Новости теория суперсимметрии

Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2. Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория.

Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи

[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации.
Новые методы в классической и квантовой теории поля с расширенной суперсимметрией Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот.
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели.
Суперсимметрия и суперкоординаты — все самое интересное на ПостНауке Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости.

Теория суперструн популярным языком для чайников

Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий. Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. суперсимметрия. Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии.

Доказательство суперсимметрии полностью изменит наше понимание Вселенной

  • С теорией суперсимметрии придётся расстаться
  • «Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»
  • СУПЕРСИММЕ́ТРИ́Я
  • 🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸
  • Нобелевская премия по физике 2008 года. Нобелевская асимметрия
  • Теория суперструн для начинающих

Симметрия, суперсимметрия и супергравитация

Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса.

Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи.

Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.

Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц.

Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали.

Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями.

Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.

Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами.

И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие.

Поскольку другие частицы связаны с полем Хиггса, их энергии должны влиться в него в момент квантовых флюктуаций. Это должно сильно поднять энергию хиггсовского поля, делая W и Z-бозоны более массивными и приводя к тому, что слабое взаимодействие ослабеет до уровня гравитации. Суперсимметрия решает проблему иерархии, предполагая наличие суперпартнёра-близнеца для каждой элементарной частицы.

Согласно теории, у фермионов, из которых состоит материя, есть суперпартнёры-бозоны, переносящие взаимодействия, а у существующих бозонов есть суперпартнёры-фермионы. Поскольку типы частиц и их суперпартнёров противоположны, вклады их энергии в хиггсовское поле обладают противоположными знаками — один его увеличивает, второй уменьшает. Вклады пар взаимоуничтожаются, и никаких катастроф не происходит. А в качестве бонуса один из неоткрытых суперпартнёров может быть составной частью тёмной материи. Со временем, поскольку суперпартнёры не появились, суперсимметрия стала менее красивой.

По популярным моделям, чтобы избежать обнаружения, частицам-суперпартнёрам приходиться быть сильно тяжелее своих двойников, и вместо симметрии появляется какое-то кривое зеркало. Физики выдвинули огромное количество идей о том, как симметрия может быть сломана, и породили тысячи версий суперсимметрии. Но нарушение суперсимметрии — это новая проблема. Большинство специалистов по физике частиц в 1980-х считали, что суперпартнёры будут лишь немного тяжелее известных частиц. Но на Теватроне, ускорителе в Fermilab, ныне отстранённом от работы, ничего подобного не нашли.

В детекторе на основе аргона излучение идёт преимущественно в ультрафиолете, и для его регистрации необходимо использовать переизлучатели, сдвигающие спектр в видимую область. Но применение переизлучателей сопряжено с рядом технических сложностей: эти вещества могут растворяться в аргоне или отслаиваться от стенок детектора. Особенно актуальны эти проблемы станут при создании очень больших детекторов. Исследования, проведённые нашим коллективом, показывают, что возможно создание детекторов на основе аргона, которые будут работать без переизлучателей, хотя и с меньшей чувствительностью. Идея заключается в регистрации излучения в видимом и инфракрасном диапазоне. Даже если на детекторе с такой технологией не получится обнаружить вимпы, то он всё равно сослужит хорошую службу науке: на нём можно будет регистрировать другие события с большим энерговыделением, в том числе достаточно редкие.

Например, такие детекторы можно будет использовать для регистрации солнечных нейтрино. Тёмная материя состоит из разных частиц, как и барионная? Вполне возможно, что эта субстанция неоднородна и в ней присутствуют различные частицы. Что касается аксионов, метод их регистрации основан на том, что в условиях магнитного поля аксионы могут превращаться в фотоны, которые уже можно зарегистрировать. Проводились разные эксперименты, но, к сожалению, зарегистрировать аксионы пока не удалось. Можно сказать, что если бы не было тёмной материи, то наш мир был бы совершенно иным.

