СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. Отметим, что реализация ключевого для водородной бомбы принципа сжатия термоядерной взрывчатки в «Слойке» был иным, чем в бомбе Теллера-Улама. Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва.
Водородная бомба
Правда, Сахаров и его коллеги предпочли использовать другое поле — магнитное. Пока же он написал в рецензии, что предложенная конструкция скорее всего нереальна, ввиду невозможности сделать сетчатый электрод, который выдержал бы работу в таких условиях. А автора все равно надо поощрить за научную смелость. Особый студент Мы покинули автора предложений на Сахалине.
Самое время вернуться к его судьбе. Вскоре после отсылки предложений Олег Лаврентьев демобилизуется из армии, отправляется в Москву и становится студентом первого курса физфака МГУ. Имеющиеся источники говорят с его слов , что сделал это он полностью самостоятельно, без протекции каких-либо инстанций.
В сентябре Лаврентьев встречается с И. По его поручению он описывает свое видение проблемы еще раз, обстоятельнее. В самом начале следующего, 1951 года первокурсник Лаврентьев был вызван к министру измерительного приборостроения СССР Махневу , где познакомился с самим министром и своим рецензентом А.
Надо заметить, что возглавляемое Махневым ведомство имело к измерительным приборам довольно отвлеченное отношение, его действительным назначением было обеспечение ядерной программы СССР. Сам Махнев был секретарем Специального комитета, председателем которого был всемогущий в ту пору Л. С ним наш студент познакомился через несколько дней.
Сахаров снова присутствовал при встрече, но о его роли в ней практически ничего сказать нельзя. По воспоминаниям О. Лаврентьева, он готовился рассказывать сановному начальнику о бомбе и реакторе, но Берию это как будто не интересовало.
Разговор велся о самом госте, его достижениях, планах и родственниках. По-видимому, мнение оказалось благоприятным». Следствием «смотрин» стали необычные для советского первокурсника поблажки.
Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната правда, маленькая — 14 кв. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы.
Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б. Ванниковым , Н. Павловым и И.
Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов. Очень похоже, что предложениям Лаврентьева после его знакомства с Берией послушно придавалось даже слишком большое значение.
В Архиве Президента РФ лежит адресованное Берии и подписанное вышеупомянутыми тремя собеседниками предложение о создании «небольшой теоретической группы» для обсчета идей О. Была ли такая группа создана и если да, то с каким результатом, сейчас неизвестно. Вход в Курчатовский инстутут.
Современная фотография. Странное тогдашнее название тоже было данью всеобщей секретности. Олег был назначен практикантом в отдел электроаппаратуры с задачей ознакомиться с идущей уже работой над МТР магнитным термоядерным реактором.
Как и в университете, к особому гостю был прикреплен персональный гид, «специалист по газовым разрядам тов. Андрианов» — так гласит докладная записка на имя Берии. Там проектировали установку с удержанием плазмы магнитным полем, впоследствии ставшую токамаком, а Лаврентьев хотел работать над доработанной версией электромагнитной ловушки, восходившей к его сахалинским мыслям.
Оппоненты не нашли в нем ошибок и в целом признали работу верной, но реализовывать отказались, решив «сосредоточить силы на главном направлении». В 1952 году Лаврентьев готовит новый проект с уточненными параметрами плазмы. Надо отметить, что Лаврентьев в тот момент думал, что его предложение по реактору тоже запоздало, и коллеги из ЛИПАНа разрабатывают целиком собственную идею, пришедшую им в головы независимо и раньше.
Бете считает, что открытие Улама-Теллера имело случайный характер. И потому признать, что русский проект развивался по аналогичному пути без американского влияния, — значит уверовать в совершенно невероятное совпадение. Однако вскоре разобрались, что Фукс был разоблачён и прекратил свою деятельность в пользу Советского Союза раньше, чем возникла идея Улама. В радиоактивных продуктах взрыва содержится определённая информация — это известно учёным. К примеру, количество трансурановых элементов, рождённых в результате взаимодействия ядерных и термоядерных нейтронов с тяжёлыми атомами, сильно зависит от того, насколько быстро протекают реакции. Скорость же реакции пропорциональна плотности вещества, и наличие далёких трансуранов может свидетельствовать о высокой степени сжатия.
