Новости обучение нейросетям и искусственному интеллекту

Лаборатория «Искусственный интеллект в биоинформатике и медицине» работает над созданием нейросети, способной объединять знания из разных публикаций. В 2023 году не менее 1950 жителей России могут пройти обучение по программе искусственного интеллекта (ИИ). Зарабатываем реальные деньги с помощью нейросетей! Сперва занимался компьютерными сетями передачи данных, а затем прошёл курс Питера Норвига и Себастьяна Трана об основах искусственного интеллекта — и эта тема меня засосала! Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени.

Конференция Сбера по искусственному интеллекту AIJ 2023. Текстовая трансляция первого дня

Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта. Нейросети и ИИ-инструменты, а также курсы которыми можно пользоваться бесплатно. Лаборатория «Искусственный интеллект в биоинформатике и медицине» работает над созданием нейросети, способной объединять знания из разных публикаций. поэтапное обучение студентов азам искусственного интеллекта, упор на полезные.

Живут своим умом: российские нейросети бросили вызов ChatGPT и Midjourney

Известный исследователь машинного разума пришёл к выводу, что разработчики нейросетей очень слабо представляют себе, что они создают. Дополнительное профессиональное образование в области искусственного интеллекта и в смежных областях при финансовой поддержке от государства. поэтапное обучение студентов азам искусственного интеллекта, упор на полезные. Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования», которая восстановила движения и чувствительность рук человека с параличом. Основы искусственного интеллекта и нейронные сети от корпорации «Синергия».

Андрей Комиссаров: Нужно держать глаза открытыми

Всех желающих на практике освоить базовые алгоритмы машинного обучения в области компьютерного зрения. Начальные требования Курс рассчитан на слушателей, которые делают первые шаги в области машинного обучения. Что нужно, чтобы приступить к курсу? Иметь базовые знания в области математической статистики. Быть готовым программировать на Python. Наши преподаватели.

Решить задачи, написать текст, сочинение, защитить дипломную работу, найти факты, разобрать термины и проанализировать большие объемы информации - теперь для этого необязательно часами сидеть в библиотеке или долго и упорно искать нужную информацию в интернете.

Новые технологии упрощают задачу и сокращают время поиска. ИИ плотно проникает в сферу образования и начинает ее менять. В России уже есть примеры успешной реализации нейросетей в этой сфере. Например, платформа "Высшая математика" использует алгоритмы ИИ для создания индивидуальных программ обучения по математике. Также в университетах внедряются системы онлайн-обучения, которые используют ИИ для повышения эффективности обучения и оценки успеваемости студентов. Нейросеть способна анализировать данные, автоматизировать процессы и прогнозировать - все это делает ее ценным инструментом для управления образовательными траекториями, персонализации, обучения, выявлении проблем и минимизации рисков, поддержки учеников и педагогов.

Генеративные нейросети уже несколько лет активно используют в разработке учебных материалов и виртуальных ассистентов. Сейчас в мире существует множество примеров использования сервисов и платформ на основе ИИ в системе образования: Сервисы прогнозирования успешности оценки рисков. На основе данных о прошлой академической деятельности учащегося, нейросети могут предсказывать его будущую успеваемость, оценивать возможные риски и предлагать соответствующие меры для улучшения результатов. Такие решения внедрены во многие зарубежные школы и вузы. Интеллектуальные учебные материалы. Фактически речь идет об учебниках нового поколения.

Это цифровые образовательные платформы, которые позволяют организовать персонализированный учебный процесс, оценивать прогресс, выявлять пробелы в знаниях, и формировать предложения для педагогов по организации учебного процесса. Инструменты автоматизированной проверки и оценки. Автоматическая оценка заданий и тестов может значительно ускорить процесс проверки, уменьшить нагрузку на преподавателей и дать быструю обратную связь ученику.

