Сколько там этих воображаемых кадров видит человек,никто не в состоянии во-первых. Человеческий глаз не воспринимает информацию дискретно (50 кадров видит, а 51 уже нет.) различия в частоте мерцания человек может воспринимать до 1000 Гц. Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду.
Сколько кадров в секунду видит человеческий глаз?
Ответ на вопрос, сколько человеческий глаз видит кадров в секунду, такой – сколько угодно. Так сколько кадров в секунду видит человеческий глаз? Именно ~50 мм соответствуют восприятию человеческого глаза, а вот перспектива на 70 мм уже будет отличаться, несмотря на то, что в видоискателе конкретной камеры размеры объектов могут быть идентичными тому, что видит глаз.
💻Сколько FPS видит человеческий глаз?
Поэтому режиссеры придерживаются «золотого стандарта», тем самым делая кино фантазийным, чтобы люди, наоборот, могли отвлечься от реальности. В опыте участвовало 88 человек: им предложили наблюдать за LED-источником освещения в специальных очках, способных мигать с разной скоростью. Тест под названием «критический порог слияния мерцаний» позволил определить специалистам частоту, при которой участники исследования переставали различать мерцание.
Фильмы, снятые на пленку, снимаются с частотой 24 кадра в секунду. Это означает, что каждую секунду перед вашими глазами мелькают 24 изображения. Телевизоры и компьютеры в вашем доме, вероятно, имеют более высокую «частоту обновления», что влияет на то, что вы видите и как вы это видите. Частота обновления — это столько раз ваш монитор обновляет новые изображения каждую секунду. Если частота обновления вашего настольного монитора составляет 60 Гц, что является стандартным, это означает, что он обновляется 60 раз в секунду. Один кадр в секунду примерно соответствует 1 Гц. Когда вы используете компьютерный монитор с частотой обновления 60 Гц, ваш мозг обрабатывает свет от монитора как один непрерывный поток, а не как серию постоянных мерцающих огней. Более высокая частота обычно означает меньшее мерцание.
Некоторые исследования показывают, что человеческий глаз может обнаруживать более высокие уровни так называемой «частоты мерцания», чем считалось ранее. В прошлом эксперты утверждали, что максимальная способность большинства людей обнаруживать мерцание находится в диапазоне от 50 до 90 Гц или что максимальное количество кадров в секунду, которое может видеть человек, не превышает 60. Почему вам нужно знать о частоте мерцания? Она может отвлекать, если будете воспринимать частоту мерцания, а не единый непрерывный поток света и изображений. Итак, сколько кадров в секунду может увидеть человеческий глаз? Вы можете задаться вопросом, что происходит, если вы смотрите что-то с действительно высоким значением кадров в секунду. Вы действительно увидите все те кадры, которые мелькают? В конце концов, ваш глаз не движется со скоростью 30 изображений в секунду. Короткий ответ заключается в том, что вы, возможно, не сможете сознательно регистрировать эти кадры, но ваши глаза и мозг могут их осознавать. Например, возьмем скорость 60 кадров в секунду, которую многие приняли за верхний предел.
Некоторые исследования показывают, что ваш мозг на самом деле может распознавать изображения, которые вы видите, в течение гораздо более короткого периода времени, чем думали эксперты. Например, авторы исследования 2014 года из Массачусетского технологического института обнаружили, что мозг может обрабатывать изображение, которое видит ваш глаз, всего за 13 миллисекунд — это очень высокая скорость обработки. Это особенно быстро по сравнению с принятыми 100 миллисекундами, которые использовались в более ранних исследованиях. Тринадцать миллисекунд переводятся примерно в 75 кадров в секунду. Есть ли тесты, сколько кадров в секунду видит человеческий глаз? Некоторые исследователи показывают человеку быстрые последовательности изображений и просят дать ответы, чтобы увидеть, что они смогли обнаружить. Именно это сделали исследователи в исследовании 2014 года, чтобы определить, что мозг может обрабатывать изображение, которое глаз видел только в течение 13 миллисекунд. Офтальмолог может изучить движения внутри вашего глаза, известные как внутриглазные движения, с помощью высокоскоростной кинематографии, чтобы узнать больше о том, насколько быстро работают ваши глаза. В наши дни даже смартфоны могут захватывать эти незаметные движения с помощью замедленного видео slow motion. Эта технология позволяет телефону записывать больше изображений за более короткое время.
