Команда российских исследователей создала уникальный материал, способный заживлять раны человека и ускорять его выздоровление. Он сделан на основе «искусственной паутины». Это совместная разработка НИЦ «Курчатовский институт», МГУ имени М. В. Ломоносова. Основной материал паутины — это два вида белков: более прочный спидроин I и более упругий спидроин II. Из чего состоит паутина и какими свойствами она обладает?
Началось массовое производство паутины в промышленности
Из чего состоит паутина и какими свойствами она обладает? Исследователи разработали ионную паутину, которая может захватывать объекты в 68 раз тяжелее собственной массы и самоочищаться. Паутина, или паучий шелк – это один из изумляющих примеров материалов, создаваемых природой и проявляющих исключительные физические свойства.
Откуда пауки берут паутину?
Ученые отметили, что в химическом составе паутины есть глобулярные клубочки, которые богаты аминокислотами. Это вещество помогает паутине противостоять действию грибков и бактерий. О том, из чего состоит (сделана) паутина, а также какова толщина, прочность и состав нити. Из школьного курса биологии известно, что пауки обладают уникальной способностью делать очень прочную паутину.
Из Википедии — свободной энциклопедии
- Из чего сделана паутина?
- Из чего сделана паутина?. Все обо всем. Том 1
- Исследователи раскрыли тайну паутины: Новости химии @
- Ученые выяснили, что делает паутину такой крепкой - новости экологии на ECOportal
- Читайте также
Биологи определили молекулярную структуру паутины
Как сообщает журнал International Immunopharmacology, долгое… Тема дня Среди противников России на Западе очередной раскол, на сей раз по живому. К тем, кто не хочет допус... Фото Командой специалистов из британского Института Фрэнсиса Крика и датского Ольборгского университета п...
И ловит ветерок.
Малейшее шевеление ветра даже от нагретой земли относит паутинку к соседней «опоре», за которую та и цепляется. Надо сказать, пауки — весьма экономные создания. Оказавшуюся ненужной поврежденную или старую паутину они съедают, пуская «вторсырье» на второй круг использования.
А старой она становится довольно быстро, так как паук плетет паутину зачастую каждый день. Немаловажно наличие специальных чесальных и прядильных инструментов: гребенчатые коготки и ряды щетинок на ногах для расчесывания паутины. Задавая вопрос, зачем пауку паутина, мне все без исключения давали один и тот же ответ: для охоты.
Да, безусловно, из паутины пауки делают ловчие сети для «охоты» на насекомых. Но этим вовсе не исчерпываются ее функции. Дополнительно она применяется для утепления норок перед зимовкой, защищая их от холода и влаги; для создания коконов, в которых созревает потомство; для защиты от дождя — из нее пауки делают своего рода навесы, предотвращающие попадание воды в «домик»; для путешествий.
Некоторые пауки переселяются сами и выпроваживают из лона семьи детей на длинных паутинках, уносимых ветром как на парашюте. Образование строительного материала. Разные железы образуют несколько типов паутины: сухая и толстая — для передвижения, шелковистая и мягкая — для плетения кокона, тонкая и клейкая — для ловчей спирали.
Четвертичная структура белка при выталкивании из протока изменяется таким образом, что в результате формируются нити. Из нитевидных образований в последствие получаются волокна, прочность которых в 4-10 раз больше прочности человеческого волоса. В 1,5-6 раз прочнее стальных сплавов.
В состав жидкости содержится большая концентрация белка, содержащая следующие аминокислоты: глицин, аланин, сирин. Интересные факты: если нить не зацепляется за ветку, то паук подтягивает её и съедает, чтобы продукт не пропадал. По химическому составу и физическим свойствам паутина близка к шелку тутовых шелкопрядов и гусениц, только она гораздо прочнее и эластичнее: если нагрузка разрыва для гусеничного шелка составляет 33-43 кг на 1 мм2, то для паутины - от 40 до 261 кг на мм2 в зависимости от вида!
Чаще всего мы видим многоугольные сети иногда они бывают почти круглыми. Плетение от пауков требует невероятной сноровки и терпения. Сидя на верхней ветке, они формируют нить которая зависает в воздухе.
Если повезёт то, нитка быстро зацепится за ветку в подходящем месте и паук, переместится на новую точку для дальнейшей работы. Ветер- лучший помощник паука в строительстве. Достав тонкую нить из бородавок, паук подставляет её под воздушный поток, который относит застывший шёлк на значительное расстояние.
Паутинка легко зацепляется к веткам деревьев, используя её в качестве каната, паук передвигается с места на место. В структуре паутины прослеживается определённая схема. Её основу составляет каркас из прочных и толстых нитей, расположенных в виде лучей, расходящихся из одной точки.
