произошла одна из самых серьезных аварий в истории ядерной энергетики США. |
В США будет остановлена АЭС Три-Майл-Айленд | Авария на АЭС Три-Майл-Айленд – крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции. Причина ав. |
Авария на атомной станции. США 1979 год | В результате территория АЭС Три-Майл-Айленд подверглась сильному радиоактивному загрязнению, сотрудники станции получили опасные для здоровья уровни облучения. |
2.2 Авария на аэс «Три-майл-Айленд» | На АЭС «Три-Майл Айленд» использовались водо-водяные реакторы с двухконтурной системой охлаждения, эксплуатировались два энергоблока, мощностью 802 и 906 МВт, авария произошла на блоке номер два (TMI-2) 28 марта1979 года примерно в 4:00. |
Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года | В 1979-ом название «Три-Майл-Айленд» не сходило с заголовков газет – знаменитая авария на одноименной АЭС привела к тяжелейшим последствиям. |
28 марта 1979 года авария на АЭС Три-Майл-Айленд в США. Хронология событий
Меньшие, но тем не менее значительные объёмы радиоактивности, связанные с Чернобыльской аварией, были обнаружены и в Азии. Но 26 апреля — день памяти жертв не только Чернобыльской аварии. А произошедшая спустя 25 лет после Чернобыля авария на АЭС Фукусима в Японии показала, что ядерные аварии «не выбирают» страны по уровню экономического развития или принципу общественно-политического устройства. В этот день мы призываем не только помнить о тех, кто столкнулся с невидимой угрозой, но и подумать о том, что решением риска новых радиационных аварий является постепенный переход на безъядерные технологии.
Но статистика по смертям, связанным с облучением, засекречена. Да и в целом тема по возможности замалчивается. При этом синонимом жуткой трагедии с АЭС считается исключительно Чернобыльская авария. Чтобы мир об этом не забывал, фильмы о тупых русских бездарях и варварах, поставивших под угрозу всю планету, снимаются десятками. А о Фукусиме кино видели? Мне удалось найти лишь одно упоминание - о франко-бельгийской поделке 2021 года, где француженка Александра мечется между желанием срочно валить из Токио с мужем и дочерью и долгом, согласно которому надо бы вывезти сотрудников ее компании из зоны катастрофы. Картина явно осталась незамеченной, в отличие от недавнего сериала «Чернобыль» от НВО. И уж тем более нет ни одного блокбастера про атомную катастрофу в Три-Майл-Айленде - самую крупную, но далеко не единственную в США. Пока сотрудники паниковали у них не было инструкций для нештатных ситуаций , на втором энергоблоке расплавилась активная зона реактора, в атмосферу полетели радиоактивные газы, а в местную реку полилась зараженная вода.
Сирены вокруг станции выли, но СМИ утверждали: спокойно, ребята, занимайтесь своими делами.
Ненадежным в работе оказался также предохранительный клапан, который в начале аварии заклинило в отрытом положении, вследствие чего возникла непрерывная утечка воды из первого контура. Ситуация здесь аналогична предыдущей, поскольку фирме Баб-кок-Вилькокс, изготовляющей эти клапаны, уже были известны девять случаев заклинивания этих клапанов на других установках. Но фирма не только не приняла мер для устранения этого дефекта, но и не проинформировала использующие их АЭС о его наличии. Кроме того, было известно, что такая же авария с заклиниванием открытого предохранительного клапана произошла в сентябре 1977 г.
Однако и в этом случае оператор ошибочно остановили аварийные насосы высокого давления, автоматически включившихся для подачи воды в первый контур. Эта авария была специально рассмотрена фирмой Бабкок-Вилькокс и NRC - Комиссией ядерного регулирования аналогичной атомному надзору в России , причем было признано, что при такой аварии и полной мощности реактора перед аварией могут произойти оголение активной зоны и повреждение твэлов. В частности, не был никаких требований к уровню образования операторов и начальников смен. Их подготовкой, по договору с АЭС, занимался учебный отдел фирмы Бабкок-Вилькокс, причем не было ни формальной программы, ни учебного руководства. Директор и другие руководители АЭС подготовкой операторов не занимались.
В результате сложнейшее техническое оборудование обслуживалось технически слабым персоналом. Вследствие этого на АЭС мирились с низким уровнем ее эксплуатации: протечками воды в вентилях; попаданием влаги в трубки пневматической системы регулирования; со слабым контролем за выполнением ремонтных работ, что привело, в частности к оставлению закрытыми задвижек на аварийных питательных трубопроводах к парогенераторам. Естественно, что для выправления положения должны быть коренные изменения в самой системе организации использования АЭС. Вследствие этого Комиссия рекомендует полную реорганизацию NRC и придание ей широких полномочий по техническому надзору практически по всем разделам эксплуатации АЭС, а также по контролю за качеством поставляемого на АЭС оборудования и по организации новых разработок и научно-технических исследований; конкретизируются также функции энергосистем в отношении входящих в них АЭС. Вместе с тем в рекомендациях Комиссии подробно определены меры, какие должны быть приняты для подготовки и переподготовки операторов и начальников смен с тем, чтобы в работе на АЭС они действительно обеспечивали безопасную работу реактора и являлись, таким образом, по существу главным барьером по безопасности.
