1.2 Классификация задач с практическим содержанием Проблеме классификации задач с практическим содержанием в современной методической и психологической литературе уделено не очень много внимания. Последовательности и прогрессии в школьном курсе: определения, свойства, задачи, задания ОГЭ с практическим содержанием. Вы можете ознакомиться и скачать Задачи с практическим содержанием по теме: «Арифметическая и геометрическая прогрессии». Геометрическая задача повышенной сложности. Примеры решений к Задачникам 21-24.
Вход на сайт
- Содержание
- Задание № 15 - это несложная планиметрическая задача с практическим содержанием
- Задачи с практическим содержанием часть 1 фипи план местности 01 05
- Практика по 19 заданию ЕГЭ по химии
- Как подписаться на новинки?
- Решение задач практического содержания (5 класс)
01 05 задачи с практическим содержанием часть 1 фипи участок ширяева ответы и решения огэ
Сколько рулонов обоев шириной 1 м, длиной 10 м, нужно купить, если дверь шириной 0,8 м, высотой 2 м не оклеивают? Металлический гараж в форме прямоугольного параллелепипеда требуется окрасить снаружи краской. Расход краски 120 г на 1 м2. Стоимость 1 банки краски 240 руб. Каковы затраты на приобретение краски для окраски гаража, если длина его 5,5 м, ширина 4,2 м; высота — 2 м? Сколько рулонов обоев 0,5 х 10 м потребуется для оклейки стен детской комнаты, размеры которой 4 х 2,5 м. Высота комнаты 2,5 м. Дверь имеет размеры: ширина 0,8 м, высота 1,9 м. Окно: высота 1,4 м; ширина 1,55 м. Решено стены, пол, потолок обложить плиткой по цене 600 руб. Дверь имеет размеры 0,8 х 2 м.
Длина комнаты 1,8 м, ширина 2 м, высота 2,5м. Длина спортзала 10 м, ширина 20 м, высота 5 м.
Сколько соли содержится у человека весом 35 кг? Из составленных букв ты узнаешь имя греческой богини здоровья, от её имени образовано слово "гигиена". Сколько квадратных метров ученических голов подстригается за учебный год 9 месяцев , если голова среднего ученика имеет площадь 654,4 кв.
В этом воспитательное значение такого обучения.
В осуществлении связи преподавания математики с практической деятельностью особую значимость приобретает производственное окружение школы: именно с ним, как правило, связаны профессиональная ориентация и подготовка, производительный труд учащихся. Это создает предпосылки для реализации такой связи в наиболее естественных и близких ученикам условиях. Немаловажное значение имеет связь преподавания математики с трудом в сельской школе. Это объясняется рядом причин. Во-первых, в сельских школах обучаются миллионы юношей и девушек, трудовая деятельность значительной части которых будет связана с сельскохозяйственным производством. Во-вторых, повышающийся уровень технической оснащенности агропромышленных предприятий предъявляет серьезные требования к общеобразовательной включающей математическую подготовке тружеников наиболее массовых сельскохозяйственных профессий.
Известны предыдущий и последующий члены прогрессии для элемента x. Найдите сумму первых 14 её членов. Это число называется знаменателем геометрической прогрессии. Знаменатель геометрической прогрессими q может принимать любые действительные значения, кроме нуля. А если знаменатель прогрессии отрицателен, то последовательность окажется знакопеременной.
Например: 2; 4; 8; 16; 32; 64; 128; 256; 512... Каждое следующее число в 2 раза больше. Каждое следующее число в 2 раза меньше. Свойства геометрической прогрессии. Обратите внимание, в общем случае, все последовательности бесконечны.
Но в задачах часто рассматривают упорядоченные конечные участки таких множеств, также называя их последовательностями и прогрессиями. Примеры задач на геометрическую прогрессию. Задача 4. Любой член прогрессии можно найти по формуле её общего члена, то есть через первый член и знаменатель. Поэтому вопрос "найти прогрессию" равносилен вопросу "найти первый член прогрессии и её знаменатель".
