Новости фрактал в природе

Самым известным примером фракталов в природе является снежинка.

Что такое фрактал?

  • ФРАКТАЛ • Большая российская энциклопедия - электронная версия
  • Порядок в хаосе
  • Фрактал | Наука | Fandom
  • Фрактал. 5 вопросов
  • Новый покупатель
  • Бесконечность фракталов. Как устроен мир вокруг нас | Капитал страны

Молния фрактал

Посмотрите потрясающие примеры фракталов в природе. Морские раковины.

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту приложение 5. Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе. Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому». Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств.

В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным. Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась. При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками.

Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден. Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров — завихрений. Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа Gaston Maurice Julia приложение 6. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Классификация фракталов Фракталы делятся на группы.

Самые большие группы это: - геометрические фракталы; - стохастические фракталы. Геометрические фракталы Фракталы этого класса самые наглядные.

Виды фракталов Абстрактное самоподобное множество представить сложно. Наверняка вы задались вопросом: «А какими они вообще бывают, эти фракталы? Геометрические Здесь все начинается с простой детали — строится такой фрактал от обычной геометрической фигуры. Прямо на этой основе чертится фрагмент, затем снова, и снова... И каждый раз уменьшается масштаб.

На самом деле этот вид бесконечных множеств весьма прост для понимания и воплощения: любой школьник может удивить своего учителя по математике, нарисовав в тетради геометрический фрактал. И даже те, кто далёк от точных наук, смогут найти что-то для себя — в изобразительном искусстве геометрические фракталы использовали Джексон Поллок, Луис Уэйн, Мауриц Корнелис Эшер и другие художники. Весьма простые алгоритмы могут стать почвой для самого причудливого и ветвистого «дерева», которое вы когда-либо видели. Нужно только начертить график. Типовым примером алгебраического фрактала считается множество Мандельброта. Для его построения используют комплексные числа. Если в процессе итерации это повторение каких-либо действий, не приводящее к вызовам самих себя случайным образом менять любые параметры, получится такой фрактал.

Именно поэтому такой тип множества не визуализируется вручную — только в программе. Пожалуй, это самый «виртуозный» вид фракталов. Причём это не фракталы в чистом виде: авторы заимствуют понятия и концепты: отсюда название. Концептуальный фрактал и вовсе может состоять из нескольких видов. Фракталы в природе После того, как в 1975 году Мандельброт опубликовал свою основополагающую работу о фракталах, одно из первых практических применений появилось в 1978 году, когда Лорен Карпентер захотел создать несколько сгенерированных компьютером гор. Используя фракталы, которые начинались с треугольников, он создал удивительно реалистичный горный хребет. В 1990-х годах Натан Коэн, вдохновленный снежинкой Коха, создал более компактную радиоантенну, используя только проволоку и плоскогубцы.

Сегодня антенны в сотовых телефонах используют такие фракталы, как губка Менгера, фрактал Вичека и фракталы, заполняющие пространство, как способ максимизировать мощность восприятия при минимальном объеме пространства. Примеры фракталов в природе Капуста сорта «романеско» Романеско она же романская брокколи — итальянский сорт капусты. Внешний вид этого растения напоминает природный фрактал: каждый бутон вбирает в себя бутоны поменьше. А они, в свою очередь, тоже принимают облик логарифмической спирали. Это «повторение за самим собой» воспроизводится несколько раз.

Такие структуры обладают самоподобием на различных масштабах и нередко встречаются в природе. Результаты опубликованы в журнале Physical Review A. Фракталы — это объекты, для которых характерно самоподобие, то есть точное или частичное совпадение фрагментов различных размеров. С точки зрения математики фракталы являются особенными фигурами, так как обладают дробной размерностью. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой.

Содержание

  • Что такое фрактал, если говорить по-простому
  • Что такое фрактал?: Идеи и вдохновение в журнале Ярмарки Мастеров
  • Сейчас на главной
  • Фракталы – Красота Повтора

Фракталы: что это такое и какие они бывают

Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Часто говорят, что мать-природа чертовски хороший дизайнер, а фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи вместе. Немного о фракталах и множестве Мандельброта Антон Ступин Что породило само понятие фрактал? Смотрите 65 фотографии онлайн по теме фракталы в природе животные. Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки. Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки.

