по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии.
Обзор Российских систем искусственного интеллекта для здравоохранения
Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора. Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе. Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками.
Искусственный интеллект в медицине и здравоохранении
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции.
Искусственный интеллект в медицине. Настоящее и будущее
Поэтому очень важно тщательно дифференцировать эпилептический синдром. Врач мог эту информацию изучить и принять верное решение. Это очень тяжёлый диагноз, при его наличии надо принимать несколько сильнодействующих препаратов с кучей побочных эффектов. Когда доктор ознакомился с заключением системы, он переосмыслил все вводные заново, собрал консилиум и представил новые результаты коллегам. В результате консилиум срочно скорректировал программу лечения.
Благодаря этому состояние пациента нормализовалось. Сейчас он уже ходит в третий класс. Что такое «персонализированная медицина» — Откуда система брала информацию о пациенте? Из электронной истории болезни?
Сама суть «Джейн» состоит в том, что она должна собирать полную и актуальную историю болезни пациента. Буквально всю информацию, до мельчайших подробностей. Чем больше система будет знать обо всех обстоятельствах происходящих с пациентом процессов, тем более качественные рекомендации она будет выдавать. Врач или пациент?
Для быстрого добавления новых записей в «Джейн» был создан чат-бот, доступный со смартфона. Можно, конечно, воспользоваться обычной веб-версией, но с чат-ботом процесс сильно ускоряется. Чат-бот — очень оперативный интерфейс: запустил, быстро ввёл туда всё, что нужно. А веб-приложение — уже более мощный инструмент.
Он может использоваться на стационарной основе и предоставлять больше функций. Это трудоёмкий процесс? Но от него зависят жизнь и здоровье человека, ребёнка. Если родители хотят ребёнку добра, то им придётся этим заниматься.
Всё зависит от мотивации. Именно для облегчения этого процесса мы создали чат-бота. Работать с ним было проще, чем пользоваться обычным мессенджером. Во многих случаях даже писать ничего было не нужно — только нажимать кнопки на экране.
Туда же можно было отправить и результаты анализов например, общего анализа крови , полученные из лаборатории в виде стандартных PDF-файлов. Прикрепляете файл, система его парсит, извлекает текст и вносит в базу. Очень удобно! В этом как раз и состояла одна из фишек системы.
Есть мощный тренд: мы от статистической доказательной медицины переходим к персональной медицине , но тоже доказательной. Однако пока ни в одной стране полного перехода к ней так и не произошло. И вот «Джейн» попыталась сделать шаг к светлому будущему, когда мы сможем собирать все показатели здоровья человека, а компьютерная система будет находить в них закономерности, которые важны для успешного лечения. Вы ему что-то отвечаете.
Хотя откуда вы можете достоверно знать о противопоказаниях? Но если у нас будет возможность пользоваться «Джейн» или подобной программой, то все данные о пациенте рано или поздно станут известны системе и она сможет указать врачу на эти аспекты, индивидуальные особенности. Причём, в отличие от доктора-человека, компьютерная система не может что-то забыть или потерять, она способна запомнить информацию о тысячах пациентов с абсолютной точностью. Персонализация является одной из частей современного подхода к здравоохранению, известного как концепция 4П-медицины.
Название происходит от четырёх английских слов, начинающихся с буквы П: персонализация, прогнозирование, профилактика и преемственность Инфографика: Skillbox Media — Что из этого было реализовано в «Джейн»? Мы взяли базу РЛС, распарсили и ввели в систему. Так у «Джейн» появились знания о показаниях, противопоказаниях и побочных явлениях приёма лекарственных средств. Далее врач, когда решал, какой препарат назначить, давал алгоритму задание: «Подбери лекарство для этого ребёнка».
Сегодня рядом с живыми медсестрами в госпиталях США уже работают компьютерные помощники, от которых можно получать советы, подсказки и другую информацию. Например, цифровой ассистент Салли, улыбающаяся женщина в белом халате, или медбрат Уолт. Салли и Уолт — это анимированные аватары, виртуальные личные тренеры по здоровью из платформы iCare Navigator на базе искусственного интеллекта, предназначенной для взаимодействия с пациентами и их обучения. Компания TeleHealth Services, разработавшая iCare Navigator, утверждает, что использует электронные медицинские записи пациентов и применяет машинное обучение для выстраивания индивидуальных отношений. Приложение определяет, когда пациент будет наиболее восприимчив к информации о состоянии своего здоровья и можно будет лучше всего управлять его лечением. Толчком для создания платформы iCare Navigator стали исследования Медицинской школы Бостонского университета, в ходе которых были разработаны виртуальные медсестры Луиза и Элизабет, объясняющие пациентам, например, когда принимать лекарства. Молли от компании Sensely — еще один популярный аватар медсестры с искусственным интеллектом, который используют Калифорнийский университет в Сан-Франциско и Национальная служба здравоохранения Великобритании. Молли задает пациентам вопросы, касающиеся их здоровья, оценивает симптомы и на основе симптомов дает рекомендации по наиболее эффективному лечению. Таким образом, вместо того, чтобы искать обнаруженные у себя симптомы в интернете, сегодня человек может получить помощь от виртуальной медсестры.
