На примерах показано, что дроби нужны не только в математике, но и в повседневной жизни. Презентация разработана учителями математики: Садиковой Н.А.(ГБОУ СОШ № 420). онлайн презентация доступная к бесплатному просмотру в количестве 23 слайда.
Веселые дроби картинки (40 фото)
6. ДРОБИ В ДРЕВНЕМ РИМЕ У древних римлян система дробей основывалась на делении на 12 долей единицы. Презентация разработана учителями математики: Садиковой Н.А.(ГБОУ СОШ № 420). Продукт: Исследование с обзором практического применения обыкновенных дробей, презентация с примерами, методические рекомендации по работе с дробями, видеоуроки. Официальная демоверсия проверочной работы по математике для 5 класса. ВПР в 2024 году будут проводиться по образцам и описаниям контрольных измерительных материалов 2023 года. ВСЁ по обыкновенным дробям. 9.9.17 Сложение и вычитание смешанных чисел ЧТОБЫ СЛОЖИТЬ (или вычесть) СМЕШАННЫЕ ЧИСЛА, НАДО: ПРИВЕСТИ ДРОБНЫЕ ЧАСТИ ЭТИХ.
Действия с десятичными дробями 5 класс презентация
Посмотрите больше идей на темы «дроби, математика, 5 класс». Технология создания презентации «Игра – лабиринт для 5 класса по теме “Сложение и вычитание десятичных дробей”». Презентация)Барабанная дробь в дверь застала Винни Пуха в момент попытки попить чая с медом, последним делиться как-то не хотелось ни с кем. Если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Сформировать понятие доли, обыкновенная дробь, числитель, знаменатель обыкновенной дроби, действия с дробями, применять знания о них в повседневных жизненны. В докладе вы узнаете о том как получить равенство и как связать между собой данные равенства. В презентации расположены примеры действий над дробями.
Презентация "Что мы знаем о дробях"
Публикую презентацию для 6 класса (урок № 2) по теме "Повторение. Обыкновенные дроби". Презентация «Основные понятия дроби» рассказывает о самых важных определениях дроби, учит находить значения и область допустимых значений для дроби. Презентация подготовлена для повторения и обобщения по теме: "Действия с десятичными дробями".
Понятие обыкновенной дроби. Видеоурок 20. Математика 5 класс
В докладе вы узнаете о том как получить равенство и как связать между собой данные равенства. В презентации расположены примеры действий над дробями. Данная презентация подходит для проведения открытого урока в 5-6 классах для обобщения повторения темы Арифметические действия с дробями. Картинки дроби для презентации. Читайте также: Рисунки на ногтях фломастером. Циклоп рисунок с подписями. Презентация рисование 3 класс.
Презентация к уроку "Понятие о дроби. Обыкновенная дробь"
Для получения более точных результатов меры стали делить на части, что привело к появлению дробей. Первыми в практике людей появились самые простые дроби , , и т. Лишь значительно позже греки, а затем индусы стали использовать в вычислениях и другие дроби. Слайд 3 Описание слайда: Запись дробей с помощью числителя и знаменателя Запись дробей с помощью числителя и знаменателя появилась в Древней Греции, только греки знаменатель записывали сверху, а числитель — снизу. В привычном для нас виде дроби впервые стали записываться в Древней Индии около 1500 лет назад, но при этом индусы обходились без черты между числителем и знаменателем.
Слайд 12 Записывать дроби как сейчас стали арабы. Средневековые арабы пользовались системами записи дробей, на индийский манер записывая знаменатель под числителем; дробная черта появилась в конце XII — начале XIII в.
Применялись дроби со знаменателями, не превышающими 10 только для таких дробей арабский язык имеет специальные термины ; часто использовались приближенные значения; арабские ученые работали над усовершенствованием этого исчисления. Арабские ученые, как и греки, применяли алфавитную запись, распространив ее и на целые части. Вертикальная черточка обозначала одну единицу, а угол из двух лежащих черточек — десять. Эти черточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. В древнем Вавилоне предпочитали постоянный знаменатель, равный 60-ти.
Познавательная деятельность, как правило, основывается на предположениях, предвидении результата, которые требуют теоретического обоснования или проверки на практике. Требования, предъявляемые к современному уроку математики, основываются на системно-деятельностном подходе. Урок изучения нового материала в 5 классе, разбиваю на четыре основным стадияи: вызова, осмысления, закрепления и рефлексии.
Все эти стадии соответствуют основным стадиям критического мышления, которое предполагает изучение явления с разных сторон, с учетом разных подходов, выявления противоречий, поиск рационального пути их преодоления за счет взвешенного анализа различных аргументов, их обоснования [Бутенко, 2002 ]. На каждой стадии предполагается блок заданий, которые учащиеся выполняют самостоятельно или в парах, а учитель выступает лишь в роли тьютора.
