Способность атомов принимать электроны уменьшается в ряду: 1) Ca-As-Br; 2) Mg-Al-C; 3) F-Br-I; 4) S-Se-O. Васян Коваль. способность атомов принимать электроны уменьшается в ряду: 1)F,O,N 2)Si,P,S 3)Ge,Si,C 4)I,Br, Cl ь окисления азота в соединении NaNo2 1) 5; 2) 3; 3)-3 ; 4)-5 общих электронных пар в молекуле кислорода: 1)три. Неметалличность — это способность атомов элементов принимать электроны. 1) способность атома принимать электроны.
Периодичность изменения свойств атомов
Найдите правильный ответ на вопрос«Способность атомов принимать электроны уменьшается в ряду: A. F-C1-Вr-I. Найдите правильный ответ на вопрос«Способность атомов принимать электроны уменьшается в ряду: A. F-C1-Вr-I. Способность атомов принимать электроны увеличивается в ряду: а)Se-Te-O-S. В ряду химических элементов As-P-N 1. увеличивается число электронов в атоме 2. уменьшаются заряды ядер атомов 3. уменьшается способность атомов принимать электроны 4. Уменьшаются радиусы атомов 5. уменьшается число электронов во внешнем.
Электроотрицательность атомов уменьшается в ряду элементов
Ответ дан Aminaalar. Способность атомов принимать электроны уменьшается в А.F-O-N-C. Способность атомов принимать электроны уменьшается в ряду: A. F—О—N—С. Свойство принимать электроны,ять окислительные характеристики,отличительны и нужно отыскать ряд,в котором слабнут неметаллические будет вариант А: FОNС. Электроотрицательность показывает способность элементов отдавать или принимать электроны. 4. Уменьшаются радиусы атомов.
Подготовка к ЕГЭ по химии. Примеры и решение заданий А2.
А нам нужно чтобы уменьшалась. По тому же принципу проверяем остальные ряды Mg-Al-C растёт. S-Se-O - сначала падает от S до Se но потом растёт, так как кислород более электроотрицателен.
А именно: В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.
В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы. У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп литий, бериллий, натрий и др.
У p-элементов электронами заполняются p-орбитали. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.
Из строения атомов и электронных оболочек вытекают следующие закономерности: Номер периода соответствует числу заполняемых энергетических уровней. Номер группы, как правило, соответствует числу валентных электронов в атоме то есть электроном, способных к образованию химической связи. Номер группы, как правило, соответствует высшей положительной степени окисления атома.
Но есть исключения! О каких же еще свойствах говорится в Периодическом законе? Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.
Радиус атома Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус — понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов.
Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке.
Характеризует окисли-тельные неметаллические свойства атомов. Как и энергия ионизации, обычно выражается в электронвольтах. Наибольшее сродство к электрону - у галогенов, наименьшее - у щелочных металлов. У остальных элементов в таблице Менделеева окислительная способность нейтральных атомов повышается слева направо и снизу вверх.
Электроотрицательность ЭО понятие, позволяющее оценить способность атома оттягивать на себя электронную плотность при образовании химического соединения. Это обстоятельство до некоторой степени определяет диагональное сродство элементов. Для характеристики состояния элементов в соединениях введено понятие степени окисления. Под степенью окисления понимают условный заряд атома элемента в соединении, вычисленный из предположения, что соединение состоит из ионов и валентные электроны оттянуты к наиболее электроотрицательному атому. Иначе говоря, степень окисления показывает, сколько своих электронов атом отдал положительная , либо притянул к себе чужих отрицательная.
Пример Напишите электронную конфигурацию атома фосфора и составьте орбитальную диаграмму его валентного уровня.
SO2, H2, N2O. H2, O2, NH3. Ион SiO32- можно обнаружить с помощью раствора, содержащего катион: А. Составьте формулы водородных соединений химических элементов — неметаллов: азота, иода, кислорода. Укажите соединение с наиболее ярко выраженными кислотными свойствами.
Составьте характеристику вещества, формула которого СО2, по плану: 1 качественный состав; 3 степень окисления каждого элемента; 4 относительная молекулярная и молярная масса; 5 массовая доля каждого элемента; 6 отношение масс элементов; 7 название. Запишите названия аллотропных модификаций серы.