Это облегчает восприятие понятий на первом этапе, но не более того. Однако и это необязательно. Бывают случаи, когда члены последовательности начинают нумеровать с нуля. Задачи на прогрессии и последовательности с практичеcким содержанием. С некоторых пор в ОГЭ по математике задание на работу с последовательностями и прогрессиями представлено как задание с практическим содержанием, направленное на проверку умения применять знания о последовательностях и прогрессиях в прикладных ситуациях.
Суть этого задания состоит в том, что надо сначала определить, о какой последовательности идёт речь в условии задачи, и только потом начинать применять формулы. Для этого надо искать в тексте условия ключевые слова "каждый, следующий, предыдущий... Задача 6. За первую минуту бега спортсмен пробежал 300 метров, а в каждую следующую минуту он пробегал на 5 метров больше, чем в предыдущую. С какой скоростью спортсмен закончил тренировку, если она длилась 20 минут?
Ответ дайте в километрах в час. Определим, сколько метров он пробежал в последнюю 20-ю минуту бега. Для того, чтобы дать требуемый ответ, осталось перейди к другим единицам измерения скорости. Фермер Алексей приобрёл новый земельный участок весной 2015 года и сразу засеял его пшеницей. Какова была урожайность пшеницы в первый год использования участка Алексеем?
Фермер ежегодно увеличивал урожай на одно и то же число центнеров с гектара — арифметическая прогрессия.
Использование задач с практическим содержанием в преподавании математики
- Использование задач с практическим содержанием
- Вы точно человек?
- Файл: Квартира 0105. Задачи с практическим содержанием примеры.docx
- Задачи с практическим содержанием - математика, презентации
- Публикация
Использование задач с практическим содержанием на уроках математики в 5-9 классах
В статье рассмотрен вопрос о включении задач с практическим содержанием в процесс обучения математике в техническом вузе с точки зрения реализации прикладной направленности. • добиться понимания практической значимости умения решать задачи. Для реализации целей практико-ориентированного обучения необходимо включать в учебный процесс задачи с практическим содержанием. Блок заданий с практическим содержанием №№1-5 появился в экзаменационных материалах в прошлом году.
Вы точно человек?
Пенсионер заплатил за пакет кефира 38 рублей. Сколько процентов составляет скидка для пенсионеров? Сколько рублей сдачи он должен получить у кассира? Сергей хочет подарить Свете букет из нечетного количества цветов. Из какого наибольшего числа роз он может купить букет, если у него есть 550 рублей? Но в букете должно быть нечетное число роз. Поэтому Сергей должен купить 11 роз.
Какое наименьшее число пачек бумаги нужно купить в школу на 3 месяца, если в пачке 250 листов? Какое наибольшее число пакетов яблочного сока можно получить на 200 рублей, если цена одного пакета сока 34 рубля? В рамках рекламной акции Покупатель получит за 4 пакета еще 2 пакета сока бесплатно. Сколько килограммовых упаковок сахара нужно купить, чтобы сварить мармелад из 23 кг слив? В одной упаковке 1 кг, поэтому 32 —х упаковок не хватит. А 33 будет в самый раз.
Уколы нужно делать 3 раза в день. В упаковке 16 ампул лекарства по 2,5 мл.
Найдите длину лестницы. Тем самым, длина AB равна 13 м, а длина лестницы равна 15 м. Ответ: 15. Самостоятельная работа по теме «Теорема Пифагора» Вариант 1 1.
Найдите гипотенузу, если катеты равны 2см и 5 см 2. Найдите катет, если гипотенуза равна 8см, а второй катет равен 3см 3. Найдите сторону ромба, если его диагонали равны 6см и 8см 4. Найдите диагональ прямоугольника со сторонами 5см и 4см 5.