Скорее всего здесь учитывалось основание 60, которое кратно 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты. Слайд 15 Вавилонская математика оказала влияние на греческую математику. Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 мин. Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическими дробями.
В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными.
Презентация по теме: "Десятичные дроби. Устный счет."
Основная часть урока строится на базе решения задач!!! В рамках решения дети учатся "обращаться за помощью" к теоретическому материалу на зеленых слайдах. Теория вместе с практикой, сразу. Берите в работу! Любые вопросы по проведению урока можете оставить в комментариях.
Помните, как было в детском мультфильме: «Мы делили апельсин, Много нас, а он один… Приведите свой жизненный пример деления одного целого предмета на части. Интересно, а в древности знали про дроби? Слайд 3 Слайд 4 Описание слайда: Даже Пифагор, который трепетно Даже Пифагор, который трепетно относился к натуральным числам, создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Слайд 5 Описание слайда: Хочу всё знать и уметь — А как половину записать цифрами?
Возьмите полоску бумаги.
Материал изучается при рассмотрении простых чисел. Увидеть наглядность, помогающую определить ряд простых чисел,... Этот материал весьма актуален. Его знание пригодится в дальнейшем практически на каждом уроке.
С какой скоростью мне нужно ехать, чтобы прибыть в фирму до её закрытия закрывается в 18 ч? Хватит ли мне оставшегося провода, чтобы заменить проводку в комнате размером 3х4 замену нужно произвести по двум смежным стенам? В матче третьего тура группы В олимпийского мужского турнира по хоккею сборная России взяла верх над командой Чехии со счетом 4:2 Сколько всего шайб во время матча было забито в ворота? Какую часть шайб забили Россияне? Какую часть шайб забили чехи?
На работу ему отвели 30 дней. Успеет ли писатель выполнить задание в срок? Вчера доктор получил вызов и посетил 6 больных.
Понятие обыкновенной дроби. Видеоурок 20. Математика 5 класс
При этом два стакана — это литра. Если по рецепту требуется 5 стаканов молока, то это уже литра. Но, очевидно, это равно целому литру. По рецепту может потребоваться, например, 6 стаканов, литра.
Уже дележ добычи, состоявший из нескольких убитых животных, между участниками охоты, когда число животных оказывалось не кратным числу охотников, могло привести первобытного человека к понятию о дробном числе. Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь, объём, время и другие величины. Результат измерений не всегда удаётся выразить натуральным числом, приходится учитывать и части употребляемой меры. Исторически дроби возникли в процессе измерения. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей. В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин. Народы прошли через многие варианты записи дробей, пока не пришли к современной записи. Вертикальная черточка обозначала одну единицу, а угол из двух лежащих черточек — десять.
Слайд 11 Конечно, мышка услышала запах сыра и прибежала. Слайд 12 Мышка решила разделить сыр пополам. Был сыр целый, а получилось две одинаковые половинки. Смотри как они это сделали. Мышка перегрызла одну половинку, вторая мышка перегрызла второю половинку сыра. Слайд 16 Мышка схватила одну дольку сыра и убежала. Слайд 19.
Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1. Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа. Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами. Слайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь. Чтобы умножить сумму разность дробей на дробь, можно умножить на эту дробь каждое слагаемое и сложить вычесть полученное произведение. Чтобы умножить смешанное число на натуральное число, можно: умножить целую часть на натуральное число; умножить дробную часть на натуральное число; сложить полученные результаты. Слайд 15 Чтобы найти дробь от числа, нужно умножить число на эту дробь.
Дроби. Происхождение дробей
Чесноков, С. Шварцбурд — М. Скачать все slide презентации Действия с десятичными дробями - презентация по Алгебре одним архивом:.
Создатель презентации нарушает закон об авторском праве, так как в информационном продукте не указаны ссылки на используемый графический материал. Кроме этого, не выполнены требования портала к размещению материала на его страницах нет логотипа, аннотации. Презентацию сложно воcпринимать без конспекта урока, она смотрелась бы лучше, если бы автор выбрал единое направление графической информации.
Какое правило для сложения и вычитания дробей вы знаете? Стадия вызова Профессор Чудаков дал фиксикам задание на обыкновенные дроби. Помоги профессору проверить правильность заданий, выполненных Ноликом. Отметь в таблице верно или нет утверждения указанные в таблице На данном этапе учащиеся, при заполнении таблицы, выявляют свои дефициты в знаниях по данной теме, что поможет им сформулировать свою цель на урок Заполните таблицу, указав верно или не верно утверждение - В каких-то заданиях возникли затруднения? Сформулировать алгоритм для сложение и вычитание дробей с разными знаменателями Стадия осмысления Попробуем мыслить как трудолюбивые фиксики, они помогут вам разобраться с новой для вас темой На данном этапе происходит работа по двум направлениям: работа с графической моделью записи обыкновенных дробей и арифметической, путем последовательных преобразований 1 часть.
Cлайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Cлайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Cлайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа. Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Cлайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами. Cлайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь. Чтобы умножить сумму разность дробей на дробь, можно умножить на эту дробь каждое слагаемое и сложить вычесть полученное произведение. Чтобы умножить смешанное число на натуральное число, можно: умножить целую часть на натуральное число; умножить дробную часть на натуральное число; сложить полученные результаты. Cлайд 15 Нахождение дроби от числа Чтобы найти дробь от числа, нужно умножить число на эту дробь. Cлайд 16 Деление обыкновенных дробей Чтобы разделить одну дробь на другую, надо делимое умножить на дробь, обратную делителю. Если среди данных чисел имеются смешанные числа, то нужно сначала смешанное число превратить в неправильную дробь, только потом нужно выполнить деление.
🗊Презентация Обыкновенные дроби
Контент доступен только автору оплаченного проекта Практическое применение обыкновенных дробей в повседневной жизни Исследование конкретных сценариев использования обыкновенных дробей в повседневных задачах, таких как расчеты, измерения, доли и т. Контент доступен только автору оплаченного проекта Применение обыкновенных дробей в финансах Анализ использования обыкновенных дробей в финансовых расчетах, инвестициях, процентах, долях и других финансовых операциях. Контент доступен только автору оплаченного проекта Обыкновенные дроби в строительстве и архитектуре Исследование использования обыкновенных дробей при расчетах строительных материалов, планировании зданий, измерениях и других аспектах строительства. Контент доступен только автору оплаченного проекта Применение дробей в медицине и фармации Рассмотрение случаев использования обыкновенных дробей в медицинских расчетах, дозировках лекарств, процентах заболеваемости и других медицинских аспектах. Контент доступен только автору оплаченного проекта Обыкновенные дроби в кулинарии и рецептах Исследование использования дробей в кулинарных рецептах, пропорциях ингредиентов, конвертации между различными мерами и других аспектах кулинарии. Контент доступен только автору оплаченного проекта Применение обыкновенных дробей в спорте и фитнесе Анализ использования дробей в спортивных расчетах, диетах, процентах улучшения результатов, долях пульса и других аспектах спорта и фитнеса.
Контент доступен только автору оплаченного проекта Практическое применение дробей в технике и технологиях Исследование использования обыкновенных дробей в технических расчетах, проектировании, измерениях, конвертации единиц и других аспектах техники и технологий.
Как называются элементы дроби. Что они показывают. Виды дробей. Как от целого найти часть по его дроби.
Как найти целое число по его дроби.
Если у десятичной дроби справа после запятой приписать или убрать нули, то получится дробь, больше меньше данной? У десятичной дроби в дробной части на первом месте после запятой идет разряд сотых? Прогулка по лесу — это так приятно, а наблюдательному человеку ещё и интересно! Как умножить десятичную дробь на 10, 100, 1000? Как умножить десятичную дробь на 0,1; 0,01; 0,001? Сформулируйте правило умножения десятичных дробей.
Дробь, в которой числитель меньше знаменателя, называют правильной дробью. Дробь, в которой числитель больше знаменателя или равен ему, называют неправильной дробью. Число, состоящее из целой и дробной частей, называют смешанным числом. Неправильную дробь можно записать в виде смешанного числа. Для этого надо: 1. Слайд 6 Приведение обыкновенных дробей к наименьшему общему знаменателю Число, которое может быть знаменателем для всех дробей, называют общим знаменателем. Наименьшим общим знаменателем данных несократимых дробей является наименьшее общее кратное знаменателей этих дробей. Число, на которое нужно умножить и числитель и знаменатель дроби, чтобы привести дроби к общему знаменателю, называют дополнительным множителем. Чтобы найти дополнительный множитель, надо общий знаменатель разделить на знаменатель данной дроби. Полученное частное является дополнительным множителем этой дроби. Чтобы привести дроби к наименьшему общему знаменателю, надо: 1 найти наименьшее общее кратное знаменателей данных дробей, оно и будет их наименьшим общим знаменателем; 2 разделить наименьший общий знаменатель на знаменатели данных дробей, то есть найти для каждой дроби дополнительный множитель; 3 умножить числитель и знаменатель каждой дроби на её дополнительный множитель. При этом получим дроби с одинаковыми знаменателями. Слайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше. На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби. Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше. Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1. Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же.