Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост.
Что такое термоядерный синтез и зачем он нужен?
Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки. В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции. Однако исследователи подчеркивают, что воспроизвести тот же эксперимент на реакторе такого размера может быть очень сложно. По их словам, небольшое изменение начальных условий может привести к кардинально иным результатам. Не говоря уже о том, что переход к ИТЭР означает адаптацию метода к плазменной камере с внешним радиусом 6,2 метра, в то время как для DIII-D этот показатель составляет 1,6 метра. Это отражает фундаментальные проблемы ядерного синтеза и сложность, с которой придется столкнуться ученым, прежде чем будет создан коммерчески жизнеспособный реактор.
Мы, к примеру, создаем устройства для нагрева плазмы, магнитную систему и прочие необходимые компоненты этого реактора. Несмотря на большие вложенные средства, самый большой проект, за который многие уже успели получить премии, до сих пор не реализован. Все чаще всплывают какие-то дополнительные проблемы и переносятся сроки запуска. Невольно возникает крамольная мысль: «А может, ученые сговорились и просто обманывают всех? Термоядерная гонка Для того чтобы понять степень сложности проблемы, мы обратились к специалисту — ведущему научному сотруднику Физико-технического института им. В дальнейшем ученые постоянно совершенствовали конструкцию токамаков, улучшая параметры удерживаемой в них плазмы примерно на порядок каждое последующее десятилетие. При этом токамаки неизменно увеличивались в размерах. Наш Т-15, увы, так по-настоящему и не заработал. Погубили его... Не сами по себе — причина тут чисто экономическая: для охлаждения сверхпроводников нужно было много жидкого гелия, который в то сложное время оказался слишком дорог для российских ученых. Сегодня вместо Т-15 строится новый токамак, без сверхпроводников, который обещают запустить в ближайшее время. В Великобритании и США же тем временем получили плазму с рекордными параметрами и провели первые эксперименты с использованием дейтерия и трития. Американцы спустя несколько лет утилизировали свою установку, чтобы построить на ее месте новый токамак, — такая у них политика. Но самым большим токамаком в мире на сегодняшний день пока по-прежнему остается JET. Почему так долго не удается запустить полноценную реакцию? Тем не менее до коммерческого реактора еще достаточно далеко. В числе причин — отсутствие ряда технологий, ресурс реактора, его размеры. Есть надежда, что в ИТЕРе нам все-таки удастся запустить самоподдерживающуюся реакцию. Кстати, в этом экспериментальном токамаке-реакторе будут использоваться те же сверхпроводники, которые когда-то стояли на нашем Т-15. Они позволят поддерживать поле в магнитных катушках без значительного расхода мощности. Реакция полностью контролируема. Энергетические сферы Параллельно с классическими токамаками в конце 80-х стало развиваться еще одно направление — сферических токамаков, форма которых больше напоминала уже не бублики, а пончики или шарики. Первая экспериментальная установка, построенная в Оксфордшире, рядом с JET, показала, что в такой конфигурации лучше удерживается плазма более высокой плотности. После этого интерес к таким установкам проявили в исследовательских центрах во многих странах мира. Когда установки были запущены, почти у всех трех была выявлена одна общая проблема — плохо удерживались заряженные частицы с большой энергией. Для исправления ситуации требовалось увеличить магнитное поле. В итоге все три «ушли» на модернизацию до 2016—2017 годов.