Эту связь в процессе преподавания математики независимо от профиля производственного окружения школы представляется возможным наиболее широко осуществлять при изучении функций в том числе элементов дифференциального и интегрального исчислений , уравнений, неравенств и их систем, измерении геометрических величин, формировании вычислительных, измерительных, графических, логических умений и навыков. Однако здесь следует иметь в виду, что применение математики в сельском хозяйстве связано как со специфичностью процессов сельскохозяйственного производства сев, пахота, уборка и т. Желательно, чтобы связь с сельскохозяйственным трудом осуществлялась на всех этапах преподавания математики в школе. Но характер этой связи зависит от уровня математической подготовки, производственных знаний, жизненного и трудового опыта учащихся. В V—VI классах предполагается в основном связь обучения математике с общественно полезным трудом на пришкольных опытных участках, в учебных мастерских. В VII—IX классах это содержание может быть расширено, так как школьники привлекаются к участию в работе ученических производственных бригад, лагерей труда и отдыха. В старших X, XI классах предполагается связь обучения математике с производительным трудом в сельском хозяйстве, базирующемся не только на математических, но и на производственных знаниях учеников.
Найдите ширину входа в теплицу. Ответ дайте в метрах с точностью до десятых. Найдите высоту входа в теплицу. Найдите площадь участка под грядками в квадратных метрах. Результат округлите до десятых. Ширяева Задачник ОГЭ 2023 1. Сколько процентов составляет площадь, отведенная под грядки, от площади всего участка, отведенного под теплицу? Ответ округлите до целых. Найдите ширину центральной грядки, если она в три раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятков.
Готовимся к ОГЭ по математике. Задания 1-5 с практическим содержанием.
Геометрическая задача повышенной сложности. Примеры решений к Задачникам 21-24. Блог посвящен особому типу математических задач, это задачи с практическим содержанием. 01-05. Задачи с практическим содержанием. ПРИМЕРЫ. Задание 1. Ярослав Александрович решил построить на дачном участке теплицу длиной 5 м. Для этого он сделал прямоугольный фундамент. Чтобы записаться на бесплатную консультацию, заполняй форму по ссылке: НА БЕСПЛАТНЫЙ УРОК от ЭКСПЕРТА ЕГЭ и ОГ. Чтобы записаться на бесплатную консультацию, заполняй форму по ссылке: НА БЕСПЛАТНЫЙ УРОК от ЭКСПЕРТА ЕГЭ и ОГ.
Задачи с практическим содержанием
Решение задач с практическим содержанием 2. Цель работы:Использовать приобретенные математические знания 3. Задача с практическим содержанием: Необходимо: 4. Расчеты:1) Длина, ширина, высота кухни соответственно 5. Необходимо решить следующие задачи: 6. 01-05. Задачи с практическим содержанием. ПРИМЕРЫ. Задание 1. Ярослав Александрович решил построить на дачном участке теплицу длиной 5 м. Для этого он сделал прямоугольный фундамент. Задачи с практическим. содержанием. Задание 8 из базового ЕГЭ по математике.
1 5 задачи с практическим содержанием
Рядом с кладовой находится спальня, из которой можно пройти на одну из застеклённых лоджий. Самое большое по площади помещение — гостиная, откуда можно попасть в коридор и на кухню. Из кухни также можно попасть на застеклённую лоджию.
В теле человека, весящего 70 кг, содержится 150 г соли. Сколько соли содержится у человека весом 35 кг? Из составленных букв ты узнаешь имя греческой богини здоровья, от её имени образовано слово "гигиена".
Если не починить кран вовремя, то сколько литров воды может вылиться из него зря в течение часа? В течение суток? Считать, что в одном литре 5 стаканов воды» [2, с. Во-вторых, по её мнению, малое количество предложенных ученикам задач выходят на собственный опыт школьника, многие из них не злободневны для детей, а значит им не интересны.