По мере развития технологий эксперты могут продолжать расширять диапазоны возможностей человеческого глаза. Как наше зрение сравнивается с зрением животных Возможно, вы слышали, как люди утверждают, что животные видят лучше людей. Оказывается, это не совсем так — острота зрения человека на самом деле лучше, чем у многих животных, особенно мелких.
И только в этом месте изображение на сетчатке максимально резкое. Вся остальная картинка очень размыта и чем дальше от этого центрального кусочка, тем плачевнее ситуация. Естественно, это справедливо именно для одного «снимка». Если вы захотите проверить эту информацию и посмотреть чуточку левее, то уже в этой точке будет максимальная резкость, а участок правее окажется смазанным.
Просто ваших глаза сфокусируют новую область изображения на центральную ямку. Но и это еще не все! Точно такая же технология используется и в «матрице» нашего глаза. Только там объединяются не 4 или 9 «пикселей» в одну нервную клетку, а десятки, сотни и даже тысячи палочек и колбочек! Если брать в среднем, то можно считать, что «пиксели» глаза объединяются по 100 штук. И здесь, в отличие от смартфона, мы имеем дело с реальным физическим объединением сигнала. Считывается только общий сигнал всей группы как одна точка.
Просто у нас физически только около миллиона «проводков», выходящих из глаза и идущих в мозг. На смартфоне же каждый пиксель подключен отдельным проводом и мы считываем по отдельности каждый из 108 миллионов пикселей, даже если собраны в группы и накрыты одним цветным фильтром. А объединение сигнала происходит уже после его считывания. Таким образом: Реальное разрешение глаза приближается к цифре в 1. А это уровень кнопочного телефона 15 летней давности… И практически вся эта детализация уходит на крошечный «центр кадра», так как именно в центральной ямке колбочки не объединяются в группы, чтобы картинка оставалась максимально четкой. Дыра в матрице! Казалось бы, что еще можно придумать, чтобы испортить матрицу глаза?
Может добавить «мертвые зоны» на матрицу? Так и есть! Примерно по центру каждого глаза, недалеко от главного резкого участка центральной ямки , находится место, куда выходят все «провода» аксоны от наших пикселей и одним общим «кабелем» оптический нерв идут в мозг: В этом месте нет никаких светочувствительных элементов и поэтому «слепые пятна» находятся прямо у нас перед глазами. В этот момент огромный черный кружок слева просто исчезнет, так как он попадет прямо на слепое пятно: Естественно, вы не должны никуда переводить взгляд, иначе глаз снова проделает свой трюк — сфокусирует эту область в центральную ямку. Можно поступить еще проще. Вытяните левую руку вперед и посмотрите левым глазом на свой большой палец, выставленный вверх. Теперь не отводя взгляд в сторону, медленно отводите руку в лево и в какой-то момент где-то левее на 20 см от центральной точки большой палец просто исчезнет, попав в «слепую зону».
Эти слепые пятна на глазах присутствуют постоянно, но когда мы смотрим двумя глазами — правый глаз добавляет картинку в слепое пятно слева и наоборот. А когда смотрим только одним глазом, мозг пытается как-то незаметно зарисовать пятно чем угодно, например, цветом, окружающим слепое пятно. Не забывайте, что сетчатку глаза нужно как-то питать, а значит на ней должны быть сосуды. Эти сосуды действительно есть, и они отбрасывают тень на «фотографию». Но мы не видим эти тени, так как мозг к ним уже давно привык и понял, что их нужно не показывать сознанию, а зарисовывать, как в фотошопе. Думаю, теперь вы готовы увидеть пример снимка, который выдает 1. Если вы ожидали увидеть качество хотя бы на уровне кнопочной Nokia 15-летней давности, то всё еще хуже: Конечно, это лишь наглядный пример, сделанный на компьютере, но он хорошо передает основной смысл.