Реакторы других форм создают для изучения свойств плазмы. Например, сферический токамак напоминает сплюснутый глобус и позволяет дольше удерживать плазму. А в стеллараторе, прозванном «мятым бубликом», магнитные катушки находятся снаружи тора, за счет чего он может работать без перерывов, в отличие от классического токамака. Существуют и альтернативные виды реакторов, например установки на инерциальном удержании. На тритий-дейтериевую мишень размером с булавочную головку направляют больше сотни сверхмощных лазеров. Они нагревают мишень до сотен миллионов градусов и сжимают в тысячи раз, запуская термоядерную реакцию. Такую энергию, полученную лазерным синтезом, можно контролировать и использовать. Однако подобные реакторы работают в импульсном непостоянном режиме, поэтому вещество быстро разлетается и долго удерживать плазму не удается. Отдельная задача в том, чтобы сжать вещество абсолютно симметрично со всех сторон. Наконец, даже если в реакторе удастся обеспечить нужную форму и плотность плазмы, потери энергии на это должны быть минимальны, чтобы термоядерная реакция была экономически выгодной. Это критерий Лоусона, который стал одной из главных целей управляемого термоядерного синтеза. Именно на выполнение этого условия нацелены современные экспериментальные мега-проекты термоядерного синтеза. Один реактор на 35 стран В 2010 году на юге Франции развернулась стройка исполинских масштабов. Здесь на базе исследовательского центра ядерной энергетики «Кадараш» создают международный термоядерный реактор — ITER от латинского «путь». Стоимость токамака ИТЭР оценивается в 20 миллиардов евро. Ни одно государство не может позволить себе запустить подобный проект самостоятельно, поэтому страны объединяют свои силы. Вид с воздуха на установку ИТЭР — международную исследовательскую площадку для изучения свойств плазмы при реализации термоядерного синтеза Вклад стран-участников не денежный, а технический. Практически у каждой из 35 стран есть собственные термоядерные мини-установки. Работа разделена по секторам будущего реактора, каждая из держав производит свою часть оборудования. Россия — один из главных участников: у наших ученых многолетний опыт использования токамаков. ИТЭР будет весить 23 тысячи тонн некоторые детали столь тяжелы, что пришлось усиливать дороги, ведущие к реактору , а по высоте, более 70 метров, он обгонит Спасскую башню. Объем плазмы, который надеются получить ученые, — 40 кубометров. Температура в мега-реакторе достигнет головокружительной отметки в 150 миллионов градусов. Чтобы добыть достаточное количество плазмы, магнитное поле в токамаке должно быть в 200 тысяч раз больше земного!
Эти аппараты обеспечивают защиту сверхпроводниковых катушек магнитной системы в случае перехода сверхпроводника в резистивное близкое к критическому состояние и являются важными компонентами защиты. Четыре уже доставлены на стройплощадку. Проблемы и решения На самой масштабной инновационной стройке мира не обходится без проблем. Продолжительность ремонта термоэкранов оценивается примерно в два года». Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия. Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала.
Курсы валюты:
- Статьи по теме «термоядерный синтез» — Naked Science
- Физика плазмы и инерциальный термоядерный синтез
- «Это показатель технологического развития страны»
- #термоядерный синтез
- Американские физики повторно добились термоядерного зажигания
- Навигация по записям
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд. В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием.
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
Тем не менее Вашингтон ставит деньги на прогресс технологии — пусть не гигантские, но существенные. В начале месяца США объявили о выделении 42 млн долларов на развитие научных хабов в сфере термоядерного синтеза. Рыночные перспективы появления почти неограниченной и почти бесплатной энергии оценивает экономист Сергей Хестанов: Сергей Хестанов советник по макроэкономике генерального директора компании «Открытие инвестиции» «Естественно, если удастся создать работоспособный реактор, работающий за счет ядерного синтеза, это буквально обвалит спрос на энергетические товары, то есть на энергетический уголь. В меньшей степени это затронет рынок нефти.
Газ и нефть в значительной мере потребляются не для сжигания, а для разного рода синтетических процессов. Соответственно, эта часть спроса сохранится. А вот энергетический уголь пострадает довольно сильно.
Но пока стадия, в которой находятся исследования, не позволяет сделать надежных выводов. Если действительно реактор, работающий на ядерном синтезе, удастся технически реализовать, это будет огромный прорыв.
Термоядерная установка «Глобус-М», сооружённая в Физико-техническом институте им. Изобретение уже получило патент. Разработка позволит решить одну из основных задач в области термоядерного синтеза — уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него.
Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму. В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу.
Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму. В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу. Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. В данном подходе слой жидкого лития берёт на себя часть защитных функций.
Поэтому материал для «потеющей стенки» должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться. Самый тугоплавкий металл — вольфрам, однако его теплопроводности для эффективного охлаждения стенки недостаточно.