Гобой, саксофон, контрабас и даже орган запросто умещаются на одной странице такого учебника: здесь и изображения инструмента, и его история, и даже звучание. Можно нажать на инструмент — он подсветится и заиграет музыка. Все наглядно и просто: учителю нужно лишь кликать по тачпанели. В основе комплекса — сеть из планшетов и доски-монитора. А в доске — электронная начинка из учебников, пособий, словарей и тетрадей.

Для начала, мы пройдём основы нейронных сетей: как же какая-то абстрактная модель мышления, помещённая в компьютер, позволила обычным программистам просто так взять, и решить нерешённую ранее задачу зрения роботов. Мы изучим архитектуру и алгоритмы настройки нейросетей, приобретём глубокое понимание всего, что происходит после нажатия "Запустить обучение". Мы разберём, как лучше представить задачу для нейронной сети, поскольку не все постановки в принципе разрешимы, и в этом нам поможет метод максимального правдоподобия. Но это всё ещё не компьютерное зрение. В этой части курса вы погрузитесь в свёрточные нейронные сети, методы регуляризации и нормализации, которые делают реальные задачи — разрешимыми. Кроме лекций вас ждёт 8 практических семинаров.

Андрей Комиссаров: Нужно держать глаза открытыми

Иные категории педагогических работников, кроме учителей, на обучение не принимаются. Однако, если вы являетесь совместителем по должности "учитель", вы можете принять участие в проекта. Размер ставки учителя значения не имеет. Какой уровень обучения мне лучше выбрать? Если вы только делаете первые шаги в изучении возможностей искусственного интеллекта, то вам подойдет базовый уровень. Если уже имеете знания в данной сфере, то стоит выбрать продвинутый уровень. Для поступления на продвинутый уровень необходимо пройти вступительные испытания. Обратите внимание, пожалуйста, что пройти обучение в течение года можно только один раз.

Сколько времени займет обучение? Обучение на программе базового уровняю длится 4 недели, объем 72 академических часа. Обучение на программе продвинутого уровняю длится 8 недель, объем 72 академических часа. Какие есть программы обучения? У нас есть два уровня обучения: базовый и продвинутый. Каждый уровень делится на два направления в зависимости от специализации: для учителей информатики и для учителей — предметников. Для учителей информатики подготовлены программы «Быстрый старт в искусственный интеллект» базовый уровень и «Технологии искусственного интеллекта для учителей информатики» продвинутый уровень.

Для учителей-предметников подготовлены программы «Быстрый старт в искусственный интеллект» базовый уровень и «Искусственный интеллект для учителей» продвинутый уровень. Регистрация, документы Когда можно пройти обучение? Программа базового уровня проходит с 4 сентября по 2 октября и для учителей информатики, и для учителей-предметников. Программа называется «Быстрый старт в искусственный интеллект». Программы продвинутого уровня проходят с 1 августа по 2 октября и для учителей информатики, и для учителей-предметников. Программы называются «Технологии искусственного интеллекта для учителей информатики» и «Искусственный интеллект для учителей» соответственно. Открыта ли сейчас регистрация?

Нет, регистрация закрыта. Могу ли я начать обучение позже даты старта? Да, все необходимые материалы будут доступны для вас в любое время. Не только в период обучения, но и после него в течение двух лет. Сейчас в личном кабинете доступны материалы программы за 2022 год только участникам. Могу ли я участвовать повторно? Если вы проходили обучение по программе базового уровня в 2022 году, то в 2023 году можете пройти программу продвинутого уровня.

Обучение на программах двух уровней в течение одного года не допускается. Что делать, если я зарегистрировался не на тот курс? Ваша заявка будет переведена операторами МФТИ на тот курс, который соответствует вашей категории участника. Вам для этого ничего делать не нужно.

Традиционно в России сильна математическая школа, необходимая для создания и развития подобных технологий, и, если копнуть глубже, мы обнаружим достаточно много совместных проектов научных институтов и российских компаний по созданию и прикладному использованию ИИ", — поясняет он.