Мы видим маленькую четкую область по центру, слепое черное пятно справа, тени, отбрасываемые сосудами. И крайне низкое качество 1. Да и цвета по краям практически отсутствуют, так как там мало колбочек и много палочек. Единственный нюанс — здесь не показан нос, который постоянно присутствует в кадре и мешает просмотру, но мозг его «вытирает» на снимках. А еще забавный факт заключается в том, что мобильные телефоны уже давно перешли на технологию BSI, суть которой заключается в том, что вся обвязка пикселей провода размещается позади светочувствительных элементов. То есть, ничего не препятствует движению света: Новые слева и старые справа пиксели Но глаз был разработан гораздо раньше появления технологии BSI. Поэтому здесь светочувствительные элементы находятся в самом низу, за несколькими слоями проводов нервов и других клеток по большей части прозрачных : И прежде, чем мы поймем почему же вопреки всему этому мы видим окружающий мир так хорошо, давайте еще сравним производительность матриц при плохом освещении.
Матрица смартфона против сетчатки при плохом освещении Когда света становится очень мало, каждый фотон на счету! Фотон — это мельчайшая неделимая порция света. На матрицу смартфона или сетчатку не может упасть половина или четверть фотона. Когда фотон поглощается пикселем матрицы, кусочек кремния высвобождает 1 электрон подробнее. Чем больше фотонов поглотится, тем больше электронов появится. А чем больше электронов — тем ярче будет эта точка на итоговом снимке.
При сравнении кадров немого кино и современных фильмов остается ощущение, что в начале 20-го века снимали в замедленном темпе. При просмотре так и хочется немного поторопить экранных героев. В настоящее время стандарт для съемки — 24 кадра в секунду. Это та частота, которая комфортна для человеческих органов зрения. Но предел ли это, что там за границами этого диапазона? Сколько кадров в секунду видит человек, теперь вам известно. Пределы человеческого зрения сколько кадров в секунду видит человеческий глаз 24 кадра в секунду — не предел возможностей человеческого глаза. Это оптимальное количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда кинематограф был немой и киномеханики крутили ручки, они самостоятельно выбирали скорость видеоряда исходя из темперамента зрителей: для спокойной публики частота составляла 20-24 кадра, а для активной — 24-30. Изменяя параметры, Вы сможете установить личную скорость зрения: Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное. Откуда взялся миф про 24 кадра Стандартная кинопленка 35 мм после проявки Center for Teaching Quality Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Волнообразные линии вверху — звуковая дорожка Википедия — Wiki Увеличить показатели FPS именно до 24 решили тоже не просто так. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. А нужно намного больше: 60 или даже 100 FPS. Как написано в абзаце про фильмы с 60 FPS — камера всегда снимает с небольшим размытием в движении. Компьютер же создаёт абсолютно чёткие изображения. Из-за этого мозгу сложнее складывать их в непрерывную картинку. И чем больше движения в игре, тем больше чётких кадров нам нужно для корректного восприятия. Для сапёра нам хватит и 2 FPS. Два раза в секунду компьютер будет обновлять изображение на мониторе и показывать попали мы в бомбу или нет. А для Counter-Strike не хватит и 30. Просто потому, что движения там слишком динамичные. Конечно, игры научились включать искуственное размытие, но оно похоже только мешает игровому процессу. По крайней мере, я не знаю ни одного человека, который включает моушн-блюр в играх. Да и система лишний раз нагружается. На восприятие также влияет то, что фильмы мы смотрим с постоянной кадровой частотой. В играх же, в зависимости от происходящего, FPS меняется. Как только FPS резко падает, мозг сразу же замечает это. То же самое было бы и с фильмами, если бы кадров в секунду было то 25, то 60. FPS для игр важен не только для комфортного восприятия игры. Частота кадров равна частоте обновления физической модели. Это значит, чем больше FPS, тем чаще компьютер проверяет сделали вы выстрел или нет. Иногда эти доли секунды важны. Похоже, что всё, что хотел рассказать — рассказал. Вот кратко все тезисы этой заметки.
Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только!
Сколько кадров в секунду может видеть человеческий глаз? – Drink-Drink | В четвертых, нельзя установить цифру сколько кадров глаз в состоянии разделить. |
Сколько кадров в секунду видит человеческий глаз в кино и играх. | Биологический факт в том, что человеческий глаз видит мир с частотой выше 24 fps. |
Сколько кадров в секунду может видеть человеческий глаз? – Drink-Drink | Человеческий глаз верит в картинку(в то что последовательность кадров живое изображение) при частоте в 10 кадров в секунду, т.е. это минимальный порог для видео, обусловленный "инерцией зрения"(погуглите в вики). |
У каких животных самое лучшее зрение?
- Сколько кадров в видеоиграх?
