Новости наукастинг осадков на 2 часа

это процесс прогнозирования количества осадков, которые ожидаются в течение двух часов. Региональные краткосрочные прогнозы. Прогноз осадков на 2 часа (наукастинг). Прогноз осадков на ближайшие 2-6 часов / скриншот с сайта Гидрометцентра России.

Антициклон на Урале сменит циклон: синоптики спрогнозировали «погодный калейдоскоп»

За сегодняшний день в Москве выпадет около 30% месячной нормы осадков. Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем. В ближайшие 2 часа осадков не ожидается.

Больше всего осадков в городе 2024

Результаты расчетов отображаются в виде графиков с возможностью наложения друг на друга для удобного сравнения между собой и текущим фактическим состоянием погоды, а также в виде анимированных карт. Графики строятся по параметрам: температура, давление, относительная влажность, скорость и направление ветра, порывы ветра, количество осадков с указанием фазы осадков , накопленное количество осадков, облачность, высота снега. Карты отображают следующие характеристики: количество осадков за период, количество осадков накопленное, температура воздуха и другие основные метеопараметры у поверхности земли и на основных изобарических поверхностях. Рекомендуемое применение Резервирование уборочной техники и работников для оперативного устранения последствий ожидаемых негативных погодных явлений ливни, снегопады, гололед, сильные порывы ветра, грозы Заблаговременная подготовка коллектива и рабочей инфраструктуры, зависимой от погоды, к эксплуатации при возникновении негативных погодных условий.

Массы студеного арктического воздуха, проникшие на территорию России, продолжают выхолаживаться в условиях континента и большой продолжительности ночи и удерживают значительную отрицательную аномалию температуры.

Подробнее 05. О погоде на 6-8 января Об особенностях погоды в регионах России в ближайшие дни рассказал Андрей Ушаков Подробнее 04.

Будет облачно, осадков не прогнозируется. Узнать подробнее Читайте также:.

На карте качества воздуха вы увидите области как с чистым воздухом, так и области загрязнения воздуха различными примесями по европейскому стандарту CAQI: 0 - воздух абсолютно чистый, 100 - воздух крайне загрязнен. На сайте «Метеосервис. Погода в Москве и Санкт-Петербурге представлена с точностью до районов, на очереди другие крупные города России. Опыт показывает, что прогнозирование погоды в Москве с точностью до улицы или дома не имеет особого смысла: при значительном увеличении вычислений, точность прогнозов растет на доли процента.

Классификация современных прогнозов погоды

Онлайн-словарь отраслевых терминов Прогноз осадков на 2 часа (наукастинг).
рПЗПДБ Ч НЙТЕ Наукастинг (прогноз на 2 ч).

Синоптики: на Москву за сутки выпадет 30% месячной нормы осадков

Nowcasting (meteorology) - Wikipedia Прогноз осадков на 2 часа (наукастинг). «Русскую» зиму отменили синоптики из-за феномена Эль-Ниньо в сезоне-2023/24.
Кабинет синоптика n Наукастинг заполняет пробел ЧПП, когда модели имеют недостаточную точность в течение первых часов выполнения расчетов (0 – 6 ч).
Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды - высокоточным прогнозам на несколько часов - в зоне действия девяти радаров (Кострома, Нижний Новгород, Валдай, Внуково, Воейково, Тула, Смоленск, Брянск, Курск).
Синоптики: на Москву за сутки выпадет 30% месячной нормы осадков "Сейчас в Москве прошел дождь, он был интенсивный, летний, всего за час выпало от 8 до 11 миллиметров осадков.

Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды

Прогноз осадков на 2 часа (наукастинг) В настоящее время существует ряд алгоритмов по обнаружению осадков и приблизительной оценке их интенсивности, однако результаты их работы не применяются для решения задачи наукастинга.
Предоставление данных о погоде - ООО "ДАНИО-пресс" Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы.
Windy: Wind map & weather forecast Прогноз осадков на 2 часа (наукастинг). За сутки выпадет около 20,7 мл осадков.
Как узнать, будет ли дождь, гроза? Смотрим карту осадков! Совместная технология детерминистского наукастинга и сверхкраткосрочного прогноза осадков на основе экстраполяции данных.