Это теоретически. А на практике дело обстоит следующим образом. Во-первых, трансуранов мало, их улавливание из атмосферного облака — дело хлопотливое и требует большой тщательности. Определённо нет, т. Во-вторых, сведения о сжатии не дают возможности сделать заключение о том, как оно достигнуто, то есть носят косвенный характер. Если бы из анализа радиоактивности последовали тогда глубокие революционные выводы, как представляет себе Г.
Бете, то это носило бы характер сенсации. Информация непременно пришла бы к исполнителям в своём первичном виде, так как в самой по себе в ней не содержится для нас элементов секретности. Но тут я со всей определённостью утверждаю, что за всё время наших радиохимических поисков в атмосфере никаких необычных сведений мы не извлекли. Наконец, в-третьих. Так вот, никакого трёхлетнего интервала не было. Максимум год-полтора.
Бомба подготавливалась к испытанию сразу в боевом варианте. Вроде того, что американцы богатые: нагромоздили кубометры — и шарахнули, лишь бы произвести эффект. Так всегда была настроена внутренняя наша пропаганда. Всегда говорилось именно так — и никогда по-другому. Я никого не хочу обвинять — может, в той ситуации это было оправданно и разумно. Да, её взорвали на земле, но они всё проверили и подтвердили то, что сумели сделать новую бомбу.
К ней было приковано всеобщее внимание, она подготавливалась к испытаниям и была нашей национальной гордостью. В состав атомного заряда включались слои из водородонесущего материала дейтерид лития для усиления деления по схеме деление-синтез-деление. Исходно плотность лёгких и тяжёлых слоёв отличалась в десятки раз. При взрыве, когда материал разогревался и ионизировался, происходило сильное сжатие лёгких слоёв со стороны тяжёлых, что способствовало резкому возрастанию скорости термоядерных реакций. Рассуждали примерно так: есть водородная бомба, чего мы будем ещё какую-то следующую громоздить — с неизвестным исходом и огромной затратой и своих усилий, и материальных средств?! Так что с благословения Зельдовича и Франк-Каменецкого мы это дело прекратили.
А уже в августе 1953 года на башне Семипалатинского полигона была успешно испытана первая советская водородная бомба. Подтвердились расчёты, полный триумф. Уже по этой причине испытанный заряд поднимал уровень ядерного оружия на новую ступень. Более того, схема этого заряда допускала создание водородной бомбы мощностью до одной мегатонны. Никто не сомневался в то время, что и дальше мы будем идти по своему, отечественному пути, развивая первый успех. Однако к концу 1953 года, в самый разгар эйфории и, казалось бы, вопреки логике, события стали стремительно развиваться совсем в другом направлении.
Такой поворот был неожиданным не только для меня. По-видимому, аналогичное ощущение испытывал и А. Конечно, мне следовало отказаться: сказать, что подобные вещи не делаются с ходу и одним человеком, что необходимо осмотреться, подумать. Но у меня была идея, не слишком оригинальная и удачная, но в тот момент она казалась мне многообещающей. Посоветоваться мне было не с кем. Одно из них обязывало наше Министерство в 1954 amp;ndash;1955 гг.
Существенно, что вес заряда, а следовательно, и весь масштаб ракеты был принят на основе моей докладной записки.