Бизнес заинтересован в инвестициях в это направление, поскольку такие технологии приносят очевидную пользу, в том числе финансовую, продолжает Борисов. Наличие инвестиций — гарант того, что мы сможем быть достаточно конкурентоспособны на мировом рынке. Добиться наилучшего качества получается благодаря увеличению массива данных для обучения нейронных сетей. Эти данные стоят дорого, и позволить себе такие затраты могут только крупные игроки. Но, как правило, эти модели работают хорошо только с английским языком, а не с русским.

Требуются большие инвестиции, которые есть у нескольких компаний. И у российских компаний ресурсов меньше, чем у международных", — резюмирует он. Александр Крайнов особо отмечает, что сейчас индустрия нуждается в хороших и качественных кадрах, которые помогут нейросетям учиться и развиваться. Современные нейросети получают знания о мире с помощью материалов из интернета. Но чтобы применять эти знания на практике, нейросетям нужен тренер, который покажет примеры успешно решённых задач и сможет оценить ответы.

Инструменты автоматизированной проверки и оценки. Автоматическая оценка заданий и тестов может значительно ускорить процесс проверки, уменьшить нагрузку на преподавателей и дать быструю обратную связь ученику. Существуют инструменты, с помощью которых можно просто сфотографировать на смартфон тетрадь с выполненным домашним заданием, и система распознает написанное, проверит, даст обратную связь о правильности выполнения и ошибках. А затем передаст эту информацию педагогу. Виртуальные тренажеры и ассистенты. Преимущества ИИ перед традиционным методом обучения По мнению Карлова, даже в условиях взрывного роста ИИ, новые технологии не сможет заменить традиционное обучение, и тем более, педагогов. Более того, по оценкам международных экспертов в области ИИ, профессия учителя находится в группе наименьшего риска замены человека искусственным интеллектом. Это цифровые продукты, которые не заменяют человека, а направлены на усиление возможностей специалиста в какой-то предметной области: врача, инженера, архитектора. Системы ИИ дают возможность выстраивать персонализированное обучение в условиях массового образования. В традиционном классе учитель чаще всего выстраивает учебный процесс, ориентируясь на средних учеников.

Сильным школьникам в этих условиях довольно легко и скучно, а слабым, наоборот, очень сложно и они не могут встроиться в темп. Платформы на основе ИИ могут оценивать темп и сложность, в зависимости от индивидуальных особенностей каждого учащегося, и предлагать индивидуальные подборки заданий, как на занятиях, так и дома. По мнению руководителя Центра прикладного ИИ Сколтеха Евгения Бурнаева, нейросети подходят к оценке знаний и успеваемости учащегося не предвзято. Они обладают выдающимися способностями по обработке больших объемов данных, оценке и анализу успеваемости школьников и студентов. Вместо нескольких дней, выпускнику понадобилось всего 23 часа на написание работы. Работу приняли с незначительными правками.

Так материал лучше усваивается. Объяснения и подсказки.

Помощник может написать дополнительные объяснения, если ребёнок сталкивается с трудностями в понимании материала, и давать подсказки при выполнении заданий. Организация времени. Искусственный интеллект может помочь ребёнку создать расписание учебных занятий, домашних заданий и других активностей. Развитие навыков Языковые навыки. Нейросеть помогает развивать навыки чтения, письма, говорения и слушания через интерактивные задания и диалоги. Математические навыки. Помощник может разработать задачи и упражнения для развития математической грамотности. Творческие навыки.

Искусственный интеллект поддерживает интерес ребёнка к искусству, музыке и другим творческим сферам. Мотивация и интерес Игровой подход. Искусственный интеллект может использовать элементы игр для увлекательного и интересного обучения, что позволит поддерживать мотивацию ребёнка. Награды и достижения. Помощник может создать виртуальные награды и призы за достижения и прогресс в обучении. Социальная интеракция Диалог и общение. Нейросеть даёт возможность ребёнку практиковать диалоги на иностранном языке или обучаться основам вежливости и общения. Развитие эмоционального интеллекта.