- Сколько кадров видит человеческий глаз
- Как устроен человеческий глаз
- Сколько кадров в секунду видит человек. Строение глаза и интересные факты
- Итак, сколько FPS может увидеть человеческий глаз?
До 60 fps: исследование наглядно показало возможности человеческого глаза
Может ли человеческий глаз увидеть 1000 кадров в секунду? — i2HARD | А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе. |
Сколько кадров в секунду видит человек | На самом деле, количество кадров в секунду, которые мы видим глазами, может варьироваться у разных людей и в разных условиях. |
Сколько FPS видит человеческий глаз?
Между 60 Гц и 144 Гц? После какого момента бессмысленно отображать игру быстрее? Ответ на этот вопрос достаточно сложен и не однозначен. С некоторыми из них вы можете не согласиться, а некоторые могут даже разозлить вас. Специалисты в области зрения и визуального познания, даже те, кто сам играет в игры, вполне могут иметь совершенно иное мнение, чем вы, о том, что важно в плавных образах, выводимых на экраны компьютеров и мониторов. Но человеческое зрение и восприятие — странная и сложная штука, и работает она не совсем так, как кажется. Аспекты зрения Прежде всего, необходимо понять, что мы по-разному воспринимаем различные аспекты зрения. Восприятие движения — это не то же самое, что восприятие света. Другое дело, что разные части глаза работают по-разному.
В центре глаза можно увидеть совсем не то, что на периферии. И еще одно: существуют естественные, физические пределы восприятия. Свету, проходящему через роговицу, требуется время, чтобы превратиться в информацию, на основе которой мозг может действовать, а мозг может обрабатывать эту информацию только с определенной скоростью. Еще одна важная концепция: целое, которое мы воспринимаем, больше, чем то, чего может достичь любой отдельный элемент нашей зрительной системы. Этот момент является основополагающим для понимания нашего восприятия зрения. ДеЛонг — доцент кафедры психологии в колледже Святого Иосифа в Ренсселаере, и большая часть его исследований посвящена зрительным системам. Доцент Джордан ДеЛонг И наконец, мы особенные. У игроков в компьютерные игры одни из самых лучших глаз в мире.
Это объясняется тем, что зрительное восприятие можно тренировать, а игры в жанре экшн особенно хорошо тренируют зрение. Поэтому, прежде чем сердиться на исследователей, рассуждающих о том, какую частоту кадров вы можете воспринимать, а какую нет, похлопайте себя по спине: если вы играете в игры с интенсивным движением, то, скорее всего, вы воспринимаете частоту кадров лучше, чем среднестатистический человек. Восприятие движения Теперь перейдем к цифрам. Первое, о чем следует подумать, — это частота мерцания. Большинство людей воспринимают мерцание источника света как постоянное освещение с частотой 50-60 раз в секунду, или герц. Некоторые люди могут уловить легкое мерцание люминесцентной лампы с частотой 60 Гц, а большинство людей увидят мерцающие мазки, если сделают быстрое движение глазами при взгляде на модулируемые светодиодные задние фонари, которыми оснащены многие современные автомобили. Но это лишь часть головоломки, когда речь идет о восприятии плавных игровых кадров. Это связано с тем, что игры выдают движущиеся изображения, а значит, задействуют иные зрительные системы, нежели те, которые просто обрабатывают свет.
Классический набор фотографий, используемых в дискуссиях о сохранении зрения.
Психолог Делонг считает, что частота выше 200 кадров будет восприниматься любым зрителем как реальная жизнь, однако он убеждён, что после 90 кадров разница для большинства людей становится минимальной. Исследователь Эдриен Чопин смотрит на ситуацию иначе. Да, чем больше кадров, тем лучше, однако человеческий мозг перестаёт получать полезную новую информацию от картинке при частоте выше 20 Гц. По словам учёного, для того, чтобы зафиксировать небольшой объект, мозгу нужно ещё меньше. Когда вы хотите произвести визуальный поиск, проследить за несколькими объектами или выяснить направление движения, ваш мозг захватит примерно 13 кадров в секунду из общего потока. Для этого он вычисляет некое среднее значение из ряда соседних кадров, составляя из них один. Эдриен Чопин, исследователь Чопин убеждён, что для передачи информации нет смысла идти выше 24 кадров в секунду, принятых в кино.