Обывателям, сидящим за голубыми экранами по обе стороны завесы, было невдомёк, что использовать такие гигантские боеголовки против потенциального противника нет никакой возможности, поскольку даже самая простая система ПВО с лёгкостью собьёт падающего «толстяка» задолго до его приземления. Например, в 70-е годы на вооружение поступила В-53, которая стала не только меньше 9 мегатонн , но и должна была использоваться для подрыва суперзащищённых бункеров потенциального противника. Предполагалось, что таким образом удастся уничтожить пункты управления СССР, что исключит возможность нанесения ответного ядерного удара. Со временем пришло понимание, что даже это слишком много, поскольку сделает огромную территорию необитаемой на долгие столетия. Так, если В-41 был в 1000 раз мощнее бомбы, сброшенной на Нагасаки, то даже взрыв В-53 приводил к образованию огненного шара, который должен был привести к уничтожению всего живого на расстоянии 32 км от эпицентра. В целом же, даже если шла речь о защищённых лабораториях и зданиях, то находящиеся на расстоянии 14 км от эпицентра в буквальном смысле стирались с лица земли. В-53 С В-53 было несколько проблем. Во-первых, она была слишком большая, поэтому её было легко обнаружить средствами ПВО и сбить. Во-вторых, так разбрасываться ценными территориями никто не хотел.
Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Слайд 11 Описание слайда: Самая мощная водородная бомба В 1961 году был произведён самый мощный взрыв водородной бомбы. Утром 30 октября в 11ч. Над Новой Землёй в районе Губы Митюши на высоте 4000м над поверхностью суши была взорвана водородная бомба мощностью в 50 млн. Слайд 12 Описание слайда: Самая мощная водородная бомба Бомба была разработана В.
Адамским, Ю. Смирновым, А. Сахаровым, Ю. Бабаевым и Ю. Трутнёвым Сахаров был награждён третью медалью героя Социалистического труда. Масса «устройства» составила 26 тонн, для её транспортировки и сброса использовался специально модифицированный стратегический бомбардировщик ТУ — 95.
Как действует водородная бомба и каковы последствия взрыва? Инфографика
3. Водородная бомба: кто выдал её секрет. Оружие, которое себя исчерпало | Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу. |
Водородная бомба - состав и принцип действий | История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера. |
Как работает водородная бомба, последствия ее взрыва. Инфографика | Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. |
ВОДОРОДНАЯ БОМБА
Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода — точно такой же процесс происходит на Солнце. Чем водородная бомба отличается от атомной Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.
Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков.
Поэтому возможности проверять любую интересную идею на практике просто не было. Но в итоге Сахарова в приказном порядке включили в рабочую группу.
Андрей Сахаров, начало 1950-х. А ведь среди физиков-ядерщиков он был самым молодым и наименее именитым. Здесь и разместили лаборатории.
Продолжительность действия — несколько десятков миллисекунд. Ядерное оружие в России В России ядерное оружие официально подразделяют: на стратегическое; тактическое нестратегическое. Что такое стратегическое ядерное оружие Стратегическое ЯО предназначено для масштабного поражения территории противника, самых чувствительных и важных целей.
В России этот вид оружия представлен так называемой «ядерной триадой». Это значит, что ядерный запас разделён между тремя типами вооружений: наземного, воздушного, морского базирования. Обычно «триада» представлена межконтинентальными баллистическими ракетами, стратегическими бомбардировщиками-ракетоносцами и атомными подводными лодками. То есть, защищает государство на всех трёх уровнях: на земле, в воде и в воздухе. Что такое тактическое ядерное оружие Тактическое ЯО — боеприпасы с более ограниченным радиусом действия, нежели стратегические. Оно нужно для точечного применения на поле боя, для какого-то ограниченного ядерного удара.
Сколько в России ядерного оружия По данным на 2022 год у России было 5977 ядерных боеголовок, в том числе 1588 в боеготовности и еще 2889 в законсервированном состоянии. Остальные — в резерве, в том числе в законсервированном состоянии. Такие данные приводит Стокгольмский международный институт исследования проблем мира.
При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.
Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз — мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная. Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием.
Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор. Александр Березин Браво Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона.
С тех пор конструкция термоядерной бомбы претерпела незначительные изменения например, появился урановый экран между инициирующей бомбой и основным зарядом и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды. Что такое реакция слияния ядер? Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий.
Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Схематически эта реакция показана на рисунке ниже. Много это или мало?
Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба. Термоядерное оружие Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров.
Наиболее известным типом термоядерного оружия являются термоядерные водородные бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках. Атомная бомба В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития.
Для образования гелия используется, в основном, тяжелый водород — дейтерий, ядра которого имеют необычную структуру — один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.
Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии для поддержания из жидкостного агрегатного состояния. Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы.
Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
Это не могло не повлиять на взаимоотношения на политической арене. И пока СССР предпринимал попытки приблизиться к Штатам, «ядерная держава» пыталась диктовать свои условия игры. США не рассчитывали на быстрое развитие научно-технического прогресса в Союзе. Первая атомная бомба, взорванная на территории СССР уже 29 августа 1949 года, дала понять, чего стоит опасаться Америке. Этим взрывом ознаменовалось начало ядерной гонки между двумя державами.
К началу 1960-х в мире сложилась довольно непростая политическая ситуация. Спасшегося летчика Фрэнсиса Пауэрса арестовали. На это американский президент ответил отменой встречи глав правительств четырех держав в Париже и других инициатив по сближению государств. Пилот Френсис Пауэрс U.
Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию — но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238U.
Как измеряется их мощность? Она измеряется в килотоннах кт и мегатоннах Мт. Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.
Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн. Кто создал ядерное оружие? Американский физик Роберт Оппенгеймер и генерал Лесли Гровс В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы.
Результатом этой работы стало обнаружение медленных нейтронов, а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Эта работа взбудоражила умы всего мира.
В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов.
Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри.
Его заключение стало толчком для разработок по созданию ядерного оружия. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой.
Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс. В нем участвовали крупные ученые, эмигрировавшие из Европы.
К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала — урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки. Как работает термоядерная бомба и кто ее изобрел?
Термоядерная бомба основана на реакции ядерного синтеза.
Заряд подняли на стальной мачте на 30 м от земли. В результате взрыва в радиусе 4 км были снесены все кирпичные здания, а железобетонный мост, находившийся в 1 км от эпицентра, сместился на 200 м. Советский Союз вышел в лидеры военно-технической гонки. За океаном компактный термоядерный заряд появился только в 1954 году. Значение и последствия «За восемь лет до описываемых событий произошла первая атомная бомбардировка Хиросимы и Нагасаки. Эти два города не были военными объектами, но Америка продемонстрировала свой военный арсенал, которого на тот момент не было ни у одной другой страны.
Все понимали, что американские бомбардировщики, летавшие в годы Второй мировой войны над фашистской Германией, могли в условиях холодной войны полететь и в нашу сторону. Поэтому СССР было необходимо чем-то ответить, остановить армаду в 3 тыс. Так, бомба, которую сбрасывали на Хиросиму и Нагасаки , имела мощность 20 кт. Бомба, которую испытали в 1953 году, имела мощность 400 кт. По количеству, может, американцы нас и опережали. Но мы одной бомбой могли поразить гораздо большую площадь. Ничего подобного у них не было», — подчеркнул Леонков.
По мнению руководителя Центра военно-политических исследований Института США и Канады РАН Владимира Батюка, американцы вплоть до 1950-х годов относились к достижениям советской науки с изрядным скептицизмом. Было принято списывать всё на «атомный шпионаж». Более того, не стало сенсацией и испытание водородной, хотя здесь Советский Союз явно опередил Америку. Подозреваю, что имело место всё то же восприятие, связанное с разговорами об атомном шпионаже: мол, русские что-то украли и доработали», — отметил Батюк в беседе с RT. Эксперт считает, что по-настоящему шокированы достижениями советской науки и военной техники американцы были несколькими годами позже.