Например, «для приготовления вишневого варенья на две части вишни беру три части сахара по массе. Сколько вишни и сколько сахара пошло на варенье, если сахара израсходовали на 7 кг 600 г больше, чем вишни? Педагог Бикеева утверждает, что лучше было бы предоставить ученикам возможность провести исследовательскую работу дома по изготовлению их любимого варенья и сделать сопутствующие математические расчёты. Также следует в таких задачах задавать дополнительные вопросы, например, применительно к данной задаче, сколько стоит такое варенье в магазине, сколько будет стоить приготовить его самому, и что экономически выгоднее: купить или приготовить? Кроме того, А. Бикеева предлагает использовать следующие задания: сделай сам, ведя записи и делая расчёты; расскажи о применённых на практике математических знаний, которые ты получил на уроке; сделай вывод, какие пройденные в школе знания тебе пригодились. По её мнению, такие задания помогают выйти на личность учеников. Вдобавок, А. Бикеева отмечает, что в русских задачах ставятся вопросы, имеющие один верный ответ.
Но в реальной жизни существует мало ситуаций, в которых применяется одно решение либо один ответ. Чаще же в повседневных проблемах людям приходится делать выбор, потому что и решение может быть не одно, и ответов несколько. Педагог предлагает при решении практических задач учить детей размышлять, искать разные ответы, самим просчитывать варианты развития задачи и выбирать самый разумный. На её взгляд, такой вид заданий заставляет детей думать критически, осмысленно и внимательно рассматривать проблему, которая затрагивается в практической задаче. Также педагог отмечает, что практические задачи из русских школьных учебников направлены только на закрепление умения выполнять арифметические действия, когда важнее было бы научить детей мыслить, анализировать, самостоятельно рассматривать множество решений и действовать, пользуясь математическими знаниями. Теперь можно рассмотреть какие задачи практического содержания предлагаются зарубежными учебниками для решения ученикам. Вот одна из них: «ребята разделились на команды по два человека, чтобы собирать жестяные банки из-под прохладительных напитков. Джон собрал 188 банок. Его товарищ по команде Рон собрал 257 банок.
Сколько всего банок они собрали? Какая польза от сбора жестяных банок из-под прохладительных напитков? Каковы преимущества вторичной переработки? Бикеева выделяет несколько особенностей таких задач: в них четко выражена практическая направленность, многие задачи необходимо выполнять в группах, они не требуют что-то заучивать. Интересно, что в зарубежных учебниках выделяются целые разделы на сравнение расходов, на инвестиции, на покупку собственности и ипотеку, на расходы за автомобиль, на банковские операции, а в российских учебниках, к сожалению, можно найти только пару-тройку таких заданий [2]. Из чего можно заключить, что роль практических задач огромна. Они раскрывают всё многообразие практического применения математических знаний, полученных на уроках; закрепляют и углубляют данные знания на практике; наглядно иллюстрируют учебный материал; развивают логическое, познавательное мышление; учат детей самостоятельно принимать решение и видеть значимость изучения математики в целом. Практические задачи должны занимать главное место в процессе обучения математики. Конечно, не стоит забывать разбирать задачи, подобные решённым в классе, но нужно заниматься не только ими.
Нажимаем "уравнения и неравенства", выбираем внизу страницу 70. С 70 страницы по 74 все типы заданий, которые будут на ОГЭ. Ryvi 27 февраля 2023 16:29 Цитировать Ответить 0 Какие будут задания в 23 году?
