Новости нервные импульсы поступают непосредственно к железам по

Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам вставочных нейронов 3)серому веществу спинного морга 4)белому веществу спинного мозга.

Нервная система

  • Резюме по рефлекторной дуге
  • Психофизиология: Химическая передача нервного импульса
  • нейроглия (глия)
  • Нервная система. Общие сведения
  • Топ вопросов за вчера в категории Биология

Нервные импульсы поступают непосредственно к железам по

Например: мы видим опасность, мозг анализирует, что это действительно опасность и отправляет импульс в надпочечники, где выделяется адреналин. Знаешь ответ?

С физиологической и биохимической точки зрения второй этап является наиболее сложным. Он представляет собой цепь процессов, суть которых сводится к преобразованию электрического сигнала в химический, а затем — химического в электрический. Данные о периферической нервной системе получить было достаточно легко. Любой орган можно изолировать, стимулировать его нервный аппарат, собирать и анализировать венозную кровь или перфузат. В ЦНС совсем другое положение: масса волокон и нейронов, "упакованных" глиальными клетками, кровоснабжение которых точно установить невозможно, а также "центры", имеющие много различных входов и локализуемые различно разными физиологами и анатомами. Обычными методами, ставшими почти классическими, было показано, что в ЦНС имеются ацетилхолин, катехоламины и холинэстеразы.

Эта трудоёмкая работа дала возможность нарисовать своего рода химическую карту головного мозга. Ацетилхолин обнаруживается почти везде, но в особенно значительных количествах он содержится в коре головного мозга; с помощью высокоспецифичных и чувствительных тестов обнаружили присутствие ацетилхолинэстеразы в некоторых синапсах, но показали также, что её очень мало в других. Во многих центрах был обнаружен норадреналин, но его непосредственный предшественник — дофамин был найден в значительных количествах только в определённых областях. В различных центрах был идентифицирован также серотонин. Нейронная теория, разработанная Рамон-и-Кахалом, знаменитым испанским гистологом, подтверждена биохимически. Нейрон, его аксон и окончания синтезируют медиатор, который хранится в особых пузырьках, видимых с помощью электронного микроскопа. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Пузырьки образуются в теле нейрона, заполняются молекулами медиатора и транспортируются вдоль аксона к нервному окончанию.

Химическими посредниками в процессе передачи нервного импульса являются биологически активные вещества, выделяемые нервными окончаниями. Эти вещества называются нейромедиаторы синоним — нейротрансмиттер. Для краткости можно употреблять термин медиаторы. Медиаторы были открыты австрийским ученым Лёви в результате достаточно простого опыта. В физиологический раствор он поместил два изолированных сердца лягушек и соединил их между собой тонкой трубочкой. Раствор Рингера, перфузируемый в одно сердце, переходил во второе. При раздражении симпатического нерва первого сердца, второе также начинало сокращаться. Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва.

Сначала были открыты адреналин и ацетилхолин. В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество P. По химическому составу и механизму действия медиаторы сходны с гормонами. Подробнее медиаторы будут рассмотрены ниже. Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путём окисления пищеварительных веществ, а также восстанавливать и сохранять свою целостность.

Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ. При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке. Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом характере освобождения медиатора.

Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов. В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы. Дата последнего обновления публикации: 20. Рецептор, кондуктор и эфферентный нейрон Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью например, кожей , а другой с помощью своего нейрита оканчивается в мышце или железе. При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении центрипетально к рефлекторному центру, где находится соединение синапс обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно центрифугально к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой трехчленной рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов И. Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов. Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И. Кондуктор проводник , вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» И. Поэтому И. Павлов называет этот нейрон контактором, замыкателем. Эфферентный центробежный нейрон, осуществляющий ответную реакцию двигательную или секреторную благодаря проведению нервного возбуждения от центра к периферии, к эффектору.

нейроглия (глия)

  • Задание 15 ОГЭ по биологии с ответами, ФИПИ: организм человека
  • Задание №9 ОГЭ по Биологии • СПАДИЛО
  • Нервная система. Общие сведения
  • Последние опубликованные вопросы

Человек и его здоровье (стр.51-75)

Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга. От него по волокнам симпатической нервной системы импульсы идут к мышцам сосудов и вызывают их сокращение, вследствие чего наступает сужение сосудов. Железы внутренней секреции не имеют протоков, поэтому гормоны поступают непосредственно в кровь.

Химическая передача нервного импульса

Эта информация доступна зарегистрированным пользователям Высшая нервная деятельность человека Высшая нервная деятельность- это деятельность высших отделов центральной нервной системы, которая обеспечивает наиболее совершенное приспособление животных и человека к окружающей среде. Термин «высшая нервная деятельность» впервые введён в науку И. Основная роль в осуществлении высшей нервной деятельности у высших животных и человека принадлежит коре больших полушарий. К высшей нервной деятельности относят познание, речь, память и абстрактное мышление, сознание и др. Мышление интеллект - процесс обобщённого отражения действительности с её связями, отношениями и закономерностями. С помощью мышления познается содержание и смысл воспринимаемого. Мышление представляет собой самую сложную форму психической деятельности человека, вершину её эволюционного развития. Мышление построено на двух функциях высших нервных центров: на анализе и синтезе информации и ответных действий организма. Очень важным аппаратом мышления человека является речь, которая позволяет передавать информацию с помощью абстрактных символов. Сигнальные системы Первая сигнальная система- это зрительные, слуховые и другие чувственные сигналы, из которых строятся образы внешнего мира, одинаковая у человека и животных. Отдельные элементы более сложной сигнальной системы начинают появляться у общественных видов животных высокоорганизованных млекопитающих и птиц , которые используют звуки сигнальные коды для предупреждения об опасности, о том, что данная территория занята, и т.

У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название. Эпифизу придают шишковидную форму импульсный рост и васкуляризация капиллярной сети, которая врастает в эпифизарные сегменты по мере роста этого эндокринного образования. По строению и функции эпифиз относится к железам внутренней секреции. Эндокринная роль шишковидного тела - его клетки выделяют вещества, тормозящие деятельность гипофиза до момента полового созревания, а также участвующие в регуляции всех видов обмена веществ. Эпифизарная недостаточность в детском возрасте влечет за собой быстрый рост скелета с преждевременным и преувеличенным развитием половых желез и преждевременным и преувеличенным развитием вторичных половых признаков. Эпифиз является регулятором циркадных ритмов, поскольку связан со зрительной системой. Под влиянием солнечного света в дневное время в эпифизе вырабатывается серотонин, а в ночное время - мелатонин.

Оба гормона сцеплены между собой, поскольку серотонин является предшественником мелатонина. Эпифиз покрыт снаружи соединительнотканной капсулой, от которой внутрь железы отходят соединительнотканные трабекулы, разделяющие ее на дольки, состоящие из клеток двух типов: железистых и глиальных. Функция железистых клеток имеет четкий суточный ритм: ночью синтезируется мелатонин, днем - серотонин. Этот ритм связан с освещенностью, при этом свет вызывает угнетение синтеза мелатонина. Воздействие осуществляется при участии гипоталамуса. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект. У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и, вероятно, «зимние депрессии».