При этом подчеркнута необходимость создания в центре, в отдельных штатах и в энергосистемах учебных курсов для подготовки и переподготовки операторов и начальников смен с приемом на них лишь тех, кто сдал экзамены по специальной программе. Определяется также, что при учебной подготовке и практической работе операторы должны регулярно практиковаться на тренажерах, которые должны быть легко доступными для работников АЭС. Существенно отметить, что Комиссия подчеркивает также необходимость привлечения операторов и других оперативных работников АЭС к активному участию в конференциях, семинарах и всякого рода совещаниях по анализу опыта эксплуатации атомных электростанций с тем, несомненно, чтобы непрерывно повышалась их квалификация, и вместе с тем повышался и укреплялся их интерес к собственной профессии при одновременном повышении ее престижа. Тем самым определялись условия создания среды и атмосферы, от которых зависит слаженная работа по обеспечению надежной и безопасной эксплуатации атомного реактора и энергоблока в целом. Здесь представляется уместным и целесообразным отметить, что авария с пережогом активной зоны на Чернобыльской АЭС в апреле 1986 г.
Как уже говорилось, на TMI авария началась с самопроизвольного отключения подачи воды в парогенераторы и затем заклинивания предохранительного клапана первого контура, то есть из-за дефектов оборудования. А на ЧАЭС первопричиной аварии были отключения операторами, вопреки инструкции и здравому смыслу, ряда сигналов аварийной защиты A3 реактора с целью "обязательного" проведения малозначимых электротехнических испытаний по программе электроцеха ЧАЭС. Вследствие этого при тепловой мощности 200 МВт, при которой проводились испытания, когда начался произвольный быстрый разгон мощности реактора, закончившийся пережогом активной зоны, предусмотренной проектом автоматической остановки реактора не произошло. И не могло произойти, поскольку сигналов A3 реактора по мощности и скорости ее роста на уровне 200 МВт не было — они остались включенными на мощности 1600 МВт, какая была до испытаний. К организационным недостаткам можно отнести также крайне слабую информацию об аварии на TMI.
В противном случае, то есть при своевременном ознакомлении с весьма содержательным докладом Президентской Комиссии об аварии на АЭС TMI широкого круга наших специалистов-атомщиков и сотрудников соответствующих ведомств, аварии на ЧАЭС, по всей вероятности, не было бы. Тем более, что между этими авариями был интервал времени в 7 лет, вполне доступный для должного усвоения тяжелого урока TMI. Но, к сожалению, этого не произошло. В результате в нашей стране пришлось делать выводы — резко менять отношение к АЭС уже из собственного, еще более сурового урока тяжелой аварии на ЧАЭС, повлекшего за собой огромный материальный и моральный ущерб. Из доклада Комиссии следует также необходимость дополнительного особого внимания к ряду физико-технических проблем.
В связи с этим, как известно, для предотвращения взрыва водорода в контейнменте новых АЭС предусматривается заполнение его азотом или сжигание водорода в объеме контейнмента с помощью низкотемпературных аппаратов с катализатором. А для предотвращения роста давления в контейнменте сверх допустимого предусматривается отвод газа из него через специальные каналы, заполненные поверхностно-активным материалом, например, активированным древесным углем, с целью поглощения из газа радиоактивных примесей. Следует отметить далее особую важность обеспечения надежной циркуляции воды в нервом контуре реактора в аварийных условиях. Как уже говорилось, на TMI пришлось отключить основные циркуляционные насосы из-за весьма сильной вибрации их при появлении в потоке циркулирующей воды некоторого количества пара. Кроме того, по имеющимся нашим проработкам целесообразно и вполне возможно подключение к первому контуру вертикального контура естественной циркуляции воды высотой около 10 м из трубы диаметром 150 - 200 мм, способного отвести остаточное тепловыделение активной зоны реактора при прекращении работы циркуляционных насосов в аварийных условиях.
Среди специалистов крайне важной считается также опасность расплава стенки корпуса реактора из-за прямого контакта с ним раскаленных до высокой температуры сердечников твэлов в аварийных условиях. На TMI эта опасность не проявилась, по-видимому, вследствие того, что там была сожжена лишь верхняя часть активной зоны, причем куски раскаленных твэлов задерживались где-то в нижней части ее и не достигли днища корпуса реактора. Представляется возможным рассчитывать на этот благоприятный эффект также при пережоге нижней части активной зоны. С этой целью, по нашему мнению, целесообразно под активной зоной, то есть между активной зоной и днищем корпуса, установить решетчатую металлическую конструкцию толщиной около 1,0 м, которая задерживала бы падающие куски раскаленных твэлов.
Если уж говорим про крупные аварии на АЭС, то про все, причем спокойно, без привнесения политических страстей.