Например, если тёмную материю «отключить», то гравитационная масса всех объектов во Вселенной окажется намного меньше, поэтому звёзды и планеты просто разлетятся в разные стороны, а галактики исчезнут. Например, плотность тёмной материи значительно выше в центрах галактик, чем в среднем по Вселенной. В то же время наблюдаются галактики, где почти отсутствует тёмная материя или, наоборот, почти полностью состоящие из неё. При этом считается, что тёмная энергия распределена достаточно равномерно. Как они связаны и что это вообще такое? Тёмная энергия — это, по сути, величина, которая была введена Эйнштейном в своё время для объяснения стационарной модели Вселенной.

Необходимость в этой переменной, казалось бы, отпала, когда Александр Фридман представил модель нестационарной Вселенной, и позже было экспериментально установлено, что Вселенная расширяется.

Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел

Минимальное суперсимметричное расширение Стандартной модели называется «минимальная суперсимметричная Стандартная модель» MSSM. В MSSM необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели. Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для нарушения электрослабой симметрии в MSSM нужно ввести 2 хиггсовских дуплета в обычной Стандартной модели вводится один хиггсовский дуплет , то есть в MSSM возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса 2 степени свободы , лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса. В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов. В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии. SUGRA — нарушение суперсимметрии , основанное на взаимодействии с гравитацией; GMSB — нарушение за счёт взаимодействия с дополнительными калибровочными полями с зарядами по группе Стандартной модели ; AMSB — нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий.

Достоинства идеи суперсимметрии Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели: Решение проблемы иерархии.

Пожаловаться Новая теория мультивселенной объясняет сразу два физических фундаментальных парадокса Открытие бозона Хиггса в 2012 году было одним из самых важных научных событий последнего времени. Эта недостающая часть Стандартной Модели физики элементарных частиц позволила ученым объяснить то, как другие элементарные частицы получают свою массу. Однако, открытие бозона Хиггса поставило перед учеными очередную загадку — масса самой этой частицы в 125 ГэВ удивительно мала по сравнению с ожидаемыми величинами. И ученые уже выдвинули ряд теорий, разработали ряд моделей, вроде бы как объясняющих столь малую массу бозона Хиггса, но ни одна из этих теорий и моделей пока не получила никаких экспериментальных подтверждений. Согласно новой теории, в самый ранний период существования Вселенная являлась «коллекцией» множества параллельных Вселенных, в каждой из которых бозон Хиггса имел свое уникальное значение массы. Вселенные, в которых бозон имел большое значение массы, разрушились первыми в горниле Большого Взрыва.

Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц.

По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.

Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации.

Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером.

Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц.

Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это.

Большой адронный коллайдер нанес еще один удар теории суперсимметрии.

Суперсимметрия Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”.
«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии» ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел.
Доказательство суперсимметрии полностью изменит наше понимание Вселенной Суперсимметрия, возникшая независимо в теории струн, «убила» тахион.

«Вселенная удваивается»

Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления.

С теорией суперсимметрии придётся расстаться

Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак.

Большой адронный коллайдер нанес еще один удар теории суперсимметрии.

Когда на умирающем "Теватроне" вдруг нашли намеки на существование, команда "Красотки LHC" решила это проверить. Эксперимент заключался в беспрецедентно детальном изучении распада Б-мезонов, возможном сегодня только на LHC. По данным команды "Теватрона" и еще нескольких других ускорительных лабораторий, на ход наблюдаемого ими распада Б-мезонов, возможно, влияло присутствие суперсимметричных частиц. Куда более чувствительный эксперимент, проведенный на суперколлайдере, этого влияния не обнаружил. Если учесть, что и на других детекторах LHC никакого следа суперсимметричных частиц до сих пор не встречалось, хотя по теории вероятностей это уже должно было произойти, это ставит крест на теории суперсимметрии в его сегодняшнем виде.