Строение щитовидной железы. Щитовидная железа - самая большая железа внутренней секреции. Впервые она описана Везалием в 1543 г. Щитовидная железа ЩЖ располагается на передней поверхности шеи и состоит из двух долей и перешейка. Правая и левая доли ЩЖ находятся на уровне щитовидного хряща гортани, нижние их полюса достигают V — VI колец трахеи. Доли частично прилегают к глотке и пищеводу, прикрывают медиальную полуокружность общих сонных артерий в средних третях. В ряде случаев перешеек отсутствует.

Снаружи орган окружен четвертой фасцией шеи внутренностная фасция , состоящей из двух листков — наружного и внутреннего. Внутренний листок висцеральный более тонкий, охватывает органы шеи — глотку, пищевод, гортань и ЩЖ. Наружный париетальный листок расположен спереди и с боков от органов шеи, прилегает к задней стенке влагалища мышц, он образует влагалище сосудисто-нервного пучка в области внутреннего треугольника шеи. Масса ЩЖ взрослого человека 15 — 30 г. У мужчин ЩЖ крупнее. Соединительнотканные прослойки, отходящие от собственной капсулы железы, делят ее на дольки, состоящие из сферических фолликулов. Основным компонентом коллоида фолликулов является тиреоглобулин, в коллоиде содержатся протеиды, йод, ферменты.

Диаметр фолликула 20 — 40 мк. При повышенной функциональной активности ЩЖ фолликулярные клетки приобретают цилиндрическую форму, при гипофункции — уплощаются. Между фолликулами располагаются кровеносные капилляры и нервные окончания, непосредственно контактирующие с наружной поверхностью фолликулов. Поверхность фолликулярных клеток, обращенная к полости с коллоидом, называется апикальной. Она содержит микроворсинки, проникающие в коллоид. В ЩЖ обнаруживаются три вида клеток. Основную массу железы составляют А-клетки фолликулярного эпителия тиреоциты , синтезирующие тиреоидные гормоны.

В-клетки Ашкинази-Гюртля накапливают серотонин и биогенные амины. В межфолликулярной соединительной ткани расположены С-клетки парафолликулярные , вырабатывающие кальцитонин. В С-клетках содержится много митохондрий и электронно-плотных гранул. С-клетки имеют нейроэктодермальное происхождение. ЩЖ секретирует йодсодержащие гормоны — трийодтиронин Т3 , тироксин Т4 и нейодированный кальцитонин. Основными компонентами тиреоидных гормонов являются йод и аминокислота тирозин. Йод поступает в организм с пищей и водой в виде неорганических и органических соединений.

Избыток йода выводится организмом с мочой и желчью. Физиологическое потребление йода 110 — 140 мкг. Соединения йода образуют в организме йодиды калия и натрия. При участии окислительных ферментов йодиды превращаются в элементарный йод. Фолликулярные клетки захватывают йод из крови. В клетках ЩЖ происходит синтез тиреоглобулина. Последний секретируется в просвет фолликула.

В коллоидном пространстве происходит органификация йода — присоединение его к белку. Тиреоидные гормоны выделяются фолликулярными клетками в кровь. Основным и физиологически активным гормоном является трийодтиронин Т3 , который во много раз активнее тетрайодтиронина тироксина, Т4. Т3 образуется в тканях на периферии за счет дейодирования Т4. Поступающий из ЩЖ в кровь тироксин большей частью связывается с белками плазмы. Нарушения функции печени и почек влияют на содержание в крови тиреоидных гормонов. На связывающую способность плазмы могут влиять глюкокортикоиды и лекарственные препараты контрацептивы, препараты раувольфии и др.

Синтез и секреция тиреоидных гормонов регулируется гипоталамусом. Установлено, что ТРГ является рилизинг-фактором для пролактина. Физиологическое действие ТТГ заключается в стимуляции синтеза и секреции тиреоидных гормонов. С возрастом происходит снижение уровня тиреоидных гормонов в крови и повышение содержания ТТГ. На секрецию ТТГ влияют — стероидные гомоны, соматостатин и соматотропный гормон, гонадотропины, различные факторы роста. Его уровень обычно ниже у мужчин, а у женщин он зависит от фазы менструального цикла. Физиологические эффекты сводятся к стимуляции окислительно-восстановительных процессов, увеличению потребления О2 тканями.

Тиреоидные гормоны участвуют во всех видах обмена — водно-солевом, белковом катаболическое действие , жировом, углеводном и энергетическом. Стимулируют синтез белка, усиливают процессы всасывания глюкозы в кишечнике и утилизации их в тканях, активизируют распад гликогена и снижают его содержание в печени. Тиреокальцитонин с паратгормоном регулирует обмен кальция и фосфора в организме. Изменение продукции тиреогормонов связано с недостатком в пище йода, что ведёт к разрастанию ткани ЩЖ и появлению эндокринного зоба. Паращитовидные железы. Паращитовидные железы парные образования, расположенные в области шеи позади щитовидной железы. Их количество от 2 до 6, две верхние и две нижние.

Располагаются в рыхлой соединительной клетчатке, отделяющей внутреннюю и наружную капсулы щитовидной железы. Верхняя пара примыкает сзади к долям щитовидной железы, вблизи их верхушки на уровне дуги перстневидного хряща. Нижняя пара находится между трахеей и долями щитовидной железы, вблизи их оснований. Анатомическое строение. Паращитовидные железы - небольшие образования величиной с рисовое зернышко, залегающие позади долей щитовидной железы, имеют округлую или овальную форму. Размеры: длина — 4-5 мм, толщина — 2-3 мм, масса - 0,2-0,5 гр. Нижние паращитовидные железы крупнее верхних.

Паращитовидные железы отличаются от щитовидной железы более светлой окраской, у детей бледно-розоватые, у взрослых - желто-коричневые и более плотной консистенцией. Паращитовидные железы имеют тонкую соединительнотканную капсулу, от которой вглубь капсулы отходят перегородки, делящие ткань железы на группы клеток, однако четкого разграничения на дольки нет. Паращитовидные и щитовидная железы схема : А. Расположение паращитовидных желез на задней поверхности щитовидной железы: 1 - щитовидная железа; 2 - щитовидный хрящ; 3- верхняя паращитовидная железа; 4 - нижняя паращитовидная железа; 5- трахея. Микроскопическое строение паращитовидной железы, сагиттальный разрез: 6 - фолликулы щитовидной железы; 7 - паращитовидная железа; 8 - оксифильные клетки; 9- главные клетки; 10 -капилляры; 11 —капсула. Гистологическое строение. Паращитовидные железы на разрезе представлена фолликулами, но содержащийся в их просвете коллоид беден йодом.