С помощью ИИ ребёнок может узнавать и различать эмоции, что важно для социального взаимодействия. Обратная связь Помощник на основе ИИ способен анализировать ответы ребёнка, детально выявлять и объяснять ошибки, что способствует более глубокому пониманию материала. Искусственный интеллект может служить примером для обучения этическим и социальным нормам. Нейросеть помогает ребёнку анализировать информацию, проверять факты и развивать критическое мышление.

"Мы для него материал": Учёный призвал срочно отключить все серверы с искусственным интеллектом

Например, помогает диагностировать заболевания: система анализирует миллионы историй болезни и сопоставляет их с данными из научной литературы. Искусственный интеллект составляет персональные образовательные треки, контролирует качество продукции на производстве. И это, конечно, далеко не все. История искусственного интеллекта Что такое ИИ простым языком В области компьютерных наук искусственным интеллектом ИИ называют способность машин выполнять задачи, для которых обычно требуется человеческий интеллект, например распознавание речи, решение проблем и принятие решений. ИИ может обучаться на основе имеющихся данных. Это называют «машинным обучением». Анализируя большие объемы данных, алгоритм искусственного интеллекта распознает закономерности и со временем улучшает свою работу. Так, нашумевший ChatGPT создает тексты, анализируя все множество текстов на заданную тему в Интернете. На основе предыдущих слов нейронная сеть «предсказывает», какая буква в новом тексте должна быть следующей, согласно теории вероятности. Машинное обучение искусственного интеллекта сейчас бывает трех типов: обучение с учителем Supervised learning — алгоритм учится распознавать закономерности в данных и затем может делать прогнозы или принимать решения на основе новой, еще не используемой информации.

Обучение без учителя Unsupervised learning — без каких-либо предварительных знаний или меток. Обучение с подкреплением Reinforcement learning — когда за правильно выполненную команду приходит вознаграждение. Такие алгоритмы искусственного интеллекта используются для участия в играх или управления роботами, в том числе ролями роботов. Когда появились нейросети История появления нейронных сетей насчитывает несколько десятилетий. Все началось с исследований в области биологии и нейрофизиологии. Первыми здесь были американские ученые Уоррен Мак-Каллок и Уолтер Питтс, представившие миру математическую модель под названием «логический нейрон» в 1943 году. Эта нейросеть имитировала с помощью математики функционирование нейронов в головном мозге. В 1960-х годах исследования в области искусственных нейронных сетей стали замедляться из-за ограничений вычислительных возможностей. Однако к 1980-м годам эта проблема постепенно была преодолена благодаря развитию компьютеров.

Так, например, был создан алгоритм обратного распространения ошибки backpropagation , который позволил эффективно обучать нейронные сети. Текущее положение AI Artificial Intelligence Нельзя выделить конкретную компанию, которая первой представила технологию использования нейросетей, но значительную роль в продвижении искусственного интеллекта сыграли IBM, Google, Microsoft и Amazon. Маркетинг AI применяют сегодня и в сфере рекламы и коммуникаций. Один из ярких примеров — создание персонализированных рекламных кампаний. Сначала AI действует по всем принципам маркетинга: разбивает потребителей на группы и определяет, какие продукты и услуги им интересны. Потом на основе этих данных создает индивидуальную рекламную кампанию для каждой целевой группы. Такой подход нейросети не только увеличивает конверсию, но и улучшает взаимодействие клиента с брендом. Дизайн AI используют в дизайне. Например, уже сейчас с помощью нейросетей создают уникальные дизайны, вижуалы, логотипы.

Это существенно экономит время и облегчает работу с контентом.

Новые технологии упрощают задачу и сокращают время поиска. ИИ плотно проникает в сферу образования и начинает ее менять. В России уже есть примеры успешной реализации нейросетей в этой сфере. Например, платформа "Высшая математика" использует алгоритмы ИИ для создания индивидуальных программ обучения по математике. Также в университетах внедряются системы онлайн-обучения, которые используют ИИ для повышения эффективности обучения и оценки успеваемости студентов.