1 5 задачи с практическим содержанием
Но эта деятельность совершенно не связана с той, которая достигает цели обучения: в данном случае выделение общего способа решения задач «движение навстречу друг другу». Поэтому такой наглядный материал не только не помогает осуществлению цели обучения, а мешает этому. В этом случае лучше использовать схему, изображенную ниже: 2 в данный период развиваются вычислительные и интеллектуально- познавательные способности, увеличивается стремление к самостоятельной деятельности, вырабатывается воля достижения цели в обучении, деятельность становится осмысленной. Поэтому, чтобы у учащихся было стремление к учению, нужно идти чуть впереди их развития, но при этом опираться на принцип доступности, то есть идти в пределах зоны ближайшего развития. Обучение тем более решению задач с практическим содержанием, так как у каждого учащегося возникают свои трудности должно быть личностно-ориентированным; 3 учащимся трудно сосредоточиться на однообразной и малопривлекательной для них деятельности или на деятельности интересной, но требующей умственного напряжения, чтобы удерживать свое внимание на интеллектуальных задачах, дети должны приложить усилия, поэтому на уроке целесообразна частая смена видов деятельности; 4 непроизвольное запоминание является более продуктивным, чем произвольное. Это становится возможным, если ученик понимает то, что он должен запомнить. Натуральные числа и действия над ними 2. Координатный луч 3. Числовое выражение и его значение 4. Уравнение 6.
Обыкновенные дроби 7. Среднее арифметическое 1. Десятичные дроби 2. Округление десятичных дробей 3. Пропорция 4. Решение задач с помощью пропорции 5. Масштаб 6. Проценты 7. Основные задачи на проценты 8.
Целые числа 9. Рациональные числа 2 Выражения и их преобразования 1. Числовое выражение и его значение 2. Выражения с переменными 1. Вычисление значения числового выражения с обыкновенными и д е с я т и ч н ы м и д р о б я м и , п о л о ж и т е л ь н ы м и и отрицательными числами 3 Уравнения и неравенства 1. Уравнение 2. Корень уравнения 4 Координаты и функции 1. График линейной зависимости 5 Геометрические фигуры и их свойства 1. Хорда и диаметр круга 2.
Перпендикулярные прямые 1. Равнобедренный треугольник 6 Геометрические величины 1. Формула длины окружности и площади круга 1. Единицы измерения площади, объема 7 Геометрические построения 1. Круговые диаграммы 1. Построение угла с данной градусной мерой с помощью транспортира Для 6 класса, например, можно использовать следующую систему задач о вреде табакокурения по теме «Проценты»: 1. В табачном дыме одной сигареты содержится много ядовитых веществ, разрушающих организм человека. Определите, какова продолжительность жизни нынешних курящих детей, если средняя продолжительность жизни 67 лет? Остальные по одному заболеванию.
Определите, сколько учащихся этой группы имеют по 2 и сколько по одному заболеванию? Средний вес новорожденного ребенка 3 кг 300гр. Если у ребенка курящий отец, то его вес будет меньше среднего на 125 гр; если курящая мать — меньше на 300 гр. Определите, сколько процентов теряет в весе новорожденный, если: а курит папа; б курит мама ответ округлите до единиц 6. Весь мир борется с табаком. Во многих странах запрещено курение на рабочем месте. Серьезный работодатель может не принять на работу, или уволить курящего. Сколько ошибок будет у него на страницах, где знаков в 1,5 раза больше? В теме «Проценты» необходимо показывать учащимся связь данной темы с ценами на товары и услуги.
На задачи, в которых говорится о ценообразовании, в школьном курсе стали обращать внимание совсем недавно, поэтому методические подходы к их решению не очень хорошо отработаны. А между тем с ценами на товары и услуги люди встречаются каждый день, и именно школьная математика в ответе за то, чтобы эти встречи не оборачивались для людей финансовыми потерями. Примеры задач 5 класс : 1. Яблоки в магазине стоили 3 400 рублей за 1 килограмм. Какова стала стоимость яблок за 1 килограмм? На сколько меньше килограмм яблок можно купить на те же деньги? Осталась ли цена прежней? На сколько надо снизить цену, чтобы цена стала прежней? В приложение 1 приведены задачи с практическим содержанием по теме «Площадь», которые целесообразно использовать при изучении данной темы.