АИИС «МетеоТрасса» для автодорог

Научно-популярный метеорологический проект Краткосрочный и среднесрочный прогнозы погоды и их особенности На сей раз затронем тему, которая волнует каждого из нас — это прогноз погоды, а точнее два их вида: краткосрочные и среднесрочные. Краткосрочный прогноз погоды КПП — это прогноз, заблаговременность которого не превышает 3 суток 72 часа. Аналогичное определение можно дать для среднесрочных с поправкой на время. Кроме того, в краткосрочных прогнозах можно выделить сверхкраткосрочные, их заблаговременность не превышает 12 часов. За рубежом в сверхкраткосрочных прогнозах выделяют ещё прогноз текущей погоды, или наукастинг nowcasting. Его заблаговременность составляет от нескольких минут до 6 часов.

Был проведен социологический опрос об отношении к холодной зиме.

Оказалось, что 90 процентов москвичек терпеть не могут суровую холодную зиму. А десять процентов ее просто обожают. Но последующий опрос показал, что у 10 процентов москвичек есть очень красивые шубки. Теперь серьезно об экономике. В первую очередь агрометеорологи Росгидромета выпускают аналитические и прогностические бюллетени для сельского хозяйства по озимым зерновым. Оценивается, когда были посеяны озимые, в оптимальные ли сроки, влажная ли была почва, лег ли своевременно снег и так далее.

Кстати, прогнозы перезимовки озимых за два последних холодных сезона блестяще оправдались, а сами зимы были очень благоприятными для сельского хозяйства России. И мы вышли в мировые лидеры по зерну. Роман Вильфанд: Да. И естественно, всех теперь интересует вопрос, какой будет эта зима. Но мы не можем сейчас по инерции гарантировать хороших условий для будущего урожая. Специалисты гидрометслужбы проводят мониторинг вегетации озимых, оценивают риски негативного и благоприятного влияния метеоусловий на их развитие.

Сделать какие-то выводы мы сможем позже, когда выпадет снег, когда наступят морозы. Более надежные прогнозы будут выпущены в феврале-марте, когда проведем так называемое отращивание озимых. На контрольных опытных делянках в тепличных условиях проводится быстрое прорастание озимой пшеницы и ржи. Оценивается всхожесть озимых. Это позволяет уже в начале весны произвести быстрый пересев озимых в тех регионах, где повреждение сельскохозяйственных культур значительно. Для каких сфер экономики еще важен ваш долгосрочный прогноз?

И какие выводы на его основе можно сделать сейчас? Роман Вильфанд: У метеорологов очень плотные отношения с энергетиками. Конечно, мы выпускаем прогнозы на долгие сроки. Но гораздо более важны предупреждения за несколько дней о резком изменении температуры на семь-десять градусов и более, поскольку при резком значительном похолодании ТЭС нужно разогревать заранее. Это важнейший элемент для деятельности энергетиков. Оптимальным образом используются и прогнозы длительных холодов для одного или нескольких субъектов Российской Федерации.

В этом случае поскольку энергия в нашей стране закольцована заранее рассчитывается и реализуется передача энергии из тех регионов, где стоит теплая погода. Синоптики народ скромный. И высокий уровень своей работы характеризуют так: "От потребителей претензий не было". Так вот за последние пять лет рекламаций от энергетиков не поступало. К 2020 году синоптики доведут точность прогнозов температуры до 98 процентов Про синоптиков много есть шуток, смысл которых сводится к тому, что они слишком часто ошибаются. Станут ли прогнозы точнее?