Рияз Масалимов Рияз Масалим 09-09-2011 16:48 link Отрицательный результат - тоже результат. Всё нормально. Если все "красивые" гипотезы подтверждались, то давно всё было бы открыто, и, естественно, развитие на этом кончилось бы, и всё бы закончилось.

Фермионы — частицы, подчиняющиеся принципу Паули: два фермиона не могут одновременно находиться в одном квантовом состоянии. К фермионам относятся нуклоны, нейтрино, кварки и другие частицы с полуцелым спином.

Названы в честь Э. Ферми, который одновременно с П. Дираком исследовал их свойства. Бозоны — частицы с нулевым или целым спином. В отличие от фермионов в одном квантовом состоянии может находиться любое количество бозонов. Названы в честь Д. Бозе и А. Эйнштейна, рассмотревших их свойства. Кварки — по современным представлениям, шесть «истинно элементарных», то есть бесструктурных частиц, из которых состоят адроны.

Глюоны от англ. В отличие от нейтральных фотонов — переносчиков электромагнитного взаимодействия — глюоны несут цветовой заряд и поэтому непосредственно взаимодействуют между собой. Барионы от греч. Барионы участвуют во всех фундаментальных взаимодействиях — сильном, слабом, электромагнитном и гравитационном. Барионный заряд — внутренняя характеристика частиц, равная 1 у барионов, —1 у антибарионов и 0 у всех остальных частиц. Читайте в любое время о — они всегда рождаются парами. Эти сравнительно долгоживущие частицы успевают пролететь почти 0,5 мм, прежде чем распасться на более лёгкие частицы. Очевидно, что эти реакции получаются одна из другой посредством СР-преобразования. Поэтому СР-симметрия требует того, чтобы число тех и других было одинаково.

Но оказалось, что первый распад происходит примерно на 10 процентов чаще. Источник Доказательство суперсимметрии полностью изменит наше понимание Вселенной Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам. На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией.

Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.

Все другие известные виды симметрий реализуются раздельно на бозонах и на фермионах. В рамках одной симметрии поля и частицы объединяются в мультиплеты группы , причем все взаимодействия состояний внутри данного мультиплета одинаковы. Такова симметрия группы Пуанкаре, симметрия относительно вращений и сдвигов в четырехмерном пространстве-времени Минковского, характеризуемом векторными координатами тремя пространственными и одной временной. Суперсимметрия же объединяет в единые мультиплеты бозоны вместе с фермионами.

Согласно теории суперструн, у всех известных фермионов должны существовать предполагаемые суперпартнеры — бозоны, а у бозонов — фермионы. Поскольку в природе не наблюдается вырождение по массам у фермионов и бозонов, суперсимметрия с необходимостью должна быть нарушена, и поиск адекватных механизмов такого нарушения является актуальной задачей. Те энергии, которые сейчас достижимы на ускорителях, считаются с точки зрения теории суперструн совсем малыми. К сожалению, в ближайшем будущем суперсимметрия, скорее всего, не может быть подтверждена экспериментально», — пояснил ученый.

По некоторым теоретическим предсказаниям, суперпартнеры могут иметь массы, намного превышающие массы уже открытых частиц, и, чтобы обнаружить их на ускорителях, понадобится энергия, которая недостижима на современных машинах и, возможно, даже на ускорителях следующего поколения. Однако суперсимметрия имеет глубокие теоретические следствия, делающие ее незаменимой концепцией. В частности, именно она обеспечивает самосогласованность теории суперструн. Все эти следствия и их непротиворечивость необходимо проверять теоретически.

Подтверждение гипотезы, что суперструны описывают все фундаментальные взаимодействия, — кропотливая и долговременная работа», — подчеркнул Евгений Иванов.

Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?