Паренхима железы состоит из плотной массы эпителиальных клеток. Среди главных клеток, подразделяющихся на светлые и темные, наиболее активными в функциональном отношении являются светлые клетки. Оба вида клеток - одни и те же клетки на разных этапах развития. В 1926 г. Паратгормон регулирует уровень кальция и фосфора в крови. Кальций влияет на проницаемость клеточных мембран, возбудимость, свертываемость крови и другие процессы. Важен и фосфор, входящий в состав многих ферментов, фосфолипидов, нуклеопротеинов, участвующих в поддержании кислотно-щелочного равновесия и обмена веществ.

Органами-мишенями для паратгормона являются кости, почки и тонкая кишка. Действие паратгормона на кости: вызывает увеличение количества остеокластов и повышение их метаболической активности; стимулирует метаболическую активность остеоцитов; подавляет образование костной ткани остеобластами. Действие паратгормона на почки: повышает реабсорбцию кальция и уменьшает реабсорбцию фосфатов в извитых канальцах. Действие паратгормона на кишечник: повышает всасывание кальция. Аномалии, гипо- и гиперфункция. В результате дефицита паратгормона — гипопаратиреозе, возникает судорожное сокращение скелетной мускулатуры, причиной которой является снижение уровня кальция в крови. При гипопаратиреозе у детей, с врожденной недостаточностью паращитовидных желез нарушается рост костей, и наблюдаются длительные судороги определенных групп мышц.

Гиперпаратиреоз вызывается злокачественными опухолями паращитовидных желез. При избытке паратгормона развивается болезнь Реклинхгаузена, проявляющаяся в поражении скелета и почек, первичные изменения в костях, за счет активации остеокластов, разрушающих костную ткань с высвобождением кальция. Падение уровня кальция в крови, недостаток кальция в пищевом рационе, незлокачественная опухоль паращитовидной железы, рахит вызывает повышенную секрецию паратгормона, что повышает активность остеокластов. В результате чего, уровень кальция в крови повышается, но кости становятся хрупкими. Отмечается нарушение углеводного обмена в костях. Развивается почечная недостаточность. Больные жалуются на боли в костях, слабость, преждевременное выпадение зубов, резкое похудание.

Парная железа, расположенная в жировом околопочечном теле в непосредственной близости к верхнему полюсу почки. Наружное строение. Правый и левый надпочечники отличаются по форме: правый сравнивают с трехгранной пирамидой, левый — с полумесяцем. У каждого из надпочечников различают три поверхности: переднюю, заднюю и почечную. Последняя у правого надпочечника соприкасается с верхним полюсом правой почки, а у левого — с медиальным краем левой почки от ее верхнего полюса до ворот. Надпочечники имеют желтый цвет, их поверхности слегка бугристы. Размеры надпочечника: длина — 5 см, ширина — 3—4 см, толщина около 1 см.

Снаружи каждый надпочечник покрыт толстой фиброзной капсулой, соединенной многочисленными тяжами с капсулой почки. Паренхима желез состоит из коркового вещества коры и мозгового вещества. Корковое вещество прочно спаяно с фиброзной капсулой, от которой вглубь железы отходят перегородки — трабекулы. Топография надпочечников. Задние поверхности надпочечников прилежат к поясничной части диафрагмы, почечные поверхности — к почкам. Левый надпочечник передней поверхностью прилежит к кардиальной части желудка и к хвосту поджелудочной железы, а медиальным краем соприкасается с аортой. Правый надпочечник передней поверхностью прилежит к печени и к двенадцатиперстной кишке, а медиальным краем соприкасается с нижней полой веной.

Оба надпочечника лежат забрюшинно; их передние поверхности частично покрыты брюшиной. Кроме брюшины надпочечники имеют общие с почкой оболочки, участвующие в их фиксации: это жировая капсула почки и почечная фасция. Внутреннее строение. Надпочечники состоят из двух самостоятельных желез внутренней секреции — коры и мозгового вещества, объединенных в единый орган. Кора и мозговое вещество имеют разное происхождение, разный клеточный состав и разные функции. Корковое вещество надпочечника делят на три зоны, связанные с синтезом определенных гормонов. Наиболее поверхностный и тонкий слой коры выделяется как клубочковая зона.

Средний слой называется пучковой зоной. Внутренний слой, примыкающий к мозговому веществу, образует сетчатую зону. Мозговое вещество, расположенное в надпочечнике центрально, состоит из хромаффинных клеток. Клетки мозгового вещества секретируют два родственных гормона — адреналин и норадреналин, которые объединяют под названием катехоламинов. Возрастные особенности. Толщина и структура надпочечника изменяется с возрастом. У новорожденного кора надпочечника состоит из двух частей: из зародышевой коры и тонкого слоя истинной коры.

После рождения надпочечники уменьшаются. Рост надпочечников ускоряется в период полового созревания.

Они называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более - полимодальными. Модальность — характер воспринимаемого и передаваемого сигнала например, механорецепторные, зрительные, обонятельные нейроны и т. Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности.

Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем. Специфические образования нервной клетки. К специфическим образованиям относятся тигроидное вещество и нейрофибриллы. Тигроидное вещество тигроид, вещество Ниссля находится в перикарионе и дендритах, он отсутствует в аксоне. Под световым микроскопом тигроид выявляется как скопление базофильного вещества в виде глыбок или зерен.

Крупные глыбки придают цитоплазме пятнистый вид шкуры тигра. С помощью электронного микроскопа установлено, что тигроид представляет мощно развитый гранулярный ЭПР. Ретикулум состоит из системы мембран с большим количеством рибосом. Высокое содержание РНК обуславливает базофилию тигроида. В нем содержится и белок. Тигроид — обязательный компонент нервной клетки, легко меняющийся в зависимости от функционального состояния. Тигролиз — распыление тигроидного вещества, отражает глубокие дистрофические изменения при нарушении целостности нейронов.

При сильном возбуждении нейрона тигроид может исчезнуть вообще. Уменьшение тигроида и изменение его положения в нейронах наблюдается также в результате патологических процессов: воспаления, дегенерации, интоксикации. Все это дает основание рассматривать количество тигроида, форму его глыбок, характер их расположения как показатели физиологического состояния нейрона. В цитоплазме нейронов обнаруживаются нейрофибриллы — нитчатые структуры. В теле нейрона и дендритах они образуют густую сеть. В аксоне они вытягиваются по длине. Открытие нейрофибрилл привело к возникновению нейрофибриллярной теории проведения нервного возбуждения.