Фрактальные закономерности в природе

Фракталы в природе презентация - 97 фото В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности.
Фракталы в природе (53 фото) Фото подборка встречающихся в природе или искусственно созданных фракталов.
Фракталы: что это такое и какие они бывают Посмотрите больше идей на темы «фракталы, природа, эрнст геккель».
Можно ли прибыльно торговать используя фрактальность? Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest!

Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать

В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе.

Созерцание великого фрактального подобия

Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев.

Фрактальные узоры в природе и искусстве эстетичны и снимают стресс

Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства. Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части. Что еще интересного можно найти на основе модели Мандельброта? К примеру, можно взглянуть на соотношение частей этого фрактала: Фрактальную теорию тесно связывают с принципом золотого сечения и числами Фибоначчи. Опять же, не будем вдаваться в сложные математические вычисления и доказательства. Нас тут интересует, что определенное соотношение частей и сторон множества Мандельброта соответствуют принципам золотого сечения и чисел Фибоначчи. А это уже совсем другая история...

Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь — фрактал. Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах. Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие". Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть. Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака — это не сферы, линии берега — это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные — задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать". Все, что существует в реальном мире, является фракталом — это и есть наша гипотеза, а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом. Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования: Проанализировать и проработать литературу по теме исследования. Рассмотреть и изучить различные виды фракталов. Дать представление о фракталах, встречающихся в нашей жизни. Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия. Структура исследовательской работы определялась логикой исследования и поставленными задачами.

Еще одна кроссплатформенная в том числе с мобильной версией программа, основанная на Java с открытым исходным кодом, для обработки изображений. Она известна в основном своим сложным генератором пламенных фракталов. Mandelbulber Mandelbulb3D. Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта , загадочная «коробка» Мандельбокс и др. Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании. По ссылке вы найдете множество других программ. Заключение Исследование фракталов началось в 1975 году.

Совсем недавно в масштабе человеческой эволюции мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь. Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине? В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал. Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему? Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему? Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом. Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе. Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным. Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась. При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден. Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений. Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора. Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа Gaston Maurice Julia. Гастон Жюлиа всегда в маске — травма с Первой мировой войны Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел. Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил. Впоследствии это изображение было раскрашено например, один из способов окрашивания цветом — по числу итераций и стало одним из самых популярных изображений, какие только были созданы человеком. Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок. Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники. Carpenter в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

Фракталы в природе. Мир вокруг нас. Ч.2

Далее контролируйте риски. В конце американской сессии можно закрывать все сделки, независимо от результата. Этот подход более спокойный, так как на анализ и выставление ордеров вы можете потратить не более 10 минут в день. Активный поход в торговле по фракталам Определите тренд в каком направлении перемещается объём и торгуйте в течение дня только в направлении тренда. Этот индикатор может быть хорошим фильтром для ваших сделок. Если на рынке присутствует восходящий тренд, и внутри дня цена пробила нижний фрактал, выйдя из области Value area, а потом в неё вернулась — то, скорее всего, это был ложный пробой, и движение вверх вероятно продолжится. Пример на графике: Если на рынке присутствует восходящий тренд, и внутри дня цена пробила верхний фрактал, выйдя из области Value area — то, скорее всего, движение вверх продолжится. Пример на графике: Контролируйте риски, правильно выбирая размер позиции. Такой тип трейдинга позволит вам совершать сделки более точно, но будет требовать больше времени в день для работы.

Выводы Окружающий нас мир нелинеен и фрактален. Рынки, как часть живой природы, как отражение особенностей работы человеческого мозга — тоже нелинейны и фрактальны.

С точки зрения классической механики, также возникают проблемы в взаимодействии с фракталами. Скорость — это вектор. У вектора должны быть направление и величина. Если мы погоним точку по любой неспрямляемой кривой, то мы увидим, что у ее скорости не будет ни направления, ни величины.