Тем не менее он понимает, что люди видят разницу между 20 и 60 герцами. Если вы видите разницу, это не значит, что вы станете лучше играть. После 24 Гц ничего уже не будет существенно меняться, хотя у вас и может возникнуть обратное чувство. Эдриен Чопин, исследователь В чём учёные сошлись, так это в том, что высокая частота кадров несёт по большей эстетический смысл, чем практический, и они не считают, что игры стоит развивать в этом направлении. Чопин убеждён, что разработчикам стоит больше думать об увеличении разрешения, а Делонг хотел бы, чтобы создатели мониторов и телевизоров думали о том, как достигнуть максимальной контрастности в картинке. До сих пор многие уверены, что человеческий глаз способен воспринимать максимум 24 кадра в секунду. Однако это огромное заблуждение. И, что интереснее всего, в байку про 24 кадра люди верили даже лет 15-20 назад, когда повсеместно встречались ЭЛТ-мониторы, наглядно опровергающие это утверждение своим мерцанием.
Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов.
Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды.
Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду. А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе. Зрительная система воспринимает картинку целостно, замечая только ее изменения. Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется — разницы нет, будет за секунду меняться 5 кадров, 25, или 250. Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения — тем выше предельная частота. Сравнение 5, 10, 15 и 30 кадров в секунду на медленной картинке Наблюдая видео, на котором человек медленно идет по прямой, глаз не заметит существенной разницы между 24 и 60 кадров в секунду, так как движения плавные.
Если этот человек быстро бежит — разница уже будет, ролик в 60 FPS покажется намного плавнее и приятнее, чем в 24 FPS. А если этот человек не просто бежит, а бежит зигзагом, попутно прыгая через препятствия — то даже разница между 60 и 120 FPS будет заметна, в пользу большей частоты.
А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом. Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки. Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров. В определенные фрагменты в разных промежутках времени вставлены кадры с каким-либо дефектом.
Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее. Неожиданные факты Не все знают о таком интересном факте: эксперименты с показом видеоизображения с разной частотой начались более ста лет назад в эпоху немого кино. Для демонстрации первых фильмов кинопроекторы снабжались ручным регулятором скорости.
То есть фильм показывали с той скоростью, с которой крутил ручку механик, а он, в свою очередь, ориентировался на реакцию зала. Изначальная скорость показа немого фильма составляла 16 кадров в секунду. Но при просмотре комедии, когда публика проявляла высокую активность, до 30 кадров в секунду. Но такая возможность самовольно регулировать скорость показа могла иметь и отрицательные последствия. Когда владелец кинотеатра хотел заработать больше, он, соответственно, сокращал время показа одного сеанса, но увеличивал количество самих сеансов. Это приводило к тому, что кинопродукция не воспринималась человеческим глазом, а зритель оставался недовольным. В результате во многих странах на законодательном уровне запретили демонстрацию фильмов с ускоренной частотой и определили норму, в соответствии с которой работали киномеханики. Вообще, для чего изучаются fps и человеческий глаз?
Поговорим об этом. Научное обоснование Ученые доказали, что при 24-кратной частоте кадров человек воспринимает не только общую картинку на мониторе, но на подсознательном уровне отдельные кадры. Для разработчиков игр эта информация стала стимулом к проведению дальнейших исследований возможностей органов зрения человека.
Большинство мониторов поддерживают частоту только 60 Гц. Соответственно оптимальным для вас будет 60 кадров в секунду. Также важно время отклика вашего дисплея — минимальное время, необходимое пикселю для изменения своей яркости. Этот процесс измеряется в миллисекундах. Более низкие числа означают более быстрые переходы и, соответственно, меньшие видимые искажения изображения.
сколько кадров видит человеческий глаз
Так сколько кадров в секунду видит человеческий глаз? Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду. Возникает вполне логичный вопрос – сколько мегапикселей содержится в глазу человека?
В чем разница между камерой и человеческим глазом?
Какова максимальная частота кадров, которую видит человеческий глаз? Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. Глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным. Человеческий глаз верит в картинку(в то что последовательность кадров живое изображение) при частоте в 10 кадров в секунду, т.е. это минимальный порог для видео, обусловленный "инерцией зрения"(погуглите в вики). Как было сказано выше, глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным и четким получится изображение. Итак, сколько кадров в секунду видит человеческий глаз?
Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
Более того, допустив, что колебания с частотой 83. Получится, что мы более не получаем сигнал, который меняется достаточно быстро для проведения суперсэмплинга. В результате теряется значительная часть воспринимаемых движений и деталей. Что будет, если сигнал обновляется с частотой выше половины частоты колебаний? По мере движения глаза, он будет регистрировать больше деталей, используя эту информацию для создания подробной картинки мира.
Будет даже лучше при добавлении "зерна" предпочтительно через временной антиалиасинг для заполнения пробелов. Половина от 83. Таким образом, для получения высококачественного разрешения из картинки, она должна быть "шумной" подобно зерну пленки и обновляться с частотой выше 41 Гц. Пример — фильм "Хоббит" в 48 fps, или "Гемини" в 60 fps.
То же касается и видеоигр. Что же будет с частотой 24 или 30 кадров в секунду, ведь это ниже лимита? Глаза будут анализировать изображение дважды и не смогут собрать дополнительную информацию благодаря колебаниям. Кино или игра получиться более "сказочным", не таким детальным.
Ограниченным разрешением самого формата. Существуют теории, что это может быть связано с размытием движений, однако в случае кино эффект не должен играть большой роли. Что все это значит для кино? При частоте обновления в 48-60 кадров в секунду наши глаза различают больше деталей, чем при частоте 24-30 fps, как в отношении движения, так и в детализации.
Однако мы получим более чем в 2 раза больше информации, потому что помимо окружающей информации мозг регистрирует и движения. Поэтому экшеновые сцены с резкой сменой кадров более высокая частота будет иметь лучшие результаты среди аудитории. Однако аудитория будет регистрировать и больше деталей из сцены, чем при 24-30 fps. Это и создает эффект постановки.
Мы видим не образ, а сцену целиком, что едва ли возможно в реальности. В качестве наглядной демонстрации вы можете прямо сейчас провести эксперимент. Для этого необходимо на смартфоне открыть съемку видео и в настройках выбрать частоту — 60 fps. Смотрите на экран и подвигайте перед собой камеру, получается гораздо плавнее, чем если просто подвигать головой.
После просмотра значительная часть говорила о том, что заметила мелькание в видео. Это поразило всех, так как фпс было на уровне 220. Небольшой опыт можно поставить самостоятельно дома и проверить способности зрительной системы. Для этого существует ряд видео с разной частотой кадров. После просмотра стоит записать наблюдения в этот момент. Однако лучше избегать материала с 25 кадром. При создании шлемов виртуальной реальности разработчики столкнулись с проблемой. Выяснилось, что периферийное не различает детали, но имеет большую скорость.
Поэтому нужно было менять значение в 30 и 60 герц, которые подходят для мониторов. После нескольких попыток выяснилось: для комфортного нахождения в шлеме это значение должно доходить до 90 Гц.
Распределение порогов слияния мерцаний у участников теста в трех различных измеренияхИсточник: PLOS ONE В итоге было выяснено, что разные люди могут видеть разное количество мерцаний в секунду.
Так, некоторые переставали различать мигания света уже при 35 Гц, подавляющее большинство воспринимало от 40 до 50 Гц, а также несколько людей смогли преодолеть порог в 60 Гц. Кроме того, помимо индивидуальной восприимчивости, в течение жизни данный показатель у каждого человека может меняться в ту или иную сторону.
Сервис Левша » Операционные системы » сколько кадров видит человеческий глаз сколько кадров видит человеческий глаз Опубликовано Вопросы и ответы Почему кино 24 кадра?
Долго стандартом было значение именно 24 кадра. Указанное число было заявлено, как наиболее низкая частота, имитирующая движение, похожее, на то, как движется жидкость. Такое изображение дает впечатление, что происходит реальное действие.
Сколько кадров в секунду видит глаз Википедия? Сколько кадров в секунду воспринимает мозг?
Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только!
Глаз это лишь «сенсор», информация из которого воспринимается не напрямую, а проходит сложный и до конца не изученный процесс постобработки. Этим объясняется существование оптических иллюзий. Для примера взгляните на эту картинку. Очевидно, что здесь всего 1 кадр, однако мозг воспринимает сигналы получаемые от палочек с периферии зрения и трактует их как признаки движения, это позволяет ему самому «дорисовывать» кадры и делать плавное движение всего из 1 кадра. Современные мониторы еще не достигли таких размеров, что бы покрывать все поле зрения человека. И это накладывает определенные ограничения на степень реалистичности картинки. Разработчики видеоигр понимают это и поэтому придумали добавлять по краям экрана эффект размытия, этот эффект позволяет мозгу воспринимать происходящее на экране более реалистично. Соответственно для обеспечения нужного уровня реалистичности хватает меньшего FPS. Выводы Принимая во внимание чрезвычайную сложность постобработки сигналов человеческим мозгом, указать точное значение фпс, воспринимаемое нами, с точностью до единицы попросту невозможно.