Причем это нарушение должно происходить при той же энергии, при которой нарушается электрослабая симметрия, в точке, когда переносчики слабого взаимодействия — W- и Z-бозоны — становятся массивными, а переносчики электромагнитного — фотоны — остаются безмассовыми. Считалось, что такое нарушение происходит при энергиях около 250 гигаэлектронвольт. Однако результаты БАКа показывают, что «точка разрыва» находится выше этого значения. Теория допускает существование тяжелых суперсимметричных частиц, однако модели становятся слишком сложными. Кроме того, суперсимметричных теорий довольно много - и эти эксперименты затронули одну-две из них», - сказал он РИА «Новости». Подписывайтесь на «Газету. Ru» в Дзен и Telegram.

В ходе них установлено, что распад В-мезона происходит не столь часто, как если бы существовал его суперсимметричный партнер, наличие которого предполагает теория. Однако Тара Шиарс отказалась полностью отвергнуть теорию Суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.

Альтернатив ей пока не предложено — это первый и пока единственный пример конечной то есть не имеющей расходимостей теории квантовой гравитации. Теория суперструн включает известные квантовые теории поля как свои низкоэнергетические пределы. В основе теории суперструн лежит суперсимметрия — гипотетическая симметрия, связывающая фермионы и бозоны и введенная как математическая конструкция в 60—70 годах прошлого века. В природе есть два типа частиц: бозоны с целым спином и фермионы с полуцелым спином. Они обладают кардинально разными свойствами. В частности, согласно принципу Паули, два фермиона не могут находиться в одном квантовом состоянии, у них должны быть обязательно разные квантовые числа, поэтому из идентичных фермионов, в отличие от бозонов, нельзя построить новые частицы. Все другие известные виды симметрий реализуются раздельно на бозонах и на фермионах.

В рамках одной симметрии поля и частицы объединяются в мультиплеты группы , причем все взаимодействия состояний внутри данного мультиплета одинаковы. Такова симметрия группы Пуанкаре, симметрия относительно вращений и сдвигов в четырехмерном пространстве-времени Минковского, характеризуемом векторными координатами тремя пространственными и одной временной. Суперсимметрия же объединяет в единые мультиплеты бозоны вместе с фермионами. Согласно теории суперструн, у всех известных фермионов должны существовать предполагаемые суперпартнеры — бозоны, а у бозонов — фермионы. Поскольку в природе не наблюдается вырождение по массам у фермионов и бозонов, суперсимметрия с необходимостью должна быть нарушена, и поиск адекватных механизмов такого нарушения является актуальной задачей. Те энергии, которые сейчас достижимы на ускорителях, считаются с точки зрения теории суперструн совсем малыми.