Начиная с внешней части, паук создает круги, постепенно двигаясь к центру. Между каждым кругом без всяких приспособлений паук выдерживает одинаковое расстояние. Сложность рисунка паутины зависит от вида паукообразных.
Многие пауки плетут паутину ежедневно. Сравнение паутины Существует два типа паутины: плоская и объемная. Первая представляет собой самый распространенный тип с наименьшим количеством нитей, что делает ее малозаметной и не слишком упругой.
Объемная же паутина отличается большей запутанностью нитей, благодаря чему она получается невероятно прочной, но и в то же время очень заметной для насекомых. Виды паутинок. Интересно не только то, как паук плетет паутину, но и то, что он умудряется вырабатывать ее разных «сортов».
Грубо говоря, их можно разделить на три типа: крепкие — производятся только тенетниками и ложатся в основу ловчих сетей. Из них делаются перемычки все в тех же сетях, и приклеиваются при малейшем прикосновении, причем так, что снять их весьма затруднительно. Из них пауки творят коконы и «дверки» для норок.
Причем они еще бывают и нескольких видов, поскольку вырабатываются разной степени мягкости и пушистости. Учеными выделяется и еще один вид паутины, которая отзеркаливает ультрафиолет, подманивая бабочек. Формы паутин.
Изучив научную литературу, я узнала, что каждая паутина неповторима, и зависит от вида паука. Например, воронковые пауки, придают своей ловчей сети форму конуса. Он плетет большую воронку в стеблях высокой травы, между камней или бревен, а сам прячется на ее дне.
Другие пауки сплетают огромные бесформенные полотнища. Нитей-липучек в них нет, но есть нити — подножки, заставляющие насекомое потерять равновесие и затем запутаться в сети. Именно такую сеть плету домовые пауки.
И уже провели эксперименты в лабораторных условиях - нанесли на материал три самых распространённых патогена: кишечную палочку, стафилококк и грибок Candida. После взаимодействия с ними новый материал перестал светиться в синем спектре. Новую разработку планируют пустить в производство. Хирургические нити из этого материала помогут врачам оперативно выявлять появление патогенов на месте раны и вовремя останавливать развитие послеоперационной инфекции.
Однако «приручить» пауков, как тутовых шелкопрядов, организовать своеобразные паучьи фермы вряд ли возможно: агрессивные привычки пауков и черты единоличника в их характере вряд ли позволят это сделать. А для производства всего 1 м ткани из паутины требуется «работа» более 400 пауков. Можно ли воспроизвести химические процессы, проходящие в теле пауков, и скопировать природный материал? Ученые и инженеры уже довольно давно разработали технологию кевлара — арамидного волокна: получаемого в промышленных масштабах и приближающегося по свойствам к паутине. Волокна из кевлара в пять раз слабее паутины, но все же настолько прочны, что их используют для изготовления легких пуленепробиваемых жилетов, защитных шлемов, перчаток, канатов и др. Но кевлар получают в среде горячих растворов серной кислоты, в то время как пауку требуется обычная температура. Химики пока не знают, как приблизиться к таким условиям. Однако к решению материаловедческой проблемы приблизились биохимики. Сначала были выявлены и расшифрованы паучьи гены, программирующие образование нитей того или иного строения. Сегодня это касается пауков 14 видов. Затем американские специалисты из нескольких исследовательских центров каждая группа самостоятельно ввели эти гены бактериям, пытаясь получить нужные белки в растворе. Ученые канадской биотехнологической фирмы «Нексиа» ввели такие гены мышам, затем перешли на коз, и козы стали давать молоко с тем самым белком, который образует нить паутины. Летом 1999 г. Эта порода хороша тем, что потомство становится взрослым уже в трехмесячном возрасте. Фирма пока хранит молчание, как делать нити из молока, но уже зарегистрировала название созданного ею нового материала — «BioSteel» «биосталь».
Паутина пауков: образование, состав, физические свойства
Кесслер поясняет, что С-концевые домены образуют димеры за счет дисульфидных мостиков. Для выяснения особенностей расплетения карбоксильных фрагментов исследователи изучили строение этих доменов в растворе методом ядерного магнитного резонанса. Было обнаружено, что при переносе белков из раствора хлорида натрия в раствор его фосфата такое изменение среды происходит при переходе спидроина из паутинной железы в прядильную трубочку в белке разрушается два солевых мостика, что позволяет молекулам спидроина изменить взаимное расположение и образовать волокна. Кесслер добавляет, что изменение конформации и расплетение белка происходит также и под воздействием напряжения сдвига, которому подвергается спидроин при прохождении через прядильную трубочку. Другие процессы протекают с другого конца белковой цепи. Исследователи из группы Найта и Йоханссона обнаружил, что ключевым фактором, управляющим агрегацией N-концевого домена спидроина, является понижение уровня рН в прядильном аппарате паука.