Сторонники этой теории считали, что нейрофибриллы являются беспрерывным проводящим элементом нервной системы, с чем связана ее главная функция. В дальнейшем было установлено, что нейрофибриллы не принимают участие в процессе проведения нервного и возбуждения и прерываются в области контакта нервных клеток. По современным представлениям, в соответствии с нейронной теорией в проведении нервного возбуждения основная роль принадлежит плазмалемме нейрона. Вопрос о значении фибрилл остается неясным. По слипанию нейрофибрилл определяют патологическое состояние нервной клетки. Показано, что при старческом слабоумии наблюдается слипание и огрубление нейрофибриллярной сети. Обмен веществ в нейроне.

Нейроны при участии клеток глии обеспечивают себя всем «необходимым» для нормального функционирования, так как синтезируют белки, углеводы и липиды, которые используются самой нервной клеткой в процессе е жизнедеятельности. Необходимые питательные вещества, кислород и соли доставляются в нервную клетку кровью. Продукты метаболизма также удаляются из нейрона в кровь. Белки нейронов служат для пластических и информационных целей. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых структурах нервной системы выше, чем в более старых.

Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше - в мозжечке, наименьшая - в спинном мозге. Липиды нейронов служат энергетическим и пластическим материалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается. Углеводы нейронов являются основным источником энергии для них.

Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того, что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит и глюкоза крови. Расщепление глюкозы идет преимущественно аэробным путем, чем объясняется высокая чувствительность нервных клеток к недостатку кислорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. Кроме того, в нейроне имеются различные микроэлементы. Благодаря высокой биологической активности они активируют ферменты. Количество микроэлементов в нейроне зависит от его функционального состояния.

Так, при рефлекторном или кофеиновом возбуждении содержание меди и марганца в нейроне резко снижается. Обмен энергии в нейроне в состоянии покоя и возбуждения различен. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз. Собственные энергетические процессы нейрона его сомы тесно связаны с трофическими влияниями нейронов, что сказывается, прежде всего, на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон. Тема 3.

Нейросекреторные клетки. Регенерация нейронов. Нейросекреторные нервные клетки. В определенных отделах мозга беспозвоночных и позвоночных животных имеются нейроны, содержащие гранулы секрета. Такие секретирующие нейроны называются нейросекреторными. Они имеют физиологические признаки нейрона, но обладают выраженными признаками железистых клеток. Нейросекрет синтезируются в связи с тигроидной субстанцией гранулярной ЭПС, оформляется в виде секрета в системе аппарата Гольджи.

Секрет продвигается по аксону и выделяется из клеток в области их концевых разветвлений. В отличие от обычных нейронов секрет высвобождается не в области синапса, а в кровь или ликвор мозговую жидкость. Аксоны нейросекреторных клеток направляется в нейрогипофиз и промежуточную долю аденогипофиза, образуя с ними единую систему. Выделяемый нейросекреторными клетками продукт рассматривают как гормон, регулирующий деятельность некоторых желез внутренней секреции и гонад, где нервная регуляция оказывается редуцированной. Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована.

Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются? Этот факт часто приводится в популярной и даже научной литературе. Однако такое мнение научно не обосновано и потому не может считаться достоверным. На самом же деле любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому целесообразным будет обратить внимание к одному из свойств нервной системы, а именно - к ее исключительной пластичности. Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых нервные клетки, которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции.

Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Значит, одна живая нервная клетка может заменить девять погибших. Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих и человека, или нейрогенез. Первое сообщение о нейрогенезе появилось в 1962 году в статье "Формируются ли новые нейроны в мозге взрослых млекопитающих? Ее автор, профессор Ж. Он с помощью электрического тока разрушал латеральное коленчатое тело крысы и вводил туда радиоактивное вещество, проникающее во вновь возникающие клетки.

Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе и коре головного мозга. В дальнейшем аналогичное явление было установлено и другими исследователями в головном мозге птиц. В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа.

Новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Аналогичный процесс происходит и в нервной системе млекопитающих рис. Основные пути дифференцировки клеток ганглионарной пластинки и нервной трубки Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих. Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. Продолжительность жизни таких нейронов очень высока - до 112 дней.

Стволовые нейрональные клетки преодолевают длинный путь около 2 см. Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны. Стволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Нейрогенез идет не только у грызунов, но и у человека.

В этом убедились на основе анализа результатов эксперимента. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей.

Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых клеток, но и из стволовых клеток крови. Оказалось, что стволовые клетки действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образую двуядерные клетки. Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови. Согласно одной из гипотез, стволовые клетки несут новый генетический материал, который, попадая в «старую» клетки мозжечка, продлевает его жизнь. Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний заболеваний, сопровождающихся гибелью нейронов головного мозга.

Препараты стволовых клеток для трансплантации получают двумя способами. Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это.

Трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона. Термин «нейроглия» ввел в обиход немецкий патологоанатом Рудольф Вирхов для описания связывающих элементов между нейронами. Эти клетки составляют половину объема мозга. Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия — вспомогательная и очень важная составная часть нервной ткани, связанная с нейронами. По мере специализации нейрона как индивидуальной клетки в процессе эволюции возникла организация более высокого порядка — межклеточное «сообщество» нейрона и нейроглии.

Нейроглия не принимает непосредственного участия генерации и проведении нервных импульсов и, тем не менее, нормальное функционирование нейрона невозможно в отсутствии или при повреждении глии. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Клетки нейроглии не образуют синапсов. Различают глию центральной и периферической нервной системы. Клетки глии центральной нервной системы делятся на макроглию и микроглию. Макроглия развивается из глиобластов нервной трубки и включает: эпендиму, астроглию и олигодендроглию. Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга.

Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань.

Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет. Ток, направленный наружу, также не вызывает возбуждения.

Однако, генератор срабатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ.

При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП.

Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость.

Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона.

Нервные импульсы поступают непосредственно к железам по 1) аксонам…

Нервные импульсы поступают непосредственно к мышцам и железам по. Импульсы, исходящие от коры, затормозили нервные центры продолговатого мозга. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам вставочных нейронов 3)серому веществу спинного морга 4)белому веществу спинного мозга.

Остались вопросы?

По нервным волокнам осуществляется проведение нервных импульсов. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. проведение нервного импульса в ЦНС.

Нервные импульсы поступают непосредственно к железам по

Рефлекторная дуга — это путь, по которому проходит нервный импульс во время осуществления рефлекса. Она состоит из 5 частей: 1 рецептор — это чувствительное образование, способное реагировать на определенный вид раздражителя и преобразовывать его в нервный импульс 2 чувствительный нейрон проводит импульс в мозг 3 вставочный нейрон связывает чувствительные и исполнительные нейроны, находится в спинном или головном мозге. Рефлексы делятся на условные и безусловные имеются с рождения в течение жизни не изменяются и не исчезают одинаковые у всех организмов одного вида приспосабливают организм к постоянным условиям пример: выделение слюны при попадании лимона в рот.

В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями - рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др. Простейшая рефлекторная дуга состоит из трех нейронов - чувствительного, вставочного и двигательного или секреторного. Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва.

Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру. В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного.

Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5 — 10 раз быстрее, чем по безмиелиновым. Благодаря наличию миелиновой оболочки и совершенству метаболизма на всем протяжении мембраны в покое поддерживается одинаковый заряд, который быстро восстанавливается после прохождения возбуждения. Цвет миелинизированных нейронов белый, отсюда название «белого вещества» мозга. Безмиелиновые волокна изолированы по другой схеме. Несколько аксонов частично погружены в изолирующую шванновскую клетку, которая не смыкается вокруг них до конца. Возбуждение постепенно охватывает соседние участки мембраны и так распространяется до конца аксона с постепенным ослаблением т. Свернуть Место нейрона, от которого начинается аксон, называется аксонным холмиком. Здесь генерируется потенциал действия — специфический электрический ответ возбудившейся нервной клетки. Аксон, выходя из сомы клетки, постепенно утончается и может давать ответвления — коллатерали. Функция аксона — передача нервного импульса к аксонным терминалиям. В месте отхождения коллатерали импульс «дублируется» и распространяется как по основному ходу — аксону, так и по коллатералям. В конце аксона имеются синаптичекие окончания — аксонные терминалии. В цитоплазме аксона отсутствует ЭПС и аппарат Гольджи. Нейрофиламенты и микротрубочки располагаются вдоль аксона и обеспечивают транспорт белков и других веществ. Серое вещество мозга состоит из тел нейронов и дендритов. Белое вещество мозга состоит из аксонов. В аксонном холмике происходит генерация потенциала действия нервный импульс.

И это вызывает изменение проницаемости мембраны. Реакция мембраны может быть либо быстрая либо медленная. ГАМК может связываться с 2 типами мембранных рецепторов — с высоким и низким сродством. Бензодиазепиновые препараты вызывают угнетение ГАМК-эргических синапсов и, благодаря этому, используются для лечения тревожных состояний и страха. ГАМК удаляется из щели путем захвата пресинаптическим окончанием, а также клетками глии. Глия играет важную роль как в захвате так и в метаболизме ГАМК. Однако последующая реакция в постсинаптическом окончании более сложна. Рецепторный белок аденилатциклаза активирует внутренний рецептор — протеинкиназу, что приводит к фосфорилированию белка. Завершается этот процесс изменением ионной проводимости мембраны. Этот механизм участвует в опосредовании реакций на такие разные вещества как, например, биогенные амины. Любое взаимодействие между 2 нервными клетками имеет 3 составляющие. Одна из них — клетка или её отросток, которые посылают сигналы, — пресинаптический компонент. Другая — клетка или ее отросток, которая принимает — постсинаптический компонент. И третья — посредник между первыми. Типы синапсов. Синапсы на типичном нейроне в головном мозгу являются либо возбуждающими либо тормозными, в зависимости от типа выделяющегося в них медиатора. Они различаются морфологически под электронным микроскопом: для возбуждающих синапсов характерны сферические пузырьки и сплошное утолщение постсинаптической мембраны 1-ый тип , а для тормозных — уплощённые пузырьки и несплошное утолщение мембраны 2-й тип. Синапсы можно также классифицировать по их расположению на поверхности воспринимающего нейрона — на теле клетки, на стволе или "шипике" дендрита, или на аксоне. Понятие синапс было введено в конце XIX века Ч. Шеррингтоном, который под этим термином понимал структуру, которая опосредует передачу сигнала от окончания аксона нервной клетки к эффектору — нейрону, мышечному волокну, секреторной клетке. В зависимости от способа передачи выделяют химические, электрические и смешанные синапсы. В электрических синапсах ПД пресинаптических окончаний обеспечивает деполяризацию постсинаптической мембраны. Морфологическую основу электрической передачи составляет высокопроводящий "низкоомный" щелевой контакт, для которого характерны тесное соприкосновение пре- и постсинаптической мембран ширина синаптической щели 2-4 нм , большая площадь контакта этих мембран, наличие ультраструктур, снижающих электрическое сопротивление в области контакта. Наиболее распространены электрические синапсы у беспозвоночных и низших позвоночных. Электрические синапсы находятся между нервными клетками, однотипными по структуре и функциям. В химическом синапсе нервный импульс вызывает освобождение из пресинаптических окончаний химического посредника — нейромедиатора, который диффундирует через синаптическую щель шириной в 10-50 нм и вступает во взаимодействие с белками-рецепторами постсинаптической мембраны, в результате чего генерируется постсинаптический потенциал. Химические синапсы являются преобладающими у млекопитающих.

Задание №9 ОГЭ по Биологии

Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками. Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы. В пределах ЦНС нервные волокна входят в состав белого вещества мозга. По нервным волокнам осуществляется проведение нервных импульсов. Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм.

В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис. Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными. Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками. В электронных микрофотографиях видно, что каждый осевой цилиндр погружен в леммоцит, ее клеточная мембрана смыкается и образует мезаксон — сдвоенные мембраны шванновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров, погруженных в леммоцит, может быть в разное количество мезаксонов в нервном волокне.

Миелин отсутствует. Шванновские клетки на всем протяжении окутывают безмякотное волокно, препятствуя его соприкосновению с окружающей средой. Строение нерва А и нервного волокна Б. Поперечное строение нерва а , нервного волокна б. Поскольку отростки нервных клеток покрыты плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается.

Он проходит по безмякотным нервным волокнам в 10 раз медленнее, по сравнению с мякотными. Мякотные нервные волокна составляют белое вещество головного и спинного мозга и входят в периферические нервы. Мякотное нервное волокно состоит из одного осевого цилиндра, вокруг которого шванновские клетки образуют миелиновую оболочку. Нервное волокно, состоящее из одного осевого цилиндра и расположенных вокруг него шванновских клеток, называют мякотным, или миелиновым. Характерная особенность шванновских клеток — наличие в них липоидного вещества миелина, который образует вокруг осевого цилиндра мякотную миелиновую оболочку.

Каждая шванновская клетка миелинизирует небольшой сегмент только одного аксона. Мякотная, или миелиновая, оболочка примыкает к осевому цилиндру и окружает его чехлом. Она выполняет роль изолятора. Этим объясняется большая скорость проведения нервных импульсов мякотными нервными волокнами, т. Миелин регулярно прерывается через определенные промежутки.

Фактически эти участки, лишенные миелина, являются границами между двумя соседними клетками, где они соединяются при помощи коротких отростков и называются узлами нервного волокна перехват Ранвье. В перехвате Ранвье аксолемма осевого цилиндра не покрыта миелиновой оболочкой. По этой же причине в миелиновых волокнах в отличие от не имеющих перехватов немиелиновых волокон скорость проведения нервных импульсов выше. Участок между узлами называется межузловым сегментом. Они называются «насечками миелина» Шмидтлантермановскими насечками.