Как создавали супермощную термоядерную бомбу Работы над созданием мощной термоядерной бомбы начались задолго до 1961 года — в 1956-м в специально созданном НИИ-1011 приступили к созданию советской "Царь-бомбы" АН602, которая, по мнению Москвы, должна была стать самым надежным средством сдерживания. Авторы изделия предусмотрели для нее трехступенчатую конструкцию: ядерный заряд первой ступени расчетный вклад в мощность взрыва — 1,5 мегатонны запускал термоядерную реакцию во второй ступени вклад в мощность взрыва — 50 мегатонн. Она же в свою очередь инициировала так называемую ядерную реакцию Джекила — Хайда деление ядер в блоках урана-238 под действием быстрых нейтронов, образующихся в результате реакции термоядерного синтеза в третьей ступени еще 50 мегатонн мощности.
Так что общая расчетная мощность АН602 должна была составить 101,5 мегатонны. Такое оружие устрашило даже разработчиков — они пришли к выводу, что взрыв подобной конструкции вызовет чрезвычайно мощное радиационное загрязнение. В итоге конструкторский коллектив, в который входили Виктор Адамский, Андрей Сахаров, Юрий Бабаев, Юрий Смирнов и Юрий Трутнев, решил отказаться от реакции Джекила — Хайда в третьей ступени бомбы и заменить урановые компоненты на их свинцовый эквивалент. Это должно было уменьшить расчетную общую мощность взрыва почти вдвое до 51,5 мегатонны. Я решил, что это изделие будет испытываться в "чистом варианте" — с искусственно уменьшенной мощностью, но тем не менее существенно большей, чем у какого-либо испытанного ранее кем-либо изделия. Даже в этом варианте его мощность превосходила бомбу Хиросимы в несколько тысяч раз! Подготовка к испытанию "Царь-бомбы" АН602 было решено испытать в конце октября 1961 года на полигоне на Новой Земле. Супербомбу собирали в первом советском ядерном центре, родине отечественного ядерного оружия Конструкторском бюро — 11 в Арзамасе-16, прямо на специальной железнодорожной платформе.
Для этого даже пришлось проложить железнодорожную ветку внутрь цеха. В двадцатых числах октября вагон с бомбой выглядевший снаружи как совершенно обычный вагон в составе литерного поезда под усиленной охраной отправился к месту своего назначения — станции Оленьей на Кольском полуострове. Тот поезд состоял из нескольких вагонов, расположенных спереди и сзади вагона с бомбой.
Что произойдет после взрыва ядерной бомбы?
Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов. Что это Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития.
Как устроена водородная бомба
Это не работало. Требовалась температура на пару порядков более высокая, чем достижимая при использовании химической взрывчатки. Возможность использования в качестве детонатора водородной бомбы ядерного заряда обсуждалась ещё физиками работающими в рамках Манхеттенского проекта. Вопрос заключался в том, как это организовать. Простое размещение термоядерного заряда рядом с ядерным положительных результатов не давало. Когда бомба взрывалась, водород лишь рассеивался, не нагреваясь до нужной температуры. Термоядерное горючее требовалось каким-то образом обжать взрывом. В 1951 году американцы даже почти сделали это, испытав чрезвычайно сложный в изготовлении тороидальный, а не сферический, имплозивный заряд, в центр которого помещалась ёмкость с жидким водородом. Водород частично сдетонировал, но для изготовления термоядерных боеприпасов такой метод явно не годился. Не годилась и идея британцев — изготовить большой полый шар из сверхкритической массы плутония и поместить капсулу с термоядерным горючим внутрь. Взорвалось сильно — 700 килотонн даже без капсулы.
Но бомба сожрала 120 килограммов плутония — это столько, сколько Британия могла произвести за год. Термоядерный заряд должен был располагаться отдельно от инициирующего, соответственно, для осуществления радиационного обжатия требовались решения нетривиальные.