По мнению ученых, именно PPII helix подвергается внутримолекулярным взаимодействиям, из-за которых паутина моментально становится прочной. Это открытие поможет в создании крепких материалов, которые пригодятся в промышленности и медицине. Среди этих инструментов были: спектроскопия ядерного магнитного резонанса, спектроскопия дальнего ультрафиолетового кругового дихроизма и спектроскопия вибрационного кругового дихроизма. Я очень рада, что нам удалось отыскать эту специальную конформацию».
Если на паутину поставить блок песка или гравия, то он не упадёт. Текстура паутины появилась ещё в ранних версиях Survival Test , но не использовалась до Beta 1. Паутина не останавливает и не замедляет стрелу. Прочность паутины такая же, как и у блока камня. Паутина может использоваться для замедления противника. При нахождении игрока в паутине как и в воде время разрушения им блоков увеличивается.
Результаты исследования опубликованы в Journal of the Royal Society Interface и на сайте университета Киля. Группа изучила, как пять видов пауков прикрепляли свои нити к трем различным поверхностям: стеклу, тефлону и листьям белого клена. И заметили, что для каждой поверхности пауки использовали так называемые диски крепления, структура которых сильно зависела от того, к какой поверхности они прикрепляются. Так, их крепления было практически невозможно отделить от стекла.
Новости отрасли
Группа исследователей полагает, что металлы взаимодействуют с белковой структурой паутины, образуя прочные ковалентные поперечные связи между аминокислотными полимерами внутри шёлка. Обычно эти полимеры соединяются только более слабыми водородными связями. Паутина не является практичным техническим материалом, но материалы, которые пытаются разработать учёные, представляют собой искусственные волокна, которые имитируют её свойства. Если им это удастся, результатом могут стать сверхпрочные ткани.
В подходящих условиях паутинка может выдержать натяжение, в несколько раз большее, чем максимальное натяжение стальной нити того же диаметра, будучи при том в несколько раз легче. Например, паутинка толщиной в 1 мм должна, по идее, удерживать человека; как тут не порадоваться, что пауки не плетут такой паутины. Эластичность, прочность и лёгкость паутины заставляют многих инженеров мечтать о создании подобного ей синтетического материала — или хотя бы научиться производить натуральную паутину в промышленных масштабах. Более того, такие опыты уже проводятся: выведены козы, в ДНК которых есть гены паучьей паутины, а в молоке оказывается большое количество таких белков — правда, в не сплетённой в нить форме. Теперь группа немецких физиков и химиков из Института физики микроструктур имени Макса Планка показала, что паутину можно сделать ещё крепче и эластичнее. Особая обработка превращает натуральную паутину в супернить, которая прочнее в 5 раз и «растяжимее» втрое.
Супернить толщиной в 1 мм сможет выдержать вес более 500 кг, она растягивается в полтора-два раза и обладает почти той же плотностью. Паутинку учёные добыли при помощи паука рода Araneus, наматывая её на медную скрепку.
Обычно, когда мы облучаем наш материал синим светом, он становится красным. Но после взаимодействия с патогенами материал перестает светиться. Таким образом врачи смогут проверять, как проходит заживление ран после операции», — объяснила ведущий автор исследования Елизавета Мальцева.
Например, мандибула муравья-листореза и саранчи содержит цинк, а некоторые морские черви имеют медь в протеиновой матрице, которая составляет их челюсти. Галле, Германия, направляли лучи ионизированных соединений металла на шёлковые нити паука-кругопряда Araneus diatematus с помощью технологии атомно-слоевой эпитаксии ALD. Каждое шёлковое волокно покрывалось тонким слоем оксида металла, некоторые ионы металла проникали сквозь волокно. Учёные пробовали цинк, алюминий и соединения титана, каждый из которых улучшил механические свойства шёлка.
Началось массовое производство паутины в промышленности
Паутина удивительно прочна — только недавно люди научились делать нити, прочностью превышающие паутину. Основной материал паутины — это два вида белков: более прочный спидроин I и более упругий спидроин II. Самцы пауков-крестовиков ловко присоединяют свои горизонтальные паутины к радиально расположенным нитям ловчих сетей, сделанных самками. По прочности паутина близка к нейлону и значительно прочнее сходного с ней по составу секрета насекомых (например, гусениц тутового шелкопряда). Пауки плетут паутину, в которую попадают насекомые и которым выбраться из нее практически невозможно. Генетики выяснили, из чего состоит секрет паутины пауков Caerostris darwini, считающейся самой прочной.