Нейросеть способна анализировать данные, автоматизировать процессы и прогнозировать - все это делает ее ценным инструментом для управления образовательными траекториями, персонализации, обучения, выявлении проблем и минимизации рисков, поддержки учеников и педагогов. Генеративные нейросети уже несколько лет активно используют в разработке учебных материалов и виртуальных ассистентов. Сейчас в мире существует множество примеров использования сервисов и платформ на основе ИИ в системе образования: Сервисы прогнозирования успешности оценки рисков. На основе данных о прошлой академической деятельности учащегося, нейросети могут предсказывать его будущую успеваемость, оценивать возможные риски и предлагать соответствующие меры для улучшения результатов. Такие решения внедрены во многие зарубежные школы и вузы. Интеллектуальные учебные материалы.

Фактически речь идет об учебниках нового поколения. Это цифровые образовательные платформы, которые позволяют организовать персонализированный учебный процесс, оценивать прогресс, выявлять пробелы в знаниях, и формировать предложения для педагогов по организации учебного процесса. Инструменты автоматизированной проверки и оценки. Автоматическая оценка заданий и тестов может значительно ускорить процесс проверки, уменьшить нагрузку на преподавателей и дать быструю обратную связь ученику. Существуют инструменты, с помощью которых можно просто сфотографировать на смартфон тетрадь с выполненным домашним заданием, и система распознает написанное, проверит, даст обратную связь о правильности выполнения и ошибках.

Третий блок - дизайн фрагмента белков, которые, к примеру взаимодействуют с поверхностью вирусов. Четвертый блок - диффузионная модель создания белков открывает огромную вселенную возможностей работы с белком.

Таким образом инструменты на основе ИИ могут трансформировать нашу медицину. О генерировании белка под определенную задачу Если мы можем делать теги для новостей по их типу "Политика", "Культура" и т. Таким образом наши коллеги, разработавшие языковую модель Progen для работы с 280 миллионами белковых последовательностей, добавили более 19 тысяч известных семейств белков. В итоге они смогли сгенерировать 1 миллион белковых последовательностей, похожих на семейство лизоцинов, обладающих антибактериальными свойствами, способными разрушать клеточные стенки бактерий. Для его получения выбрали из миллиона последовательностей 102 проверки, из которых, в свою очередь, удалось синтезировать не в клеточной линии всего лишь 72 белка. Из них только часть показала реальную каталитическую активность. Были выбраны пять наиболее активных белков, которые уже решили синтезировать в клеточных линиях, как это делают на фармпроизводстве при разработке новых белковых препаратов.

В итоге были выявлены два активных белка, разрушающих бактериальные стенки. Один из этих белков был проверен методом рентгеноструктурного анализа, который подтвердил, что его структура соответствует предсказанной и похожа на структуру лизоцина дикого типа. В биологии очень важна также обратная задача. Ее выполнила языковая модель ProteinMPNN, когда имеющийся каркас нужно вернуть в изначальное состояние, чтобы потом снова его синтезировать. Эта модель основана на известной модели для работы с текстами и имеет три слоя инкодера, три слоя декодера, а на входе, помимо каркаса, она получает еще и координаты, где расположены азот, углерод и другие элементы, чтобы была понятна структура будущего белка, который предстоит сгенерировать. Эта модель позволяет на определенных последовательностях зафиксировать аминокислоты, которые для нас важны, и вокруг них будет генерироваться последовательность, формирующая белок. У этой модели очень много хороших результатов синтеза белков, к тому же она генерирует более стабильные белки, которые существуют в природе.