Капуста Романеско Реальность такова: все, с чем мы имеем дело в школе: прямые, параболы, синусоиды, — это лишь красивое исключение из правил, которое в природе встречается крайне редко. Мир состоит из «монстров» - из фракталов и других неспрямляемых кривых. А нам хочется все уметь считать, — продолжает Давид. В этом деле наблюдается прогресс, но еще есть куда стремиться. Сейчас используется следующий метод: мы берем конкретный фрактал и даем ему некую числовую характеристику. Моя научная деятельность та, которую я начал еще в магистратуре непосредственно связана с разработкой одного из типов характеристик этих самых фракталов.

Ведется работа по двум основным направлениям. Первое — это интегрирование. Взятие интегралов по неспрямляемым кривым. Второе: у меня введены конкретные характеристики этих фракталов, они у меня называются «Показатели Марцинкевича» в честь польского математика Йозефа Марцинкевича, а не российского националиста. Эти показатели помогают лучше справляться с некоторыми краевыми задачами. До этого были либо несчитаемые характеристики, либо менее точные.

Есть надежда, что в будущем мы переведем всю математику на рельсы неспрямляемых кривых, и это даст прибавку везде. Это даст нам гораздо большую точность в любых расчетах. В обществе распространено мнение об отдаленности математической науки от реальности, от практики.

Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести.

Что же представляет собой детермини рованный хаос - казалось бы, невозможное объединение двух противоположных понятий? Начнем с простого опыта. Шарик, подвешенный на нитке, отклоняют от вертикали и отпускают. Возникают колебания. Если шарик отклонили немного, то его движение описывается линейными уравнениями.

Если отклонение сделать достаточно большим - уравнения будут уже нелинейными. Что при этом изменится? В первом случае частота колебаний и, соответственно, период не зависит от степени начального отклонения. Во втором - такая зависимость имеет место. Полный аналог механического маятника как колебательной системы - колебательный контур, или "электрический маятник".

В простейшем случае он состоит из катушки индуктивности, конденсатора емкости и резистора сопротивления. Если все три указанных элемента линейны, то колебания в контуре эквивалентны колебаниям линейного маятника. Но если, к примеру, емкость нелинейна, период колебаний будет зависеть от их амплитуды. Динамика колебательного контура определяется двумя переменными, например током в контуре и напряжением на емкости. Если откладывать эти величины вдоль осей Х и Y, то каждому состоянию системы будет соответствовать определенная точка на полученной координатной плоскости.

Такую плоскость называют фазовой. Соответственно, если динамическая система определяется n переменными, то вместо двумерной фазовой плоскости ей можно поставить в соответствие n-мерное фазовое пространство. Теперь начнем воздействовать на наши маятники внешним периодическим сигналом. Реакция линейной и нелинейной систем будет различной. В первом случае постепенно установятся регулярные периодические колебания с той же частотой, что и частота вынуждающего сигнала.

На фазовой плоскости такому движению соответствует замкнутая кривая, называемая аттрактором от английского глагола to attract - притягивать , - множество траекторий, характеризующих установившийся процесс. В случае нелинейного маятника могут возникнуть сложные, непериодические колебания, когда траектория на фазовой плоскости не замкнется за сколь угодно долгое время. При этом поведение детерминирован ной системы будет внешне напоминать совершенно случайный процесс - это и есть явление динамического, или детерминированного, хаоса. Образ хаоса в фазовом пространстве - хаотический аттрактор - имеет очень сложную структуру: это фрактал. В силу необычности свойств его называют также странным аттрактором.

Почему же система, развивающаяся по вполне определенным законам, ведет себя хаотически? Влияние посторонних источников шума, а также квантовая вероятность в данном случае ни при чем. Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. Поясним, что это значит, на примере нелинейного колебательного контура, находящегося под воздействием внешнего периодического сигнала.

Внесем в нашу систему небольшое возмущение - изменим немного начальный заряд конденсатора. Тогда колебания в возмущенном и невозмущенном контурах, первоначально практически синхронные, очень скоро станут совершенно разными. Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно. Предсказание будущего - Из-за такой малости! Из-за бабочки!

Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... И грянул гром Насколько упорядочена наша жизнь? Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени? Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами.

Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни. Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы автобусы, троллейбусы, метро, самолеты, поезда. Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан. Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям.

Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю. Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка". Такая непредсказуемость не вызывает тревоги. К гораздо более драматичным последствиям она может привести при игре в рулетку, однако любители испытывать судьбу сознательно идут на этот риск. Почему одни процессы предсказуемы по своим результатам, а другие нет?

Может быть, нам просто не хватает каких-то начальных данных для хорошего прогноза? Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды. Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее. Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить. Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно.

Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса. Динамические системы можно условно разделить на два типа. У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями. Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет. Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия.

Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе. К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро в масштабе времени, характерном для этой системы приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" 1908 , в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. Предсказание становится невозможным, мы имеем перед собой явление случайное". Таким образом прогнозирование на длительные времена теряет всякий смысл.

Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах. Реконструкция прошлого Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать "предсказать", однозначно истолковать прошлое? Казалось бы, здесь проблем быть не должно.

Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой. Прошлое "не предсказывается"?

Бред какой-то!

Это настолько эффективно, что было взято на вооружение природой! Например, снежинка, ветви деревьев, молнии, горы, кровеносные система — всё это представляет собой фракталы. В математике фрактал — математическое множество, обладающее свойством самоподобия, то есть однородности в различных шкалах измерения любая часть фрактала подобна всему множеству целиком. Физическая энциклопедия 1998 определяет фракталы как множества с крайне нерегулярной разветвленной или изрезанной структурой. Слово «фрактал» употребляется не только в качестве научного термина. В этом отличие фрактала от элементарных геометрических фигур таких как окружность, эллипс или квадрат : если мы рассмотрим небольшой фрагмент такой фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Простым примером фрактала может служить дерево, ствол которого разделен на две ветви, каждая из которых, в свою очередь, разделяется на две более мелкие ветви и т. В результате мы будем иметь древовидный фрактал с бесконечным числом ветвей. Каждую отдельную ветвь можно, в свою очередь, рассматривать как отдельное дерево.

Выделяют несколько разновидностей фракталов: геометрические, алгебраические и стохастические. Примеры фракталов в природе Геометрические фракталы Фракталы этого класса самые наглядные. Некоторые предпочитают называть эти фракталы классическими, детерминированными или линейными. Эти фракталы являются самыми наглядными. Они обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите все тот же узор. В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Рассмотрим один из таких фрактальных объектов — триадную кривую Коха.

Построение кривой начинается с отрезка единичной длины рис. В результате такой замены получается следующее поколение кривой Коха. Для получения 3-го поколения проделываются те же действия — каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. На рис. При n стремящемся к бесконечности кривая Коха становится фрактальным объектом.

Фракталы в Природе

  • Математика в природе: самые красивые закономерности в окружающем мире
  • Фрактал. 5 вопросов
  • Историческое развитие фрактального фермента
  • Новый покупатель
  • Фракталы — потрясающая красота математики в природе
  • Когда открыли фракталы?

Феномен жизни во фрактальной Вселенной

фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов. Фото подборка встречающихся в природе или искусственно созданных фракталов. неупо-рядоченные системы, для которых самоподобие выполняется только в среднем. Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. О природе ков Виталий7 (Высоцкий В С.). чудо природы, с которым я предлагаю вам познакомиться.

Феномен жизни во фрактальной Вселенной

Это и есть визуальное воплощение самоподобия: Изображение: Лев Сергеев для Skillbox Media Снежинка Коха aka кривая Коха Изображение: Лев Сергеев для Skillbox Media Шведский математик Хельге Фон Кох в 1904 году описал кривую, воспользовавшись треугольником и методом самоподобия, в результате чего получилась фрактальная снежинка. Ниже показаны четыре итерации построения такой фигуры. Слева изображены исходные кривые, а справа — получившаяся из этих кривых снежинка. Нетрудно заметить, что в снежинки идеально вписывается как равносторонний треугольник, так и сама кривая: Изображение: Лев Сергеев для Skillbox Media На какой бы итерации мы ни увеличили масштаб изображения, мы всегда сможем увидеть знакомый паттерн, как и с множеством Кантора.