Роман Вильфанд: Да, существует саркастическая фраза, что синоптик ошибается только один раз, но каждый день. За последние два десятилетия качество прогнозов постоянно повышается. Сейчас мы прогнозируем погоду на сутки с успешностью 96 процентов. Так что сегодня эта шутка уже не актуальна.

Одним из способов увеличения точности прогноза, может стать прогнозирование отклонений, которые возникают в комплексных прогнозах. Одним из методов прогнозирования может быть применение различных моделей искусственных нейронных сетей. Описание метода Исходные данные представляют из себя матрицу числовых значений, которые в дальнейшем переводятся в графическое изображение при помощи специализированного ПО [1]. Для решения задачи можно обозначить две возможные архитектуры: сверточные нейронные сети [3]; многослойные персептроны [4]. Первый тип нейросетей целесообразно применять в том случае, если мы используем данные большого размера в изначальном, матричном виде, так как сверточные нейронные сети предназначены для обработки данных, имеющих топологию в виде сетки Второй тип подойдет в том случае, если мы используем данные небольшой размерности. Например, это может быть, когда размерность была сознательно уменьшена в целях облегчения данных для тестирования новых моделей и проверки гипотез.

Для использования данного метода будет необходимо использовать данные в виде одномерного массива. Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений. Рассмотрим применение второго типа нейронных сетей. Работа с данными В качестве исходных данных имеем следующее: Input — Объединенные поля радиолокационных наблюдений. Регион: Центральный федеральный округ.

They are first identified by matching precipitation raw data to a set of preprogrammed characteristics into the system, including signs of organization in the horizontal and continuity in the vertical. In 2017, the arrival of passive sensing means, such as wireless networks, helped progress nowcasting even further. It became possible to receive inputs every minute and achieve greater accuracy in short-term forecasting. Several countries have developed nowcasting programs as previously mentioned. The World Meteorological Organization WMO supports these efforts and held test campaigns of such systems at various occasions. In 2009, WMO has even organized a symposium devoted to Nowcasting. Archived from the original on June 5, 2016.

Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды

Фото: Владимир Астапкович / РИА Новости. n Наукастинг заполняет пробел ЧПП, когда модели имеют недостаточную точность в течение первых часов выполнения расчетов (0 – 6 ч). это.> Анимация текущих данных радарных наблюдений. Актуальные новости о погоде и окружающей среде. В итоге получается своеобразный ультракраткосрочный прогноз или наукастинг — на ближайшие два часа с шагом в десять минут. Грозовые дожди в Новгородской области.

Кабинет синоптика

Ключевые слова: наукастинг, поля осадков, нейронные сети, прогнозирование ошибок, многослойный персептрон. Прогноз осадков на 2 часа (наукастинг). есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить. Актуальные новости о погоде и окружающей среде.

А можно поточнее? Как делается прогноз погоды и можно ли его улучшить?

И снова про наукастинг Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные. В этом случае хватает традиционных погодных трендов. Но если вы идёте обедать на улицу или на прогулку с ребёнком и при этом не хотите попасть под дождь, то важно знать точный момент начала дождя в течение ближайшего получаса. В таких ситуациях приходит на помощь наша карта осадков aka nowcasting. Рисунок 1. Карта осадков Яндекс.

Погоды Nowcasting — это сверхкраткосрочный прогноз погоды до 2—6 часов с шагом в 5—15 минут, предсказывающий поведение погодных явлений с коротким жизненным циклом. Такой прогноз в той или иной степени сводится к задаче экстраполяции наблюдаемых метеорологических явлений, так как настоящие тяжёлые физические модели для него менее приспособлены и не могут оперативно учитывать быстро меняющие условия. Раз мы говорим о карте осадков, нам интересен источник данных об областях скопления влаги в воздухе, обладающий относительно высокой частотой обновления.