Эти показатели обнадеживают. О диффузии белка Если бы белки были картинкой, не было бы никаких проблем, мы бы воспользовались алгоритмами, о которых говорилось ранее. Но белки - это 3D-cтруктуры, имеющие координаты, расстояние и прочее. И чтобы создать белый гауссовский шум для диффузии белков, мы должны работать в первую очередь с координатами. На координаты "расстояние между атомами" мы делаем гауссовский шум и благодаря направлениям броуновского движения мы можем это все генерировать в структуру белка. Этим летом вышла языковая модель RF diffusion от Института дизайна белков. Она берет за основу последовательность аминокислот и еще ряд исходных данных и предсказывает структуру белка.

Таким образом они могут также в дальнейшем генерировать симметричные белки, которые могут быть использованы для производства вакцин и выполнять другие операции, необходимые для исследований. Дата-параллелизм - когда часть выборки хранится на разных устройствах. Узкое место тут - коммуникация. Наша задача - сократить число коммуникаций или их стоимость. Если мы сжимаем в 10 раз, то можно обыграть так, чтобы не надо было в 10 раз больше тратиться на коммуникацию - важен суммарный эффект. Нужны узлы, которые будут забирать часть информации.

Но этот выпущенный из бутылки джинн не собирался возвращаться обратно и в конечном итоге привел к переосмыслению ежедневного взаимодействие пользователей с Интернетом. Нейросети в одночасье изменили все Больше по теме: Как при помощи нейросети Bing создавать текст и картинки.

Рассказываем на личном примере Так, за короткое время корпорации представили своих помощников на основе чат-ботов широкой публике, а их способности действительно впечатляли — ИИ-системы оказались способны писать тексты, гененировать изображения, составлять отчеты и целые наборы слайдов за считанные секунды. Корпорация Meta также не осталась в долгу, выпустив сразу две модели для создания изображений буквально чего угодно. Да что уж там, сегодня телефоны Google со встроенным ИИ позволяют редактировать фотографии в невиданной ранее степени, заменяя грустные лица счастливыми, а пасмурные дни — идеальными закатами. И хотя первичный ажиотаж сходит на нет, а разговоры о том, что ИИ уничтожит нашу цивилизацию, кажется, остались в 2023 году, эти новаторские интеллектуальные системы стали символом перемен буквально во всех отраслях — от экономики до образования. Сегодня чат-боты переводят тексты любой сложности за несколько секунд, что неизменно влияет на рынок труда Миллионы людей посмотрели в лицо искусственному интеллекту, а значит вопрос о том, хорошо ли мы понимаем эти системы и умеем ли ими пользоваться актуален как никогда. Вспомните, чем закончилась одна из главных дискуссий 2023 года о роли ChatGPT и подобных чат-ботов в образовании — все были сосредоточены на том, что учащиеся могут использовать ИИ для мошенничества, однако по прошествии года стало понятно, что неспособность преподавателей обучить школьников и студентов взаимодействию с чат-ботами может поставить их в невыгодное положение. И да, никакой «революции» в системе образования так и не произошло. Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий?

Подписывайтесь на наш канал в Telegram — так вы точно не пропустите ничего интересного! Тем не менее, понимание того, как работать с нейросетями чрезвычайно важно — чем больше мы знаем о том, что именно представляют собой эти интеллектуальные системы, тем больше у нас возможностей. Нейросети в 2024 году Итак, с момента релиза ChatGPT разработка моделей генеративного искусственного интеллекта продолжается головокружительными темпами — новый класс ИИ-систем учится быть мультимодальным. Это означает, что данные, используемые для обучения нейросетей, поступают не только из текстовых источников, таких как Википедия, но и из видео на YouTube и других аудио и визуальных источников информации. Все это в очередной раз поднимает один из главных вопросов, связанных с ИИ-системами — достоверностью информации.