Формула 2. Рациональные дроби 1. Иррациональны е числа 2 Выражения и их преобразования 1. Арифметически й к в а д р а т н ы й корень 3 Уравнения и неравенства 1. Линейное уравнение 1. Система уравнений с двумя переменными 4 Ко о р д и н а т ы и функции 1. Линейная функция и ее график 1. Квадратичная ф у н к ц и я и е е график 1. Арифметическа я и геометрическая прогрессии 2.
Формулы n-го члена и суммы n первых членов арифметической и геометрической прогрессии 5 Геометрические фигуры и их свойства 1. Свойства параллельных прямых 3. Неравенство треугольника 1. Многоугольник и 2. Параллелограм м 3. Прямоугольник 4. Квадрат 5. Ромб 6. Свойство 1.
Касательная к окружности 2. Центральный угол 3. Правильные многоугольники 15 средней линии и трапеции 7. Теорема Пифагора 8. Подобные треугольники 6 Геометрические величины 1. Расстояние между двумя точками 2.
Найдите координаты. Квадратичная функция и квадратичные неравенства. График функции. Решите неравенство.
Найдите нули функции. График квадратичной функции. Найдите множество значений функции. Найдите промежуток. Построение параболы по точкам. Ветви параболы направлены вверх. Квадратичная функция.
Рустамова, З. Одним из эффективных средств формирования у учащихся теоретических знаний и развития у них практических умений являются физические задачи с практическим содержанием. Под физической задачей понимаем небольшую проблему, которая решается на основе методов физики, с использованием в процессе решения логических умозаключений, физического эксперимента и математических действий [1]. Согласно [2, с. В научно-методической литературе не приводится определения физической задачи с практическим содержанием. Под физической задачей с практическим содержанием будем понимать задачу, направленную на выявление физической сущности объектов природы, производства и быта, с которыми человек взаимодействует в процессе своей практической деятельности. Данное определение отражает особенности содержания и процесса решения задач с практическим содержанием и их отличие от других видов физических задач. Понятие «задача с практическим содержанием» близко по смыслу к понятиям «задача с политехническим содержанием» и «задача с производственно-техническим содержанием». Вместе с тем каждый из названных типов задач выполняет в учебном процессе свои специфические функции. Для выявления специфических функций задач с практическим содержанием необходимо произвести дифференциацию рассматриваемых понятий. В методической литературе приводятся следующие определения понятий «задача с политехническим содержанием» и «задача с производственно-техническим содержанием»: Задача с политехническим содержанием — это задача, содержащая материал о технике, промышленном и сельскохозяйственном производстве, транспорте и связи [3]. Задача с производственно-техническим содержанием — это задача, в которой обеспечивается в органическом единстве решение физических, технических и производственных вопросов; содержанием такой задачи является физическое явление или закон, положенные в основу действия механизмов и машин современной техники или технологии промышленных процессов [4]. Задача с производственно-техническим содержанием — это задача, в процессе решения которой предполагается выявление физической сущности технических объектов и технологических процессов, их взаимосвязи и взаимодействия [5]. Определение места задач с практическим содержанием в процессе обучения физике обусловливает необходимость выделения функций, которые они выполняют в учебном процессе. Задачи с практическим содержанием выполняют в учебном процессе следующие функции: обучающую, развивающую, воспитательную, побуждающую, прогностическую, интегративную, контролирующую и мотивационную. Отметим, что указанные функции имеют общий характер и присущи всем физическим задачам. Для их конкретизации применительно к задачам с практическим содержанием представляется необходимым выделить цели, достижению которых будет способствовать решение практических задач в процессе выполнения каждой из названных функций. Обучающая функция задач с практическим содержанием заключается в том, что решение таких задач способствует конкретизации и систематизации имеющихся у учащихся знаний; построению новых систем знаний, в том числе о главных отраслях производства и основных направлениях развития промышленности, о применении физических законов в повседневной жизнедеятельности человека и др.