Термоядерная «Царь-бомба» 30. Термоядерный заряд был сброшен с переоборудованного стратегического бомбардировщика Ту-95 и подорван на высоте 3,7 тыс. Для осуществления цепной реакции деления используются либо уран-235, либо плутоний-239 реже - уран-233. Термоядерное оружие водородные бомбы предусматривает использование энергии неуправляемой реакции ядерного синтеза, то есть преобразования легких элементов в более тяжелые например, двух атомов "тяжелого водорода", дейтерия, в один атом гелия. Термоядерное оружие имеет большую возможную мощность взрыва по сравнению с обычными ядерными бомбами. В 1949 г. Первая советская водородная бомба РДС-6с мощностью 400 килотонн, была испытана 12 августа 1953 г.
Ivy Mike весило 73,8 т и по своим габаритам больше напоминало небольшой завод, однако мощность его взрыва составила на тот момент рекордные 10,4 мегатонны. Ракетное вооружение на тот момент было несовершенным; бомбардировщиками, способными доставлять тяжелые заряды, ВВС СССР не располагали. Поэтому 12 сентября 1952 г. Первоначально предполагалось, что она будет носителем торпеды с термоядерным зарядом Т-15 мощностью до 100 мегатонн, основной целью которой будут базы ВМС и портовые города противника. Главным разработчиком торпеды был Андрей Сахаров. Впоследствии в своей книге "Воспоминания" ученый писал, что контр-адмирал Петр Фомин, который отвечал за проект 627 со стороны флота, был шокирован "людоедским характером" Т-15. По словам Сахарова, Фомин говорил ему, "что военные моряки привыкли бороться с вооруженным противником в открытом бою" и что для него "отвратительна сама мысль о таком массовом убийстве". Впоследствии этот разговор повлиял на решение Сахарова заняться правозащитной деятельностью. Т-15 так и не была принята на вооружение из-за неудачных испытаний в середине 1950-х гг.
Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - это неоспоримый факт.
Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха.
Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время.
Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства. Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь. В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда. Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого "свечой", который вступал в реакцию ядерного деления, т.
В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы. Операция Плющ Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны.
Вид устройства незадолго до взрыва показан на фото ниже. Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже. Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное. Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6Li это связано с особенностями прохождения термоядерных реакций , а в природе он находится в смеси с изотопом 7Li.
Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6Li. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн.
Что такое ядерное оружие и сколько его у России. Простыми словами
Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как термоядерная бомба, иногда называемой водородной. Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году.
Как работает водородная бомба
Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер.
Атомная, водородная и нейтронная бомбы
В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки.
Несмотря на то что исследования в области физики ядра успешно развивались в нашей стране в 1930-е годы, они были прерваны войной. Осознав из донесений разведки всю опасность отставания в этой области, осенью 1942 года руководство СССР приняло решение о возобновлении работ по урану. Научным руководителем советского атомного проекта стал 40-летний физик Игорь Курчатов, в команду которого вошли Юлий Харитон, Исаак Кикоин, Яков Зельдович и ряд других ученых.
Но в условиях жесточайшей войны достаточное финансирование проекта было невозможным. И именно американцы продемонстрировали всю его разрушительную силу летом 1945-го: 6 августа на Хиросиму сбросили бомбу под кодовым названием «Малыш», а 9 августа на Нагасаки — «Толстяк». Правда, американские газеты пестрели яркими заголовками, в которых акцент делался на мощности оружия.
Некоторые издания обвиняли руководство Японии в том, что оно вынудило США пойти на такие меры. Иосиф Сталин собрал совещание, на котором поручил ускорить работы по созданию советской атомной бомбы. Куратором от правительства стал Лаврентий Берия.
Просите всё что угодно! Отказа не будет. Только дайте бомбу», — сказал Сталин.
Уже через год, в 1946-м, Игорь Курчатов с коллегами запустили первый в Евразии уран-графитовый реактор. А в 1949-м состоялись первые испытания советского ядерного оружия — появилась наша атомная бомба, началось их серийное производство. Но для победы в гонке вооружений Советскому Союзу понадобилась разработка оружия, превышавшего по мощности ядерное.