Среди прогнозистов и потребителей наиболее востребованными в данной категории являются прогнозы на месяц и сезон. Мы часто можем видеть заголовки в СМИ о том, какая будет зима или когда выпадет первый снег. Но точность и практическая значимость подобных прогнозов всё ещё оставляет желать лучшего, несмотря на стремительный прогресс численного моделирования и усовершенствование материально-технической базы. На данный момент широко распространён метод аналогов. Он основывается на предположении, что если в текущем месяце или сезоне установился определённый характер общей циркуляции атмосферы и аналогичная ситуация уже наблюдалась в прошлом, то сходное развитие синоптических процессов последует в будущем. Недостаток данного метода заключается в субъективности выбора аналогов и в том, что даже малое отклонение фактической обстановки от аналога может привести к составлению неверного прогноза. Другой методикой является прогноз по первой декаде.

Суть его заключается в том, что тенденция развития синоптических условий в первой декаде месяца определяет то, каким в итоге окажется месяц в целом. К примеру, численные модели показали, что в первые 10 дней месяца будет наблюдаться аномально тёплая погода, а значит и весь месяц в целом с высокой степенью вероятности может выйти теплее нормы. Но в этой методике не учтены дальнейшие процессы в атмосфере, которые могут кардинально поменяться во второй половине месяца. В последние годы появилось множество прогностических климатических моделей, которые дают весьма неплохие результаты на месяц вперёд. Среди продукции данных моделей помимо температуры воздуха, рассчитываются также аномалии количества осадков, приземного давления и высотных полей геопотенциала. Анализ таких данных позволяет выделить ориентировочные факторы и процессы, которые будут обуславливать погодные условия в определённой местности на ближайший месяц. Однако, из-за фактора случайности атмосферных процессов и возникновения начальных ошибок, качество долгосрочных прогнозов пока ещё остаётся на довольно низком уровне. Пример долгосрочного прогноза аномалий количества осадков в Европе по модели CFS представлен на карте применительно для декабря 2021 г. Довольно часто явные ошибки возникают в прогнозах даже на ближайшие 12 — 24 часа, не говоря уже о более долгосрочных. Почему так происходит и с чем связаны неточности, мы расскажем в следующей публикации.

Сейчас нейронная сеть работает и выдает предсказания, схематически ее архитектура изображена здесь. Она составлена из 12 примерно одинаковых блоков. Каждый блок последовательно строит прогноз по своему горизонту, получая на вход некоторый тензор состояния и последний радарный снимок, последнее предсказание с предыдущего горизонта. Тензор состояния имеет довольно маленькую размерность, всего 32 x 32 на 30 каналов, но сверткой к инволюции мы получаем из него векторное поле, опорные вектора для преобразования thin plate spline. И, наоборот, сверткой к деконволюции мы получаем места, где выпадают осадки. Такая архитектура нейросети учитывает, что в каких-то местах осадки выпадают традиционно.

Например, туча, налетевшая на город, прольется с большей вероятностью, чем над лесом, потому что над городом другая атмосфера, микроклимат. Там, например, попросту теплее. От горизонта к горизонту, от блока к блоку мы передаем состояние, о котором идет речь, и попутно немного меняем его с помощью residual network. Residual — это когда мы сам тензор меняем совсем немного, прибавляя к нему измерения. Обученная часть — дельта от обучаемой части, изменение тензора. Мы берем запомненное состояние, с помощью деконволюции делаем из него какую-то карту выпадения осадков, складываем их с облаками и двигаем их.

Такова нынешняя архитектура сети. Она работает, предсказывает, и результаты получаются довольно хорошими — вы их можете увидеть на сайте. Но они довольно хорошие с точки зрения метрик data science, ROC AUC и F1-меры, а бизнесу интересны не абстрактные циферки и кривые, которые мы рисуем. Бизнесу интересна точность этих предсказаний, точность текста о том, что дождь закончится через 10 минут 20 секунд. Перед нами сейчас стоит другая задача. Сейчас нейросеть обучается с какой-то функцией потерь.