Конференция Сбера по искусственному интеллекту AIJ 2023. Текстовая трансляция первого дня

Здесь ИИ уместно применять. Уже известный сервис ChatGPT, или ресурс похожий на него, — Perplexity, который может применяться в России и доступен на русском языке. Если вы его запускаете в Яндекс-браузере, который автоматически всё переводит на русский, то сервис принесёт пользу. К тому же нейросеть Perplexity даёт ссылки по поводу того, откуда она взяла ответ и почему так считает. И если мы говорим об альтернативном обучении, то сервис будет помогать детям. Подготовка к уроку и сам урок — это разные вещи.

Если на уроке ты должен продемонстрировать, как усвоил данный тебе на дом шаблон, то тогда никакой ChatGPT не нужен. Потому что шаблон нужно демонстрировать так, как он был тебе дан. Но если у нас урок носит дискурсивный формат: формат общения и рассуждения, тогда необходимо готовиться самому. И целый ряд школьных предметов, если их готовить правильно, поможет проявить навыки аналитического мышления, критического мышления, системного мышления. Например, с помощью нейросетей-советчиков можно удобно готовиться к форматам вроде «перевёрнутого класса» самостоятельно.

Причем делать это прямо в классе и в команде. Тут даже не родители, а образовательная среда должна отвечать вызовам этого технологического новшества. Если мы требуем от детей только по шаблону подтверждения, что они знают, то тогда чат ChatGPT взломает образование. Потому что сервис выдаст им тексты, которые они прочитают, но не усвоят. Если мы с вами переводим работу в формат дискуссии, чтобы появилась возможность высказывать разные позиции, защищать разные точки зрения, тогда учитель выступает только модератором, ведущим, и с помощью ИИ можно хорошо подготовиться как на уроке, так и дома.

Ты всё равно до конца не знаешь, какие вопросы тебе зададут. Ведь дискуссия — это всегда импровизация. Есть ли для нас, людей, угроза потерять контроль над образованием, отдать его в руки искусственного интеллекта? Там, где учатся по шаблонам, конечно, да, есть риск. Но у тех, кто так учит, и сейчас никакого контроля нет.

Это иллюзия, что, обучая по шаблону, они всё контролируют. Шаблоны, в частности, очень быстро устаревают. Информация, которую дают в школах, гораздо в большем объёме лежит в интернете. Они не развивают у детей нужные метапредметные навыки. Не анализируют индивидуальные навыки, специфику развития ребёнка, траекторную специфику.

Вы в своём телеграм-канале писали о социальном расслоении в образовании. Что вы имеете в виду? Речь идёт об искушении, которому можно поддаться, а можно не поддаться. Вот так и в ChatGPT. Помните, мультфильм «Двое из ларца»?

Вот там они за Вовку и дрова кололи, и тесто месили, а потом и конфеты ели… То есть иллюзия и искушение, что всё будет делаться за тебя. Социальное расслоение — это воспользовался ты халявой или нет. Студенты и так в университетах не особо чему учатся. А списывают, делают подробные шпоры, на экзаменах как-то отвечают. В этом смысле для таких студентов сильно ничего не изменится.

Теперь для них шпоры может писать GPT. Социальное расслоение в том и выражается, что те, кто учился сам, — они более востребованы. Те, кто делал всё при помощи чат ботов, будут менее востребованы. Потому что на рабочем месте будет делаться анализ не того, какого вуза и какого цвета у тебя диплом, а того, что ты реально знаешь и понимаешь. Там, конечно, тоже что-то можно наговорить при помощи ChatGPT, но не всегда.

А еще этот онлайн-курс является частью трека по искусственному интеллекту социально-образовательной программы для вузов «IT Академия Samsung», которая стартовала в 2019 году и в настоящий момент включает 19 вузов-партнеров. Если ваш вуз хочет вступить в программу «IT Академия Samsung», пишите нам по адресу info innovationcampus. Как мы этого добьёмся?

Для начала, мы пройдём основы нейронных сетей: как же какая-то абстрактная модель мышления, помещённая в компьютер, позволила обычным программистам просто так взять, и решить нерешённую ранее задачу зрения роботов. Мы изучим архитектуру и алгоритмы настройки нейросетей, приобретём глубокое понимание всего, что происходит после нажатия "Запустить обучение". Мы разберём, как лучше представить задачу для нейронной сети, поскольку не все постановки в принципе разрешимы, и в этом нам поможет метод максимального правдоподобия.