Сколько колец было установлено? Найти, сколько гектаров пашни было вспахано за 19 дней. Через сколько секунд тела встретятся? На постройку колодца израсходовали 9 колец. Какова стоимость колодца? Ответ: 1620 За рытье колодца оплачивается за первый метр глубины 150 уе. Вычислить стоимость работы, если глубина колодца составила 10 м. Ответ: 1950 Шар, катящийся по желобу, в первую секунду проходит 0, 6 м, а путь, пройденный в каждую следующую секунду, увеличивается на 0, 6 м. Сколько секунд будет двигаться шар по шестиметровому желобу? Ответ: 4 Турист, двигаясь по пересеченной местности, за первый час пути прошел 800 в, а за каждый следующий час проходил на 25 м меньше, чем за предыдущий.
Текстовая версия
- ОГЭ по математике. Тренировочный вариант СтатГрад
- Задачи с практическим содержанием - математика, презентации
- Публикация
- Использование задач с практическим содержанием
- урок-проект Решение задач с практическим содержанием
1 5 задачи с практическим содержанием
Просмотр содержимого документа "01-05. Задачи с практическим содержанием План местности. Математические задачи с практическим содержанием это та¬. 1.2 Классификация задач с практическим содержанием Проблеме классификации задач с практическим содержанием в современной методической и психологической литературе уделено не очень много внимания. Смотрите 65 фотографии онлайн по теме 01 05 задачи с практическим содержанием. Задачи с практическим содержанием. Решение задач с помощью метода вспомогательной площади.
Решение задач с практическим содержанием презентация
Из кухни также можно попасть на застеклённую лоджию. Для объектов, указанных в таблице , определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк перенесите последова- тельность четырёх цифр без пробелов, запятых и других дополнительных символов.
Найдите гипотенузу, если катеты равны 2см и 5 см 2. Найдите катет, если гипотенуза равна 8см, а второй катет равен 3см 3. Найдите сторону ромба, если его диагонали равны 6см и 8см 4. Найдите диагональ прямоугольника со сторонами 5см и 4см 5. Найдите площадь равнобедренного треугольника, если боковая сторона равна 7см, а основание — 4см 6.
Найдите высоту равнобокой трапеции с основаниями 6см и 14см, если боковая сторона равна 5см Слайд 22 К сожалению не все девятиклассники умеют работать с круговым циферблатом Слайд 23 Приходится иногда знакомится заново с часами.. Существенно, что циферблат предполагается 12-часовым. Найдите угол, который образуют минутная и часовая стрелки часов в 17:00.
Например, «для приготовления вишневого варенья на две части вишни беру три части сахара по массе. Сколько вишни и сколько сахара пошло на варенье, если сахара израсходовали на 7 кг 600 г больше, чем вишни? Педагог Бикеева утверждает, что лучше было бы предоставить ученикам возможность провести исследовательскую работу дома по изготовлению их любимого варенья и сделать сопутствующие математические расчёты. Также следует в таких задачах задавать дополнительные вопросы, например, применительно к данной задаче, сколько стоит такое варенье в магазине, сколько будет стоить приготовить его самому, и что экономически выгоднее: купить или приготовить? Кроме того, А.
Бикеева предлагает использовать следующие задания: сделай сам, ведя записи и делая расчёты; расскажи о применённых на практике математических знаний, которые ты получил на уроке; сделай вывод, какие пройденные в школе знания тебе пригодились. По её мнению, такие задания помогают выйти на личность учеников. Вдобавок, А. Бикеева отмечает, что в русских задачах ставятся вопросы, имеющие один верный ответ. Но в реальной жизни существует мало ситуаций, в которых применяется одно решение либо один ответ. Чаще же в повседневных проблемах людям приходится делать выбор, потому что и решение может быть не одно, и ответов несколько. Педагог предлагает при решении практических задач учить детей размышлять, искать разные ответы, самим просчитывать варианты развития задачи и выбирать самый разумный. На её взгляд, такой вид заданий заставляет детей думать критически, осмысленно и внимательно рассматривать проблему, которая затрагивается в практической задаче.