Иоффе в группе лазерной диагностики плазмы. Экспериментальная работа на термоядерной установке настолько меня увлекла, что после окончания института я решил связать свою жизнь с наукой! Впереди еще много планов! Хочу, чтобы первый термоядерный реактор запустили именно в России!
И российская наука продолжала двигаться вперёд!
Ученые в США провели третий успешный эксперимент с ядерным синтезом
Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития.
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время. Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию.
Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых. Они зарабатывают на этом проекте, поэтому только выигрывают от экспериментов. Ученые могут преуспеть, но от экспериментальной установки до промышленной еще очень далеко.
Токамак Т-15 МД размером с небольшой дачный домик полностью спроектировали и построили в России за 10 лет. Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе — дейтерии и тритии. На несколько порядков больше, чем сжигание нефти или газа того же количества, в десятки тысяч раз», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко. Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле. Тогда и родился термин «токамак» тороидальная камера с магнитной катушкой.
Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей. В термоядерном синтезе множество задач, которые никому не удается решить уже десятки лет. Глава правительства Михаил Мишустин дал старт большому проекту класса «Мегасайенс», который должен помочь выйти за рамки современных научных догм. И, конечно, я сразу же хочу поздравить весь ваш дружный коллектив, который много лет работал над тем, чтобы продвинуться еще дальше. Появляется уникальная инфраструктура для научных исследований, для того, чтобы, как говорят ученые, управляемый термоядерный синтез все-таки создал неиссякаемый источник энергии», — сказал премьер Михаил Мишустин.
За время меньшее 100 триллионных долей секунды шарик принял на себя 2,05 МДж энергии и выдал поток нейтронов, порождённых синтезом, унесших с собой 3 МДж энергии — в полтора раза больше, чем было потрачено. В результате был преодолён порог «зажигания», как называют его учёные — когда энергия, произведённая синтезом, превысила энергию запустивших реакцию лазеров. О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории.
По эффективности и безопасности она могла бы заменить все другие источники энергии, включая наиболее эффективные сегодня атомные электростанции. Если ядерная энергетика была переведена на мирные рельсы уже через пять лет после испытания ядерной бомбы, термояд — аналог солнечных реакций — долго не удавалось приручить. Только задумайтесь — первая водородная термоядерная бомба была взорвана 69! Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Потому так важен результат, о котором сообщила в понедельник заокеанская пресса. В Ливерморской национальной лаборатории осуществлен так называемый инерционный управляемый термоядерный синтез, а именно столкновение дейтерия и трития при помощи самого большого в мире лазера. В Министерстве энергетики США официального заявления пока не сделали, но назвали эксперимент «крупным научным прорывом». Фото: ВНИИЭФ — Озвученные американской прессой данные, конечно, еще требуют проверки, но если они подтвердятся, это можно будет считать крупным шагом вперед в деле осуществления термоядерного синтеза, — комментирует информацию директор Физического института им. Так вот как раз именно этому великому ученому и принадлежит идея термоядерного синтеза! То есть, это получение синтеза, аналогичного тому, что происходит на Солнце. Чтобы объединить, так сказать, на первый взгляд необъединимое все-таки ядра являются одинаково заряженными , надо обеспечить высокую плотность вещества и очень высокую температуру одновременно, чтобы два ядра слились с выделением энергии. Физика процесса была понятна давно, но осуществить ее оказалось не так просто. По замыслу Басова следовало обжать мишень несколькими лазерными пучками с разных сторон. Они бы вызвали нагрев, ударную волну с возникновением плотной плазмы, в которой могут сталкиваться ядра дейтерия и трития. Когда ученые это поняли, скорая идея зажигания мишени с выделением энергии, значительно компенсирующей затраченную, долго грело им душу.
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс.
Американские физики повторно добились термоядерного зажигания
Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Специалисты Института ядерной физики СО РАН уверены, что для Сибири термоядерный взрыв будет иметь катастрофические последствия.
Начало эпохи Водолея в 2021 году
- Почему сложно построить реактор для синтеза
- Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
- Читайте также:
- Быстрее взрыва
- Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
- Эра термоядерного синтеза
Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. Поэтому в 1980-х гг. советские физики-ядерщики выступили с инициативой строительства международного экспериментального термоядерного реактора – с проектом ИТЭР. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5.