Однако, будьте готовы, что если вы ничего до этого не слышали о нейронных сетях, то будет достаточно тяжело, так как курс требует большой отдачи. Выпускница 2-го потока курса Аспирант Физического факультета МГУ Курс по применению нейронных сетей в научных исследованиях однозначно лучший курс, связанный с программированием из тех, что я проходил. А самой важной частью этого курса оказалась работа над собственным проектом.

Гиперболический тангенс используется, если возможны отрицательные значения например, акции могут не только расти, но и падать , поскольку его диапазон [-1,1]. Тренировочный сет — последовательность данных, которые использует нейросеть. Итерация — количество тренировочных сетов, которые прошла нейронная сеть. Ошибка — производная, которая демонстрирует расхождение между полученным ответом и ожидаемым. Число ошибок в процессе обучения должно идти на спад.

Как работает нейросеть на примере Приведем простой пример работы нейросетей с использованием весов коэффициентов. Предположим, мы хотим узнать у нейросети, стоит ли в выходные ехать за грибами в лес. Ответов может быть только два — да или нет. Результат зависит от нескольких факторов, которые будут заданы в виде вопросов: Начался ли грибной сезон? Будет ли в выходные дождь? Пороговое значение и значение смещения обозначим как 3. Таким образом, в сумме получился результат 6, который в два раза больше исходного. Обработав весь массив входящих данных, нейронная сеть с точностью сделала вывод, что в выходные можно ехать за грибами.

Типы нейросетей Типы В зависимости от числа слоев, в которых расположены нейроны, нейросети могут быть: Персептрон — самая старая форма. Один нейрон принимает информацию, применяет активацию, в результате становится доступным вывод в двоичной системе. Перцептрон можно использовать только для классификации данных на две группы. Из-за ограниченных возможностей такие нейронные сети в наше время практически не используются. Сигнал поступает во входной слой и сразу же отправляется к выходному, где происходят вычисления. Связь между нейронами входного и выходного слоев обеспечивают синапсы. Помимо входного и выходного слоев, в таких нейронных сетях есть еще несколько скрытых промежуточных. Обработка информации и вычисления производятся на нескольких этапах, поэтому решения, предлагаемые такими сетями, более точные.

В структуру таких нейросетей входят два дополнительных слоя - сверточные и объединяющие. Сверточные нейронные сети используются для обработки изображений, картинок и фото. В эту группу входят нейросети, способные что-то создавать. Это, к примеру, генераторы картинок или текстов. Еще одна классификация делит нейросети на однонаправленные и реккурентные в зависимости от распределения данных по синапсам: Однонаправленные прямого распространения. Сигнал движется от входного слоя к выходному, обратного движения нет. Нейросети такого типа используют для распознавания речи, кластеризации, составления прогнозов. Реккурентные с обратными связями.

Реккурентные нейронные сети предполагают, что любое количество сигналов может перемещаться в разных направлениях, в том числе от выхода к входу. По типам нейронов сети могут быть однородными или гибридными.

Искусственный интеллект и будущее нейросетей: взгляд эксперта из «Яндекса»

Искусственный интеллект помогает продлить жизнь, нейросети учатся воссоздавать 3D-изображения по отражению в глазах и создают игры по текстовому описанию, а диджитал-специалисты дают советы, как лучше общаться с ChatGPT. Сложности использования ИИ в области образования касаются вопросов этики нейросетей и защиты персональных данных, объясняет Иван Карлов. Академия нейросетей и искусственного интеллекта. Изначально NovelAI базировалась как ИИ-генератор рассказов, однако позднее появилась новая версия нейросети, которая была способна генерировать качественные аниме арты.

Похожие новости:

Оцените статью
Добавить комментарий