Она максимизирует вероятность правильной классификации с помощью бинарной энтропии. А на самом деле надо улучшать другие, бизнесовые метрики — не правильность классификации, а правильность определения времени начала и прекращения осадков. Исследования о том, как из бизнесовых метрик получить loss-функции для обучения нейросетей, — очень важны и интересны. Мы продолжаем развиваться в нужном направлении. Помимо бизнесовых требований, у нас еще есть довольно много планов по развитию текущего решения. Например, в данный момент мы используем только снимки, но у нас есть огромное количество информации.

Самое интересное — радиальная скорость. Радар по доплеровскому эффекту определяет не только наличие частиц в воздухе, но и их скорость. По длине отраженной волны он понимает, с какой скоростью движутся, к радару или от него. Результаты тоже можно использовать для прогнозирования векторного поля. Но к несчастью, у нас есть только радиальная скорость и только в местах, где реально находятся какие-то частицы, осадки. Можно подмешивать векторные поля из метеомоделирования.

Там есть ветра, а можно добавлять и еще что-то — например, температуру. В городах осадки ведут себя по-другому, чем над огромным Балтийским морем. Они над ним пролетают и выпадают уже в Питере. Сейчас нейросеть строит прогноз только по одной зоне, вокруг одного радара.

Радиолокатор работает следующим образом: примерно раз в 10 минут он строит трехмерный снимок атмосферы в радиусе 200 километров от своего местоположения по горизонтали и до 10 километров по вертикали.

По принципу действия радиолокатор очень похож на авиационный радар, только на снимке видны не самолеты, а области атмосферы, где есть капли воды размером более 50 микрометров. Если такие капли и правда есть, то, скорее всего, из облака, в котором они находятся, выпадают осадки. В России радиолокаторы установлены в наиболее населенных и интересных с метеорологической точки зрения регионах. Рэй Курцвейл: «В ближайшие 10 лет мы начнем печатать себе одежду дома» Мнения Ранее «Хайтек» писал о портативно детекторе погоды — разработке компании BloomSky.

ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК

Но и здесь все не так просто. Россия имеет четыре метеоспутника. Находясь постоянно в одной точке над Землей, он снимает целиком все Восточное полушарие планеты. Космический аппарат этой серии с высоты 35 786 км способен проводить многоспектральную съемку в видимом и инфракрасном диапазонах с разрешением 1 км и 4 км соответственно. Снимки делаются каждые полчаса. Низкоорбитальные спутники «Метеор-1» и «Метеор-2» имеют более низкую орбиту — 825 километров, это позволяет получать более детальную информацию, чем при использовании расположенных на гораздо более высокой орбите геостационарных спутников. Оба космических аппарата выведены на солнечно-синхронную орбиту. Вот только «Метеор-1» тоже не функционирует, на орбите он еще находится, но картинку уже не дает. Таким образом, у нашей страны на сегодняшний день только два действующих метеоспутника. Для сравнения, у США на орбите постоянно работают пять метеоспутников и еще один аппарат находится в резерве. Однако стоить сказать, что еще восемь лет назад российских метеорологических спутников в космосе не было совсем.

Даже особо точные военные карты с грифом «совершенно секретно» составлялись на основе данных с американских спутников. Благодаря именно спутниковым наблюдениям удается существенно повысить точность прогнозов погоды. Прибор позволяет создавать трехмерные карты температуры воздуха и поверхности, водяного пара и свойств облаков. Имея 2378 спектральных каналов, AIRS дает разрешение более чем в 100 раз больше, чем предыдущие инфракрасные зонды, и обеспечивает более точную информацию о вертикальных профилях атмосферной температуры и влажности. AIRS также может измерять следовые парниковые газы, такие как озон, угарный газ, двуокись углерода и метан. Если вы слышите о том, что озоновый слой над Антарктидой начал восстанавливаться , то это благодаря AIRS, который и это замечает. Есть и другие способы наблюдения за погодой из космоса. Метод скаттерометрии позволяет дистанционно определять скорость и направление ветра в океанах. Скаттерометр — это микроволновой радар, сканирующий поверхность океана и позволяющий измерять удельную эффективную площадь рассеяния, что дает возможность восстанавливать параметры приводного ветра. Радар «видит» волны и определяет куда и с какой скоростью дует ветер.