Волков открыл совместно с В. Грибовым новое явление, получившее название «заговор полюсов», что стимулировало целый поток теоретических и экспериментальных работ в области физики высоких энергий. Дмитрий Васильевич был не только талантливым ученым, но и удивительно трудолюбивым человеком, он работал много и упорно, предъявляя высокие требования к качеству выполняемой работы, ее логическому научному завершению. По воспоминаниям коллег, он был открытым человеком. Обсуждать с Волковым ту или иную проблему было большим удовольствием. Он быстро вникал в суть дела и высказывал, как правило, оригинальные соображения и идеи. Ему был дан редкий дар видеть важный физический результат за сложными математическими выкладками, используя в расчетах современную математику. Дмитрий Васильевич не останавливался в поиске, для исследований он выбирал наиболее сложные научные проблемы, выдвигая новые идеи и фундаментальные подходы. Он постоянно следил за достижениями в различных областях физики и математики, старался расширять круг своих интересов. Этому способствовали научные командировки в международные центры Европы и Америки и общение с выдающимися учеными. Ездил он туда регулярно — с 1958 г. Каждая поездка завершалась подробным отчетом, где давался глубокий анализ не только основных теоретических исследований, проводимых в ЦЕРНе, но и организации научной работы; отмечались ее преимущества, давались конкретные рекомендации. В 1994 г. Волков был приглашен на Международную конференцию авторов оригинальных идей и открытий XX века в физике элементарных частиц в Эриче Италия , где выступил с докладом «Supergravity before 1976». Последний раз он докладывал на конференции «Суперсимметрия-95» SUSY-95 во Франции, где выдвинул новую концепцию обобщенного принципа действия для суперструн и супермембран. К Дмитрию Васильевичу всегда тянулась молодежь, потому что он щедро делился идеями и открытиями и искренне радовался успехам и достижениям своих учеников и коллег. Созданная им в Харькове научная школа пользуется заслуженной мировой известностью. На его научных идеях и под его непосредственным руководством подготовлено около 20 кандидатских и докторских диссертаций. Много сил и энергии Д. Волков отдавал научно-организационной работе. Он входил в состав ряда проблемных научных Советов, редколлегий, научных журналов и сборников. Достижения Д. Волкова неоднократно отмечались орденами и медалями. Ему было присвоено звание заслуженного деятеля науки Украины. В 1997 г. Интересы Дмитрия Васильевича далеко не исчерпывались одной наукой. Он увлекался индийской философией, любил классическую литературу, занимался спортом, прекрасно плавал, был хорошим лыжником. Он любил семью, своих друзей, он горячо любил жизнь! В поселке Пятихатки есть улицы и проспекты, названные в честь известных ученых. В физике симметрии играют двоякую роль. Во-первых, каждому типу симметрии физической системы соответствует сохраняющаяся величина. Во-вторых, от новых физических теорий можно требовать выполнения различных симметрий. Чем больше таких требований — тем меньше произвол в построении теории. Примером физической теории, обладающей симметрией, является обычная квантовая механика, оперирующая волновыми функциями. Волновая функция частицы — это комплексная функция, например, пространственных координат грубо говоря, комплексное число в каждой точке. Ее можно рассчитать из уравнения Шрёдингера. Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который показывает вероятность нахождения частицы в каком-либо месте. Если все волновые функции умножить на одно и то же комплексное число с модулем 1, никакие предсказания теории не изменятся. Действительно, модуль произведения комплексных чисел равен произведению модулей, и от такого домножения никакие вероятности не изменяются. Это пример так называемой глобальной симметрии глобальной — потому, что волновая функция умножалась в разных точках на одно и то же число. Суть этой симметрии заключается в том, что теория не изменяется относительно некоторого класса преобразований в нашем случае эти преобразования — умножение на произвольное комплексное число с модулем, равным 1. Квантовая электродинамика обладает симметрией относительно преобразований, называемых калибровочными. Эти преобразования заключаются в домножении поля электронов на комплексное число с модулем 1 правда, чтобы теория не изменялась, одновременно с преобразованием поля электронов нужно выполнить и некоторые другие преобразования электромагнитного поля. В отличие от рассмотренного выше случая квантовой механики, это число уже может быть в каждой точке различным локальная симметрия. Интересно отметить следующий момент. Как было сказано выше, с каждой симметрией связана сохраняющаяся величина. В случае калибровочных преобразований квантовой электродинамики такой сохраняющейся величиной является обычный электрический заряд. В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы важнейшие теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика. Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение. Стандартная модель фундаментальных взаимодействий В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий. В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия. Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра? Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона. Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы. В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию. Для нарушения электрослабой симметрии был придуман механизм Хиггса.

СОДЕРЖАНИЕ

  • «Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
  • Большой адронный коллайдер нанес еще один удар теории суперсимметрии.
  • Суперсимметрия для пешеходов
  • Российский физик — о поисках тёмной материи и её роли во Вселенной

Комментарии:

  • Популярные материалы
  • «В настоящее время мы не можем описать Вселенную»
  • Статьи в журнале «Современные научные исследования и инновации»
  • Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи

«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»

Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак. В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью.

Похожие новости:

Оцените статью
Добавить комментарий