Шмидтлантермановские насечки — это участки расслоения миелина, образовавшиеся при миелинизации. Функция насечек неясна. В зависимости от длины миелинового сегмента количество насечек миелина бывает различным. Они отсутствуют в пределах ЦНС. Осевой цилиндр содержит митохондрии, элементы гладкой ЭПС, элементы цитоскелета — микротрубочки, нейрофиламенты и микрофиламенты.

Скорость проведения нервного импульса зависит от диаметра аксона, а сам диаметр определяется количеством содержащихся в нем нейрофиламентов. В нормальных и патологических условиях количество нейрофиламентов и диаметр аксона тесно коррелируют. Аксонный транспорт обеспечивает кинезии микротрубочек. Основной материал антероградного транспорта — белки, синтезированные в перикарионе например, белки ионных каналов, ферменты синтеза нейромедиаторов. Внешняя плазмалемма шванновских клеток окружена базальной мембраной.

Выше изложено особенности строения мякотного периферического нервного волокна. Мякотные нервные волокна ЦНС построены сходным образом. Однако оболочка их образована не леммоцитами, а олигодендроцитами. Насечки и перехваты в них отсутствуют, нет и базальных мембран. Нервные стволы нервы образованы пучками мякотных и безмякотных нервных волокон, которые объединяются соединительной тканью, образующей соединительнотканные оболочки.

В нерве может быть множество волокон только мякотных только или безмякотных. Есть нервы, в которых встречаются и те и другие. Наружная оболочка нерва — эпиневрий - состоит из волокнистой соединительной ткани, объединяющей все пучки в составе нерва. Периневрий — соединительнотканная оболочка, окружающая каждый отдельный пучок нервных волокон. Эндоневрий — рыхлая соединительная ткань между отдельными нервными волокнами.

Эта ткань связывает отдельные нервные волокна в пучки, соединяясь с их базальной мембраной. Нервы образованы пучками нервных волокон, которые объединены соединительнотканными оболочками. Большинство нервов - смешанные, то есть включают афферентные и эфферентные нервные волокна. Периневриальный барьер необходим для поддержания гомеостаза в эндоневрии. Барьер контролирует транспорт молекул через Периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов.

Периферический нерв содержит разветвленную сеть кровеносных сосудов. В эпиневрии и в наружной части периневрия содержатся артериолы и венулы, а также лимфатические сосуды. В эндоневрии проходят кровеносные капилляры. Периферический нерв иннервирован — имеет специальные нервные волокна. Тема 5.

Нервные сети. Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно. Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис. Специализированные контакты нейронов между собой, а также нейронов с клетками исполнительных органов, называются синапсами.

Несмотря на разнообразие синапсов, в их строении имеются общие черты. В синапсе выделяют пресинаптическую и постсинаптическую мембраны и пространство между ними - синаптическую щель шириной от 2 до 30 нм. Толщина каждой мембраны не превышает 5-6 нм. Пресинаптическая мембрана является продолжением поверхностной мембраны аксонального окончания. Она не сплошная, в ней имеются отверстия, через которые цитоплазма аксонального окончания сообщается с синаптическим пространством.

Постсинаптическая мембрана менее плотная, в ней отсутствуют отверстия. Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле соме - постсинаптического нейрона. Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе. Конечные участки аксонов и дендритов в области синапса не имеют мякотной оболочки и расширены в пресинаптический мешочек.

Мешочек характерен для синаптических пузырьков, имеющих диаметр 40-59 нм. В них содержится медиатор. В зависимости от типа выделяемого медиатора различают синапсы: а холинэргические — выделяют ацетилхолин; б адренэргические — выделяют норадреналин, дофамин катехоламины ; в серотонинэргические — выделяют серотонин; г пептидэргические — выделяют пептиды эндорфины, энкефалины и аминокислоты глицин, глутамат, ГАМК. В таких синапсах передача нервного импульса осуществляется при помощи химического вещества — медиатора. Такие синапсы называются синапсами с химической передачей.

При изменении мембранного потенциала в терминалях нейромедиаторы выходят в синаптическую щель через поры диаметром 4-5 нм, имеющиеся в пресинаптической мембране экзоцитоз и связываются со своими рецепторами в постсинаптической мембране, вызывая изменение мембранного потенциала постсинаптического нейрона. Основными медиаторами являются: 1. Ацетилхолин — один из первых выявленных медиатора. Он известен как «вещество блуждающего нерва» из-за своего воздействия на сердечную деятельность. Представляет собой наиболее распространенный медиатор ЦНС.

Аминокислота глицин, оказывающая тормозное действие на мотонейроны. Кислая аминокислота глутамат, является самым распространенным возбуждающим медиатором ЦНС. Адреналин, норадреналин и дофамин — представляют собой семейство медиаторов, передающих возбуждение или торможение в ЦНС, так и в периферической нервной системе. В пресинаптической части расположены синаптические пузырьки и митохондрии. Синаптические пузырьки содержат нейромедиатор.

Постсинаптическая мембрана располагает рецепторами нейромедиатора и ионными каналами. Синаптическая передача — сложный каскад событий. Она возможна при реализации ряда последовательных процессов: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора из нервной терминали, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или захват его нервной терминалью. Многие неврологические и психические заболевания сопровождаются нарушениями синаптической передачи. Медиаторы связываются со специфическими рецепторами постсинаптической мембраны.

Вокруг рецептора формируется область высокой концентрации вещества того или иного медиатора. Соответственно повышается или понижается вероятность открывания ионного канала, так как изменяется его проводимость. В синапсах возбуждение проводится только в одном направлении, но гораздо медленней, чем по нервному волокну. Однако передача информации осуществляется исключительно точно. В некоторых синапсах синаптическая щель отсутствует и его структурной основой является плотный контакт.

В таком синапсе возбуждение может передаваться без участия медиатора, так как мембраны клеток соприкасаются. Эти синапсы называются синапсами с электрической передачей. В синапсах такого строения пресинаптическая мембрана также имеет поры, но они в 5 раз меньше, чем в синапсах с химической передачей возбуждения. Поры электрических синапсов являются межклеточными диффузионными каналами, соединяющими соприкасающиеся клетки. По структуре и локализации синапсы подразделяются на 3 группы: межнейронные, рецепторно — нейрональные и нейроэффкторные.

Межнейронные синапсы подразделяются на аксодендритические, аксосоматические и аксо-аксональные. Межнейронные синапсы являются синапсами между двумя нейронами. Если аксон одного нейрона контактирует с дендритом другого постсинаптического нейрона, то такие синапсы называются аксодендритическими. Аксодендрическая связь представлена синапсами двух типов. Один тип — это синапсы с широкой синаптической щелью и сами мембраны более утолщены.

Такие синапсы характерны для возбуждающих нейронов. Другие синапсы принадлежат тормозным нейронам. Если аксон одного нейрона контактирует с перикарионом другого постсинаптического нейрона, то такой синапс называется аксосоматическим. Если же аксон одного нейрона контактирует с аксоном другого постсинаптического нейрона, то такой синапс называется аксо-аксональным. Межнейронные синапсы очень многочисленны.