Можно оттолкнуться только от физического предела восприятия в 20 мс, что равнозначно 50 FPS. В тоже время учитывать, что края монитора захватываются частью периферийного зрения, где чувствительность рецепторов выше, но как мы поняли в этой области изображения разработчики игр научились обманывать зрительную систему. В итоге рациональным является остановиться на 60 FPS взяв 10 FPS про запас для просмотра видеоряда в котором нет эффекта размытия по краям. Передовая технология 3D-Vision, поддерживающая 120 Гц то есть по 60 Гц на глаз Несмотря на это повышенная частота способна действительно улучшить восприятие картинки. Почему так происходит и почему это никак не связано с FPS, который воспринимает человеческий глаз, вы можете узнать ответ дальше. Восприятие картинки на мониторах 120 Гц лучше? В интернете в последнее время стала очень популярна тема о 120 Гц мониторах.
Но в то время люди воспринимали их практически как реальность. Таким образом, понятно, что при количестве кадров в секунду, равном 16, человеческий глаз уже принимает их за движение. Несмотря на то, что они могут казаться немного резкими, ускоренными или угловатыми, глаз и мозг не могут различить отдельные изображения, принимая их за одно целое — движение. Когда кино стало звуковым, количество кадров увеличилось. Это потребовалось, чтобы можно было записывать звук на специальную дорожку рядом с кадрами. С этим нововведением движения актеров на экране стали более плавными и естественными, глазу зрителя стало проще воспринимать их. Изобретенный чуть позже 24-кадровый режим, был оптимален и технически, и эстетически. Но со временем количество кадров только увеличивалось, а качество съемки улучшалось. Сегодня обычное видео — это примерно 60 кадров в секунду, а видео в формате 3D — 90 кадров. Звук Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее. Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма. С 16 FPS была проблема, звук не звучал точно, как задумывалось. Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS. Всё просто и удобно. То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6. Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97? Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров. В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее. История 25 кадра Сублиминальную рекламу а это не что иное, как 25 кадр разработал Дмеймс Вайкери. Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы. Что происходит, когда мы видим 25 кадр? Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом — Вы не сможете различить движение объекта. На инерции основаны и оптические иллюзии: например, круги, которые мы воспринимаем как движущиеся. В действительности движение отсутствует. На картинке Вы видите только один кадр, но боковое зрение посылает сигнал в мозг, говоря ему, что что-то там нечисто и надо бы это проверить. В итоге мозг посылает сигнал обратно, преобразовывая 1 кадр в несколько. Это необходимо, чтобы Вы обернулись и удостоверились, что за ближайшими кустами не кроется опасность. Иными словами, это продиктовано инстинктом самосохранения. Какие способности имеет зрение Стоит рассмотреть строение человеческого глаза. Колбочки и палочки — составляющие фоторецепторов, так называемой системы восприятия. Благодаря им можно различать цвета и оттенки, воспринимать изображения. Сложность нахождения максимального fps framers per second заключается в расположении этих рецепторов. У людей количество фпс на периферии зрительной системы увеличено. Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз. Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение. Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра.
Чем быстрее вы листаете книгу, тем больше кадров в секунду вы видите. Вот только вместо кадров человеческое зрение задействует непрерывный поток информации от глаз, который поступает в мозг человека в виде электрических сигналов. Лучший Telegram-канал про технологии возможно Кроме того, расширяя понятие FPS, стоит учитывать герцы Гц — это предел аппаратного обеспечения, на котором дисплей монитора может обновлять изображение на экране. Например, монитор с частотой обновления в 45 Гц может демонстрировать разрывы изображения и пропуск кадров, если на нём воспроизвести видео с частотой 60 FPS, особенно при отсутствии технологии переменной частоты обновления. Именно по этой причине геймеры нуждаются в мониторах с частотой обновления 120 Гц и выше, так как в случае использования дисплея с более низкой частотой они могут заметить размытость при движении или мерцание. Откуда взялся миф про ограничения человеческого глаза На текущий момент довольно проблематично приписать возникновения мифа о том, что вы не можете видеть больше 60 кадров в секунду, какому-то конкретному ресурсу или человеку. Но в сети люди сходятся во мнении, что распространённое заблуждение, вероятно, пришло к нам из Голливуда. Дело в том, что на текущий момент большинство фильмов снимаются с частотой в 24 кадра в секунду — это самая низкая частота кадров, необходимая, чтобы движения в кадре выглядели естественными для человека. И со временем мы настолько привыкли к 24 кадрам в секунду, что теперь это настоящий стандарт того, как должно выглядеть кино.