Также педагог отмечает, что практические задачи из русских школьных учебников направлены только на закрепление умения выполнять арифметические действия, когда важнее было бы научить детей мыслить, анализировать, самостоятельно рассматривать множество решений и действовать, пользуясь математическими знаниями. Теперь можно рассмотреть какие задачи практического содержания предлагаются зарубежными учебниками для решения ученикам. Вот одна из них: «ребята разделились на команды по два человека, чтобы собирать жестяные банки из-под прохладительных напитков. Джон собрал 188 банок. Его товарищ по команде Рон собрал 257 банок. Сколько всего банок они собрали? Какая польза от сбора жестяных банок из-под прохладительных напитков? Каковы преимущества вторичной переработки?
Бикеева выделяет несколько особенностей таких задач: в них четко выражена практическая направленность, многие задачи необходимо выполнять в группах, они не требуют что-то заучивать. Интересно, что в зарубежных учебниках выделяются целые разделы на сравнение расходов, на инвестиции, на покупку собственности и ипотеку, на расходы за автомобиль, на банковские операции, а в российских учебниках, к сожалению, можно найти только пару-тройку таких заданий [2]. Из чего можно заключить, что роль практических задач огромна. Они раскрывают всё многообразие практического применения математических знаний, полученных на уроках; закрепляют и углубляют данные знания на практике; наглядно иллюстрируют учебный материал; развивают логическое, познавательное мышление; учат детей самостоятельно принимать решение и видеть значимость изучения математики в целом. Практические задачи должны занимать главное место в процессе обучения математики. Конечно, не стоит забывать разбирать задачи, подобные решённым в классе, но нужно заниматься не только ими. Необходимо постоянно тренироваться в умении использовать полученные математические знания в реальной жизни, на каждом уроке либо через урок предлагать ученикам решить задачу с практическим содержанием. Тем самым у обучающихся повысится активная деятельность, улучшатся мыслительные операции, произойдет прочное усвоение математических знаний, буду формироваться математические навыки.
Таким образом, в параграфе были рассмотрены причины малого количества упражнений на применение математических знаний на практике, определены функции, которые выполняют задачи практического содержания, было проведено сравнение русских практических задач с зарубежными и, конечно, была определена роль, которую выполняют задачи с практическим содержанием, и выявлено место, которое занимают данные задачи. В следующем параграфе будет рассмотрено, как практические задачи мотивируют учеников изучать математику.
Размеры комнаты: длина 3 м, ширина 2 м, высота 2,5 м. Дверь 0,8 м на 2 м. В детской школе искусств для класса хореографии оклеивают стены обоями, зал имеет форму прямоугольного параллелепипеда. С целью гигиены, обои начинают клеить на расстоянии 1,2 м от пола. Длина зала 15 м, высота 3,4 м, ширина 7,5 м.
Сколько рулонов обоев шириной 1 м, длиной 10 м, нужно купить, если дверь шириной 0,8 м, высотой 2 м не оклеивают? Металлический гараж в форме прямоугольного параллелепипеда требуется окрасить снаружи краской. Расход краски 120 г на 1 м2. Стоимость 1 банки краски 240 руб. Каковы затраты на приобретение краски для окраски гаража, если длина его 5,5 м, ширина 4,2 м; высота — 2 м? Сколько рулонов обоев 0,5 х 10 м потребуется для оклейки стен детской комнаты, размеры которой 4 х 2,5 м. Высота комнаты 2,5 м.
Дверь имеет размеры: ширина 0,8 м, высота 1,9 м. Окно: высота 1,4 м; ширина 1,55 м.