На поверхности перикариона и отростков одного пирамидного нейрона в коре больших полушарий головного мозга имеется около 104 синапсов. Рецепторно — нейрональные рецепторно - дендритные синапсы являются синапсами между рецепторными клетками, сходными с нейронами, специализированными эпителиальными, нейроглиальными клетками, с одной стороны, и дендритами чувствительных нейронов — с другой. Примером синапсов такого типа у позвоночных являются синапсы вкусовых сосочков, боковой линии рыб, внутреннего уха, кожи, соединительной ткани. Нейроэффкторные аксоэффекторные синапсы являются контактами между аксоном двигательных эффекторных нейронов и клетками, не принадлежащими к нервной системе. У человека и млекопитающих хорошо изучены двигательные и секреторные нейроэффекторные синапсы, или эффекторные нервные окончания.

Первые представляют собой синаптические соединения между аксоном двигательного нейрона и поперечнополосатыми мышечными волокнами, поперечнополосатыми и гладкомышечными клетками, а вторые — между аксонами двигательного нейрона с секреторными клетками. Существуют многочисленные синапсы между аксоном эфферентного нейрона и другими клетками — жировыми, ресничными и др. Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие пути среди клеток различных функциональных систем и межрегиональных объединений. Однако до сих пор остается загадкой, каким образом аксоны и дендриты той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования. Высокая специфичность структуры мозга имеет важное значение.

Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее, причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми. Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона, например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки. Типы нервных сетей.

Существуют три генетически детерминированных типа нервных сетей. Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток см. Это абсурдное упрощение поможет нам проявляется в наличии трех основных типов сетей, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом. Иерархические сети. Наиболее распространенный тип межнейронных связей встречаются в главных сенсорных и двигательных путях.

В сенсорных системах иерархическая организация носит восходящий характер. В нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток. Иерархические системы обеспечивают очень точную передачу информации. В результате конвергенции когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня или дивергенции когда контакты устанавливаются с большим числом клеток следующего уровня информация фильтруется и происходит усиление сигналов.

Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети. Локальные сети.

Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях. Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

Импульс нейрона. Ветвящийся отросток нейрона. Нервные импульсы передаются в мозг по нейронам. Передача нервного импульса с нейрона. Передача нервных импульсов по волокнам нервной системы.

Схема строения двигательного нейрона. Структурно-функциональной единицей нервной ткани является. Схема проведения нервного импульса. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Рефлекторная дуга периферической системы. Рефлекс вставочные Нейроны. Функции вставочного нейрона рефлекторной дуги.

Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Вставочные Нейроны нервные импульсы. Нейрон состоит из аксона и дендритов. Строение нейрона тело Аксон дендрит. Строение нейрона. Строение нефрона Аксон дендрит. Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи.

Синапс этапы синаптической передачи. Путь нейрона по рефлекторной дуге. Последовательность нервного импульса в рефлекторной дуге. Путь передачи нервного импульса рефлекторная дуга. Рефлекторная дуга по порядку нервного импульса. Передача нервного импульса. Рефлекторная дуга рвотного рефлекса схема. Структура трехнейронной рефлекторной дуги.. Схема трехнейронной рефлекторной дуги соматического рефлекса.

Схема трехнейронной рефлекторной дуги двигательного рефлекса. Аксонный холмик строение. Проведение нервного импульса по нейрону. Нервно мышечное сокращение. Передают нервные импульсы в ЦНС. Проведение нервного импульса в ЦНС. Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс.

Рефлекторная дуга гемодинамического рефлекса. Схема Рецептор чувствительный Нейрон. Схема спинного мозга чувствительный Нейрон. Рефлекс ЕГЭ рефлекторная дуга. Строение рефлекторной дуги схема. Схема отделов рефлекторной дуги анализаторов. Вегетативная нервная система, дуга вегетативного рефлекса 8 класс. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона.

Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение. Регулирует все процессы в организме. Направление движения нервного импульса. Процессы нервной ткани. Нервных процессов в организме. Строение спинного мозга Нейроны. Нейроны спинного мозга схема. Двигательный Нейрон в заднем корешке спинного мозга.

Спинной мозг строение рефлекторная. Коленный рефлекс физиология. Коленный рефлекс спинного мозга. Эффектор коленного рефлекса. Коленный рефлекс ответная реакция. Строение нерва дендрит.

Дендриты, отходя от тела клетки, постепенно ветвятся под острым углом. Синапсы Передача сигнала от клетки к клетки осуществляется в особых образованиях — синапсах.

Такое название им дал в 1897 г. Чарлз Шеррингтон. В них конечная веточка аксона утолщена и содержит пузырьки с раздражающим веществом — медиатором. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. В зависимости от ее состава клетка, регулируемая нейроном, может включиться в работу, то есть возбудиться, или выйти из работы затормозиться. Нейроны различаются по своим функциям и подразделяются на чувствительные, вставочные и двигательные. Чувствительные нейроны — это нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма. Чувствительный нейрон Двигательные исполнительные нейроны — нейроны, иннервирующие мышечные волокна и железы.

Двигательный нейрон Вставочные нейроны обеспечивают связь между чувствительными и двигательными нейронами. Между чувствительным и двигательным нейроном может быть очень большое количество вставочных нейронов. Они собирают, анализируют информацию, полученную от чувствительных нейронов, и принимают решение о том, каким образом отреагировать на изменившиеся условия. Классификация нервной системы по месторасположению Нервную систему по месту расположения подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг, к периферической — нервы, нервные узлы и нервные окончания. Нервы — пучки длинных отростков, покрытые общей оболочкой, выходящие за пределы головного и спинного мозга. Если информация по нерву идет от рецепторов в головной или спинной мозг, то такие нервы называют чувствительными, центростремительными или афферентными. Эти нервы состоят из дендритов чувствительных нейронов.

Если информация по нерву идет из центральной нервной системы к исполнительным органам мышцам или железам , то нерв называется двигательным или эфферентным. Двигательные нервы образованы аксонами двигательных нейронов.

Нейроны мозга человека. Нейронные процессы головного мозга. Концепция нейропластичности мозга. Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема дуги соматического спинального рефлекса. Строение рефлекторной дуги спинного мозга. Регуляция работы сердца схема.

Схема регуляции сердечной деятельности. Нервная регуляция работы сердца. Влияние нервной системы на деятельность сердца. Нейронные импульсы в мозгу. Синапсы головного мозга. Афферентные и эфферентные нервные пути. Афферентный путь и эфферентный путь. Проводящие пути афферентные и эфферентные. Афферентные двигательные пути.

Структура и функции рефлекторной дуги. Строение рефлекторной дуги мигательного рефлекса. Общая схема строения рефлекторной дуги. Рефлекторная дуга безусловного мигательного рефлекса. Нервная система Нейрон. Структура двигательного нейрона. Нейроны центральной нервной системы. Нервная регуляция. Нервная регуляция жизнедеятельности организма.