Человеческий глаз способен воспринимать изображения со скоростью до определенного предела. Количество кадров, которые человек может видеть, зависит от его возраста, физического состояния и других факторов. Наиболее распространенным стандартом для кинематографии и видео является 24 кадра в секунду. Это означает, что при просмотре фильма или видео с такой частотой кадров, человек воспринимает движение как плавное и непрерывное. Однако существуют и более высокие частоты кадров, которые могут быть восприняты человеческим глазом. Некоторые люди могут заметить разницу между видео с частотой кадров 60 и 120 кадров в секунду. Это особенно заметно при быстром движении на экране, например, в играх или спортивных трансляциях. Более высокая частота кадров делает движение более плавным и реалистичным. Однако есть и ограничения. Даже при частоте кадров 120 или выше, большинство людей не смогут заметить разницу. Это связано с особенностями работы человеческого глаза и его способности воспринимать кадры. Кроме того, разница в качестве изображения при очень высокой частоте кадров может быть незначительной или даже неощутимой для большинства зрителей. В итоге, количество кадров в секунду, которые человек может видеть, ограничено физиологическими и психологическими факторами. Частота кадров 24-60 FPS обеспечивает плавное и комфортное восприятие изображений, в то время как более высокая частота кадров может создавать более реалистичное и плавное движение. Производительность глаза и FPS Человеческий глаз — удивительный орган, способный воспринимать огромное количество информации. Однако, вопрос о том, сколько кадров в секунду FPS видит глаз, не так прост. Многие исследования показывают, что человеческий глаз способен воспринимать изменения изображения при скорости в 200-300 FPS. Это означает, что если на экране происходит плавное движение, то глаз воспринимает эти изменения без заметных прерываний. Рекомендуем прочитать: Как устранить запах пластмассы в чайнике: эффективные способы и рекомендации Однако, в реальной жизни фактическая производительность глаза может быть ниже. Например, при недостаточной освещенности, глазу может потребоваться больше времени для восприятия изображения. Также, индивидуальные особенности каждого человека могут влиять на скорость восприятия. Кроме того, скорость восприятия может зависеть от контекста и задачи, которую выполняет глаз. Например, при чтении текста, глаз может воспринимать его с меньшей скоростью, чем при просмотре видео или игре в компьютерные игры. В целом, производительность глаза и FPS — это сложная тема, которая требует дальнейших исследований и учета множества факторов. Однако, можно с уверенностью сказать, что человеческий глаз способен воспринимать изменения изображения при достаточно высокой скорости, что позволяет наслаждаться плавной и реалистичной графикой в фильмах, играх и других мультимедийных приложениях. Что такое FPS и как он влияет на восприятие? FPS Frames Per Second — это показатель, указывающий на количество кадров, которые выводятся на экран за одну секунду. Чем выше значение FPS, тем плавнее и реалистичнее будет воспроизводиться движение в видеоиграх или видео. Влияние FPS на восприятие пользователя очень важно при игре на компьютере или просмотре видео.
Мифы про FPS и зрение человека, в которые уже можно не верить
Сколько fps видит человеческий глаз Человеческий глаз способен улавливать множество последовательных кадров, распознавая каждый из них, что образует четкую картинку. Если человеческий глаз видит только 24 кадра в секунду, то почему видео в 60 fps кажутся нам плавнее? Источник: Сколько кадров в секунду видит человеческий глаз? Поэтому часто повторяемый вопрос о том, сколько FPS видит человеческий глаз, повторяется много раз. Некоторые люди утверждают, что человеческий глаз может воспринимать только определенное количество кадров в секунду, основываясь на устаревшей информации или заблуждениях.