Первый такой прибор был установлен на борту американского космического аппарата SeaSat в 1978 году и впервые доказал возможность точного измерения скорости ветра с орбиты. На орбите уже работало большое количество спутников-скатеррометров. Подобный инструмент RapidScat был установлен на Международной космической станции и действовал с сентября 2014 года по август 2016 года. Создание полномасштабной группировки спутников-скатеррометров позволит более эффективно осуществлять прогнозирование морских штормов, изучать океаническую циркуляцию, взаимодействие атмосферы и океана и их влияние на погоду и глобальный климат. Суперпомощники «Прогноз погоды — это решение сложной математической задачи. В рамках системы уравнений описываются законы атмосферной циркуляции, притока тепла, вертикальных движений. Это очень сложная система, и решать ее можно только на суперкомпьютерах», — объясняет Роман Вильфанд. Сама идея создания прогноза погоды с использованием динамических уравнений была впервые выдвинута английским математиком Льюисом Фраем Ричардсоном еще в 1922 году. Он понял, что динамику атмосферы можно моделировать, выполняя тысячи уравнений, тем самым имея возможность прогнозировать погоду. Однако в докомпьютерный век существовал единственный вариант применения данного численного метода — вручную.

Ричардсон подсчитал, что потребуется 64 тысячи человек для выполнения расчетов, необходимых для своевременного качественного прогноза. И хотя это было непрактично, его теория легла в основу прогнозирования погоды по мере совершенствования технологии. Сегодня по всей планете ежедневно и ежечасно собираются миллиарды метеорологических данных, зарегистрированных наземными метеорологическими станциями, метеозондами, океанскими буями и метеорологическими спутниками. Весь этот поток погодных данных направляется в центры обработки метеорологической информации, оснащенные, как правило, самыми современными компьютерами, так как прогноз на завтра нужен уже сейчас, а не завтра или через неделю.

Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания.

Здесь , а Мы предсказываем на два часа вперёд с шагом 10 минут. Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара. Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1, 2, 3 , либо к нейросетевым методам 1, 2, 3, 4, 5, 6. Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3.

Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда.

Вообще, предсказать шквалы ветра и сильные ливни — не всегда просто в силу их короткого периода "жизни". Но тем не менее, кое-что сегодня благодаря современным технологиям построить удается... Несколько наиболее "точных" примет я собрал ниже...

На картах погоды дается прогноз по часам на несколько дней вперед. Представлены карты: прогноз осадков и облачности, анимация ветра, карта температуры воздуха, карта атмосферного давления и карта качества воздуха. На карте осадков и облачности вы найдете движение областей с различной интенсивностью осадков, а также распределение количества облаков, которое визуально имитирует спутниковые снимки. На карте анимации ветра вы наглядно увидите движение атмосферного воздуха, на ней также хорошо видны атмосферные вихри, такие как циклоны, тайфуны и ураганы.

Как узнать, будет ли дождь, гроза? Смотрим карту осадков!

Совместная технология детерминистского наукастинга и сверхкраткосрочного прогноза осадков на основе экстраполяции данных. Главная» Новости» Гидрометцентр наукастинг. Это стало возможным благодаря технологии наукастинга — краткосрочного гиперлокального прогноза осадков. Наукастинг осадков на 2 часа. Радар осадков и гроз. точный и подробный прогноз погоды в любом уголке мира на сегодня, завтра и неделю. Usage[edit]. Data extrapolation, including development or dissipation, can be used to find the likely location of a moving weather system. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river.

Похожие новости:

Оцените статью
Добавить комментарий