Электроотрицательность. Степень окисления и валентность химических элементов
К примеру, определим степени окисления элементов в фосфорной кислоте H3PO4. Найдем и проставим известные степени окисления у водорода и кислорода, а СО фосфора примем за «х». Рассчитаем степени окисления у элементов в нитрате алюминия Al NO3 3. Проставим известные СО элементов — алюминий и кислород, у азота примем СО за «x». Валентные возможности атомов Валентность - это способность атома присоединять ряд других атомов для образования химической связи. Валентность может быть определена числом химических связей, образующих атом, или числом неспаренных электронов. Может быть постоянной или переменной.
Для определения валентности применяются определенные правила: У металлов главных подгрупп валентность всегда постоянная и определяется по номеру группы. У металлов побочных подгрупп и неметаллов валентность переменная. Валентные возможности атомов могут определяться: Количеством неспаренных электронов; Наличием неподеленных пар электронов. Валентные возможности водорода Валентные возможности водорода определяются одним неспаренным электроном на единственной орбитали. Водород обладает слабой способностью отдавать или принимать электроны, поэтому для него характерны в основном ковалентные химические связи. Ионные связи он может создавать с металлами, образуя гидриды.
Ковалентные химические связи образуются за счет общих электронных пар. Поскольку у водорода всего один электрон, он способен образовывать только одну связь. По этой причине для него характерна валентность равная I.
Способность атомов отдавать валентные электроны Чем больше радиус атома, тем слабее удерживаются его внешние электроны. Поэтому способность отдавать электроны усиливается в группах сверху вниз.
В малых периодах с увеличением зарядов ядер радиус атомов уменьшается, а число электронов на внешнем уровне увеличивается. Они всё сильнее притягиваются к ядру и труднее отрываются от атома. Легче всего отрываются электроны от атомов щелочного металла франция.
Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома. В главных подгруппах сверху вниз увеличивается орбитальный радиус. В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов.
Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов. В периодах слева направо орбитальный радиус атомов уменьшается. Выберите три элемента, которые в Периодической системе находятся в одной группе, и расположите эти элементы в порядке увеличения радиуса атома 1 O 2 Se 3 F 4 S 5 Na Решение: В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S. В группе снизу вверх атомный радиус уменьшается, а сверху вниз — увеличивается. Следовательно, правильный ответ: O, S, Se или 142. Ответ: 142 Свернуть Пример. Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома 1 K 2 Li 3 F 4 B 5 Na Решение: В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.
В периоде слева направо атомный радиус уменьшается, а справа налево — увеличивается. Следовательно, правильный ответ: Li, B, F или 243. Ответ: 243 Свернуть Пример. Из указанных в ряду химических элементов выберите три р-элемента. Расположите выбранные элементы в порядке уменьшения радиуса их атомов. В группе — сверху вниз увеличивается.
Вообще, атомный радиус — понятие довольно сложное и неоднозначное.
Различают радиусы атомов металлов и ковалентные радиусы неметаллов. Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств. Мы говорим про орбитальный радиус изолированного атома. Орбитальный радиус — это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов. Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами. Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.
Например, в ряду атомов: F — Cl — Br — I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается. Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы. Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру. Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно: Чем больше заряд ядра атома при одинаковом количестве заполняемых энергетических уровней , тем меньше атомный радиус. Например, в ряду Li — Be — B — C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается. В группах сверху вниз увеличивается число энергетических уровней у атомов.
Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома. В главных подгруппах сверху вниз увеличивается орбитальный радиус.
Закономерности изменения свойств элементов и их соединений по периодам и группам
Тестовые задания с выбором ответа 1. Иону N3- соответствует электронная формула: A. ЭО2 и ЭН4. ЭО3 и Н2Э. Схеме превращения S -2? Li, H2, О2. Mg, HC1, О2.
Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах.
Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык.
А нам нужно чтобы уменьшалась. По тому же принципу проверяем остальные ряды Mg-Al-C растёт. S-Se-O - сначала падает от S до Se но потом растёт, так как кислород более электроотрицателен.
Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома. В главных подгруппах сверху вниз увеличивается орбитальный радиус. В периодах же число энергетических уровней не изменяется.
Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов. В периодах слева направо орбитальный радиус атомов уменьшается. Выберите три элемента, которые в Периодической системе находятся в одной группе, и расположите эти элементы в порядке увеличения радиуса атома 1 O 2 Se 3 F 4 S 5 Na Решение: В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S. В группе снизу вверх атомный радиус уменьшается, а сверху вниз — увеличивается. Следовательно, правильный ответ: O, S, Se или 142. Ответ: 142 Свернуть Пример.
Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома 1 K 2 Li 3 F 4 B 5 Na Решение: В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na. В периоде слева направо атомный радиус уменьшается, а справа налево — увеличивается. Следовательно, правильный ответ: Li, B, F или 243. Ответ: 243 Свернуть Пример. Из указанных в ряду химических элементов выберите три р-элемента. Расположите выбранные элементы в порядке уменьшения радиуса их атомов. В группе — сверху вниз увеличивается.
Остались вопросы?
Валентные возможности азота У азота на валентном энергетическом уровне находится 5электронов: 3 неспаренных и 2 спаренных. Исходя из этого, валентность азота может быть равна III. В возбужденное состоянии атом азота не может переходить. Однако азот может выступать в качестве донора при образовании ковалентных химических связей, обеспечивая своей электронной паре атом, имеющий свободную орбиталь. В этом случае валентность у азота будет равна IV, причем для азота, как элемента пятой группы, это максимальная валентность. Валентность V он проявлять не способен. Валентные возможности фосфора В отличие от азота, фосфор имеет свободные 3d-орбитали, на которые могут переходить электроны. На внешнем энергетическом уровне находятся 3 неспаренных электрона.
Атом фосфора способен переходить из основного состояния в возбужденное. Электроны с p-подуровня переходят на d-подуровень. В этом случае атом Р приобретает валентность, равную V. Таким образом, строение электронной оболочки атома увеличивает валентные возможности Р, по сравнению с азотом, от I до V. Валентные возможности кислорода На последнем энергетическом уровне у кислорода 2 неспаренных электрона. В соединениях чаще всего проявляет валентность II. У кислорода нет d-подуровня, поэтому переход электронов невозможен.
Поэтому на валентном энергетическом уровне у серы 2 неспаренных электрона.
Один электрон с s-подуровня переходит на p-подуровень, где есть свободная орбиталь. Атом С способен присоединять и отдавать электроны с образованием ковалентных связей.
Валентные возможности азота У азота на валентном энергетическом уровне находится 5электронов: 3 неспаренных и 2 спаренных. Исходя из этого, валентность азота может быть равна III. В возбужденное состоянии атом азота не может переходить.
Однако азот может выступать в качестве донора при образовании ковалентных химических связей, обеспечивая своей электронной паре атом, имеющий свободную орбиталь. В этом случае валентность у азота будет равна IV, причем для азота, как элемента пятой группы, это максимальная валентность. Валентность V он проявлять не способен.
Валентные возможности фосфора В отличие от азота, фосфор имеет свободные 3d-орбитали, на которые могут переходить электроны. На внешнем энергетическом уровне находятся 3 неспаренных электрона. Атом фосфора способен переходить из основного состояния в возбужденное.
Электроны с p-подуровня переходят на d-подуровень. В этом случае атом Р приобретает валентность, равную V. Таким образом, строение электронной оболочки атома увеличивает валентные возможности Р, по сравнению с азотом, от I до V.
Валентные возможности кислорода На последнем энергетическом уровне у кислорода 2 неспаренных электрона. В соединениях чаще всего проявляет валентность II.
Правда, этот электрон испытывает отталкивание со стороны электронов атома. Для многих атомов энергия притяжения дополнительного электрона к ядру превышает энергию его отталкивания от электронных оболочек. Эти атомы могут присоединять электрон, образуя устойчивый однозарядный анион. При присоединении двух и более электронов к атому отталкивание преобладает над притяжением — сродство атома к двум и более электронам всегда отрицательно.
По положению можно определить строение атома и высшую валентность химического элемента. Рассмотрим изменение свойств атомов элементов и образованных ими веществ по периодам и группам периодической системы. Обратим внимание на восьмую А группу периодической системы — инертные газы. Вещества, соответствующие этим химическим элементам, открыли в конце XIX века. Они получили своё название за низкую химиче-скую активность.
Как изменяются восстановительные свойства в таблице менделеева?
В периодах с увеличением заряда ядра атома элемента увеличивается количество электронов внешнего энергетического уровня, вследствие чего атомный радиус атома уменьшается, усиливается неметалличность — способность принимать электроны. Способность атомов принимать электроны уменьшается в ряду1) Cs-As-Br2). 3. Способность принимать электроны уменьшается в ряду. Как уменьшить индуктивность катушки с железным сердечником при условии, что габариты обмотки (ее длина и поперечное сечение) останутся неизменными? Увеличение атомного радиуса ослабляет возможность атома удерживать электроны.