Система органов нервной регуляции. Нервная регуляция осуществляется. Механизм передачи возбуждения в возбуждающих синапсах, медиаторы.. Синапс и нейромедиаторы. Медиаторы синапсов. Возбуждающие и тормозящие синапсы. Аксоны и дендриты спинного мозга. Дендрит двигательного нейрона. Нейрон Аксон дендрит.

Этапы синаптической передачи импульса. Этапы синаптической передачи в химическом синапсе. Механизм синаптической передачи нервного импульса через синапс. Рефлекторный механизм деятельности нервной системы. Рефлекторный принцип функционирования ЦНС. Рефлекс нервная система. Рефлекторный принцип деятельности нервной системы человека.. Роль нейромедиаторов в передаче нервных импульсов. Химическая передача нервного импульса.

Симпатическое влияние на сердце. Влияние симпатической нервной системы на сердце. Влияние симпатической системы на сердце. Влиянием симпатических нервов на деятельность сердца. Состав простейшей рефлекторной дуги. Соматическая рефлекторная дуга функции. Звено рефлекторной дуги выполняет функции. Нервная клетка Нейрон. Аксон отросток нервной клетки.

Дендрит чувствительного нейрона. Спинальные рефлексы: Миотатический рефлекс, сухожильны. Рефлекс с проприорецепторов скелетных мышц схема. Схема миотатического рефлекса. Сокращение и растяжение мышц. Преобразования раздражения в нервные импульсы происходит в. Раздражение в нервный Импульс. В преобразования раздражителя в нервный Импульс. Зрительный нерв образован аксонами клеток.

Что иннервируют зрительные нервы. Зрительный нерв иннервирует мышцы. Рефлексы спинного мозга Аксон рефлекс. Рефлексы спинного мозга коленный рефлекс.

Страница 47

  • Разбор типовых вариантов заданий №9 ОГЭ по биологии
  • Топ вопросов за вчера в категории Биология
  • ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
  • ГДЗ по биологии 8 класс Драгомилов | Страница 47
  • Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных

КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по

Найди верный ответ на вопрос«Нервные импульсы поступают к мышцам, железам и другим рабочим органам по 1) белому веществу спинного мозга 2) вставочным нейронам 3) » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся. Нервные импульсы поступают непосредственно к железам по. Железы внутренней секреции не имеют протоков, поэтому гормоны поступают непосредственно в кровь. Нервные импульсы поступают непосредственно к железам по. Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь. Слайд 6 Нервные импульсы поступают непосредственно к железам по.

нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам

Отправить Обработка персональных данных Отправляя комментарий, вы даёте согласие на обработку своих персональных данных на условиях и для целей, определённых в политике в отношении обработки персональных данных , а также принимаете Пользовательское соглашение. FlasFlas 26 марта 2023 20:09 Цитировать Ответить -1 В тесте присутствует несколько ошибок. Во втором задании правильным ответом является и 2 и 3, так как нервные импульсы могут образовываться в аксонных холмиках в телах нейронов.

Функции гормонов щитовидной железы следующие: — повышают интенсивность окислительных реакций в клетках; — оказывают влияние на процессы, происходящие в митохондриях, клеточной мембране; — поддерживают гормональную возбудимость основных нервных центров; — участвуют в нормальном функционировании сердечной мышцы; — обеспечивают функционирование иммунной системы: стимулируют образование т — лимфоцитов, ответственных за борьбу с инфекцией. Вопрос Раскройте роль гормонов в обмене веществ, росте и развитии организма. Ответ: Гормоны регулируют обмен веществ, рост и развитие организма, поддерживают постоянство внутренней среды, обеспечивают приспособление организма к работе различной интенсивности.

Например: при избыточном действии гормона роста в детском возрасте развивается гигантизм, при недостатке этого гормона прекращается рост тела. При недостатке гормонов щитовидной железы у детей развивается кретинизм, у взрослых — слизистый отек, при избытке — базедова болезнь. Поджелудочная железа выделяет инсулин, регулирующий поступление глюкозы в мышцы и печень. Она поддерживает постоянство содержания глюкозы в крови. Недостаток инсулина приводит к сахарному диабету.

Гормоны надпочечников содействуют приспособлению организма к напряженной работе. Вопрос Что происходит при сахарном диабете? Как помочь больному диабетом при передозировке инсулина, чтобы не допустить обморока? Ответ: Гормон поджелудочной железы — инсулин — поддерживает в крови постоянное количество глюкозы, при окислении которой организм получает нужную ему энергию. При отсутствии инсулина вместо глюкозы окисляются другие вещества, что ведет к нарушению углеводного обмена.

При заболевании сахарным диабетом инсулина выделяется недостаточно, в крови накапливается глюкоза, которая не может использоваться клетками и выводится почками из организма. В случае передозировки инсулина происходит резкое падение содержания глюкозы в крови и может случиться обморок. Для того чтобы его предупредить, больному надо дать сладкий чай, кусок сахара, булочку. Вопрос Просмотрите рис. Определите, какая железа сильнее влияет на пластический обмен, а какая — на энергетический.

Ответ: На энергетический обмен большее влияние оказывает щитовидная железа, а на пластический обмен — гипофиз. Вопрос Что регулирует автономный отдел нервной системы и что соматический? Как они взаимодействуют при включении человека в физическую работу? Ответ: Различают соматический и вегетативный автономный отделы нервной системы. Соматическая нервная система обеспечивает связь организма с окружающей средой передвижение в пространстве и реакции взаимодействия через ощущения.

Соматическая система осуществляет произвольный контроль деятельности скелетной мускулатуры. Вегетативный отдел регулирует обмен веществ, работу внутренних органов, желёз и гладкой мускулатуры. Он неподвластен нашей воле и действует независимо от нее, автономно: центры вегетативной нервной системы посылают нервные импульсы в нервные узлы, а нейроны узла регулируют работу соответствующих органов. При включении человека в физическую работу два отдела работают взаимосвязанно.

Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру.

В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу. Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов.

В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы. Учебное видео - соматическая рефлекторная дуга Скачать данное видео и просмотреть с другого видеохостинга можно на странице: Здесь.

Нервные импульсы поступают непосредственно к мышцам и железам по Нервные импульсы поступают непосредственно к мышцам и железам по Рефлекс — это ответная реакция организма на раздражение рецепторов, осуществляемая нервной системой. Рефлекторная дуга — это путь, по которому проходит нервный импульс во время осуществления рефлекса.

Она состоит из 5 частей: 1 рецептор — это чувствительное образование, способное реагировать на определенный вид раздражителя и преобразовывать его в нервный импульс 2 чувствительный нейрон проводит импульс в мозг 3 вставочный нейрон связывает чувствительные и исполнительные нейроны, находится в спинном или головном мозге.

Похожие новости:

Оцените статью
Добавить комментарий