Источник: U. National Archives Риск радиоактивных осадков наиболее высок в течение 48 часов после взрыва. За это время область, которая первоначально подвергалась воздействию 1000 рентген в час, будет подвергаться только 10 рентгенам в час.
Около половины людей, получивших общую дозу облучения около 350 рентген в течение нескольких дней, скорее всего, умрут от острого радиационного отравления. Для сравнения — типичная КТ брюшной полости подвергает людей менее 1 рентген. Выжившие, которые попадут под радиоактивные осадки, подвергаются высокому риску развития рака на протяжении всей оставшейся жизни.
Экологическая катастрофа Радиоактивные осадки, осевшие на посевных угодьях, могут оказаться в пищевой цепи. Например, радиоактивный йод, попавший в детский организм с коровьим молоком, вызывает рак щитовидной железы. Пепел и сажа, выброшенные в атмосферу во время ядерной войны, могут охладить климат, если будет сброшено достаточное количество бомб.
Один или два ядерных взрыва не будут иметь глобальных последствий. Но детонация 100 боеприпасов размером с те, что были сброшены на Японию в 1945 году, снизит глобальные температуры до уровня ниже, чем в Малый ледниковый период с 1300 по 1850 год.
Дейтерид лития 6 термоядерное топливо 8. Плутоний зажигание 9. Отражающая оболочка отражает рентгеновские лучи к стадии слияния Типичное термоядерное устройство имеет две стадии: первичную стадию, на которой инициируется взрыв, и вторичную стадию, место основного термоядерного взрыва. Верхняя часть или первичная часть: это бомба деления типа бомбы А , которая, взорвавшись, вызывает очень сильное повышение температуры и тем самым запуск термоядерного синтеза. В частности, в США будет использоваться праймер цеце. Нижняя часть или вторичная часть: это материал, который будет плавиться, в данном случае литий, вместе с плутониевым сердечником и оболочкой из урана-238. Эта часть окружена пенополистиролом, который позволяет очень сильно нагреваться. Наконец, можно использовать третью ступень того же типа, что и вторая, для создания гораздо более мощной водородной бомбы.
Эта дополнительная ступень намного больше в среднем в десять раз больше , и ее синтез инициируется энергией, выделяемой при синтезе второй ступени. Таким образом, мы можем производить водородные бомбы очень высокой мощности, добавляя несколько ступеней. Мощность первичной ступени и ее способность вызывать взрыв вторичной повышаются подпитываются смесью трития , который вступает в реакцию ядерного синтеза с дейтерием. Синтез генерирует большое количество нейтронов , которые существенно увеличивают деление высокообогащенного плутония или урана, присутствующего в ступенях. Такой подход используется в современном оружии для обеспечения достаточной мощности, несмотря на значительное уменьшение габаритов и веса. Сама бомба окружена конструкцией, которая позволит сохранить массивный вклад рентгеновских лучей, возникающих при взрыве бомбы деления. Затем эти волны перенаправляются, чтобы сжать термоядерный материал, и тогда может начаться полный взрыв бомбы. Архитектурная бомба Теллера-Улама - это то же самое, что и бомба деления-синтеза-деления. Самого по себе этого недостаточно для начала термоядерного взрыва, но его можно использовать для ускорения реакции: несколько граммов дейтерия и трития в центре делящейся активной зоны произведут большой поток нейтронов, что значительно увеличит скорость горения материал делящийся. Полученные нейтроны имеют энергию 14,1 МэВ , что достаточно, чтобы вызвать деление U-238, что приведет к реакции деления-синтеза-деления.
Другие реакции могут продолжаться только тогда, когда первичный ядерный взрыв создал необходимые условия температуры и сжатия.
Водородная бомба и ядерная бомба отличия
тэги: водородная бомба, водородное оружие, вооружение россии 2013, стратегические вооружения, термоядерная бомба, термоядерное оружие. Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании. термоядерные (термоядерные бомбы, водородные бомбы) — более современное оружие, в котором принцип действия «атомной бомбы» усиливается термоядерным синтезом.