Посчитать периметр такой снежинки невозможно, потому что она может разрастаться всё дальше и дальше… Это ещё одно свойство фракталов — бесконечность. Ковёр, треугольник и кривая Серпинского Изображение: Лев Сергеев для Skillbox Media Польский математик Вацлав Серпинский брал за основу фрактала не только кривую, но и квадрат с треугольником. Для начала рассмотрим, как «размножается» кривая Серпинского.

При каждой итерации количество её копий увеличивается в четыре раза, а рисунок становится сложнее: Изображение: Лев Сергеев для Skillbox Media Треугольник же на каждом шаге дробится на три равные части: Изображение: Лев Сергеев для Skillbox Media Квадрат, или ковёр, Серпинского получается так же, как и треугольник, но исходная фигура делится на восемь квадратов. Ковёр Серпинского в трёхмерном пространстве превратится в кубический многогранник. По такому же принципу можно смоделировать и трёхмерный треугольник Серпинского.

В её основе лежит знаменитая теорема Пифагора, согласно которой сумма квадратов катетов равна квадрату гипотенузы. Полученный геометрический фрактал напоминает дерево, поэтому его и назвали деревом Пифагора. Изображение: Лев Сергеев для Skillbox Media Знакомым с алгоритмами читателям дерево Пифагора может напомнить другое, бинарное дерево.

В целом, бинарный поиск напоминает принцип Кантора, где на каждой итерации получается вдвое больше разветвлений отрезков. Всё это — ещё одна иллюстрация самоподобия, о котором мы говорили ранее. Алгебраические фракталы Алгебраические фракталы, в отличие от геометрических, основываются на формуле, а не на фигурах, но также рекурсивно итерируются.

Выглядят они ещё более причудливо, чем те, что мы рассмотрели выше. Остановимся на комплексных числах. Вы наверняка знаете, что извлекать квадратный корень из отрицательных чисел нельзя — это следует из того, что любое отрицательное число в квадрате является положительным.

Логика железная и справедливая, но лишь для действительных чисел. Вот здесь-то и ломается привычная арифметика.

Уравнение заново решается. Множественное повторение решений одного и того же уравнения. Если при решении мы видим, что значение Z сильно увеличивается стремится к бесконечности , значит изначальное число не подходит. Если же Z колеблется в пределах одного значения, значит выбранное число входит в множество. Далее полученные значения отмечают на плоскости. Уравнение решается огромное количество раз и в итоге получается графическое изображение множества Мандельброта его мы видели выше. До 1975 года, фракталы встречались в истории время от времени, но после работы Бенуа Мандельброта, изучение фракталов начало приобретать массовый характер, все больше интегрируясь в мир. Изучение фракталов вызвало новый виток в изучении разных сфер жизни: в компьютерной графике, в передаче данных, в радиотехнике, в производстве, в работе мозга, в движениях человека, в росте живых существ и многом другом.

Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле. Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности.

От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный. С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы».

Речь идет об эксперименте, который поставил Льюис Ричардсон Lewis Fry Richardson — весьма талантливый и эксцентричный математик, физик и метеоролог.

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и т. Именно с их помощью современная кинемотография стала столь красочной и приблизилась к естественно-природному изображению. Фракталы нашли свое применение в медицине, поскольку после многократных исследований было замечено, что у здорового человека линии электрокардиограммы сердца и головного мозга представляют собой правильную фрактальную фигуру, а у больного - неправильную, заметную лишь при многократном увеличении. В ходе работы было: - проанализировано построение фрактальных фигур различных типов; - исследовано, что данные способы отличаются простотой практического применения в любой программной среде; - выявлено огромное практическое применение фракталов в современном мире. Данная работа может быть использована учащимися начальных курсов для самостоятельного изучения фракталов, компьютерной графики.

Современные исследователи должны не только овладевать материалом даваемых им программ, но и расширять свой кругозор, а главное - находить практическое применение своим навыкам и умениям. Вы всегда можете отключить рекламу.

Похожие новости:

Оцените статью
Добавить комментарий