Виртуальные медсестры не только предоставляют медицинские консультации по поводу распространенных заболеваний или недомоганий, но также позволяют записаться на прием к врачу. Они доступны круглосуточно и без выходных и готовы ответить на вопросы в режиме реального времени. Это одно из основных приложений искусственного интеллекта в здравоохранении, которое все чаще применяется для повышения информированности и улучшения навыков самоуправления у пациентов с хроническими заболеваниями. Благодаря виртуальной медсестре пациент сможет предотвратить ухудшение своего состояния. Системы мультимодальной диагностики В развитии ИИ можно выделить несколько трендов, один из которых связан с интеграцией типов модальностей данных, на которых выполняется обучение. Например, для аудиовизуального распознавания речи визуальное описание движения губ объединяется с аудиовходом для предсказания произнесенных слов. Информация, поступающая из источников различных модальностей, может иметь различную предсказательную силу и топологию шума, а в некоторых источниках данные могут отсутствовать. Неоднородность мультимодальных данных затрудняет построение моделей.
Автоматический анализ медицинских изображений. ИИ-сервисы, основанные на глубоком обучении, могут быстро и точно анализировать медицинские изображения, такие как рентгеновские снимки, МРТ, КТ и другие визуальные данные, и выявлять на них патологии, что позволяет врачам быстро и точно определять диагноз и начинать лечение. Помощь в принятии врачебных решений. Это одна из очевидных сфер использования ИИ. Сервисы могут предоставить наиболее подходящие варианты лечения на основании собственной базы знаний, включающей потенциально лучшие варианты лечения и предсказание эффективности их использования. Автоматизация рутинных задач. ИИ-системы используются для заполнения медицинских карт, создание отчетов и др. ИИ может улучшить координацию и коммуникацию между медицинскими работниками, например, путем обучения и мониторинга основных симптомов. Как обучают нейросети для медицины Обучение нейросетей начинается со сбора большого объема данных, содержащих информацию о здоровье и заболеваниях пациентов. Они могут быть представлены в виде медицинских записей, результатов тестов, изображений, видео и других типов файлов. Далее, данные обрабатываются и подготавливаются для обучения нейросети. Процесс может включать в себя удаление несущественной информации, нормализацию и стандартизацию данных. Затем, выбирается подходящая нейросетевая архитектура и проводится обучение. Этот этап включает в себя передачу данных через различные слои нейросети, где каждый слой проходит через процесс вычисления, используя свои веса и функции активации, для получения вывода. Обучение происходит при помощи алгоритмов обратного распространения ошибки, которые корректируют веса нейронов в соответствии с приближением к оптимальным значениям функции ошибки.
Виртуальные медсестры не только предоставляют медицинские консультации по поводу распространенных заболеваний или недомоганий, но также позволяют записаться на прием к врачу. Они доступны круглосуточно и без выходных и готовы ответить на вопросы в режиме реального времени. Это одно из основных приложений искусственного интеллекта в здравоохранении, которое все чаще применяется для повышения информированности и улучшения навыков самоуправления у пациентов с хроническими заболеваниями. Благодаря виртуальной медсестре пациент сможет предотвратить ухудшение своего состояния. Системы мультимодальной диагностики В развитии ИИ можно выделить несколько трендов, один из которых связан с интеграцией типов модальностей данных, на которых выполняется обучение. Например, для аудиовизуального распознавания речи визуальное описание движения губ объединяется с аудиовходом для предсказания произнесенных слов. Информация, поступающая из источников различных модальностей, может иметь различную предсказательную силу и топологию шума, а в некоторых источниках данные могут отсутствовать. Неоднородность мультимодальных данных затрудняет построение моделей. Важно изучить, как представлять входные данные и обобщать их таким образом, чтобы они отражали несколько модальностей. Например, текст представляется символами, а аудио и визуальные модальности — сигналами. В контексте медицинского применения вся диагностическая информация о пациенте может быть интегрирована в такие мультимодальные данные и обрабатываться системой ИИ, обученной рассматривать как внешнее изображение человека и фрагментов его тела, так и результаты анализов, МРТ- и КТ-изображения, аудиозаписи ответов на вопросы и т. Все это приближает нас к построению универсального диагноста, использующего холистический подход к диагностике заболеваний, и сокращению количества посещений разных врачей-специалистов для назначения эффективного лечения. Приложения для здоровья на базе искусственного интеллекта Самое большое потенциальное преимущество искусственного интеллекта — возможность помочь людям оставаться бодрыми, чтобы им не приходилось посещать врача или по крайней мере делать это не слишком часто. Искусственный интеллект и интернет медицинских вещей IoMT уже постепенно меняют парадигму с «реактивного» здравоохранения на «проактивное». Сочетание искусственного интеллекта и IoMT со временем сделает подключенные устройства для мониторинга состояния здоровья более интеллектуальными. ИИ и огромные объемы данных, генерируемые IoMT, также могут использоваться для постановки диагноза. Различные приложения для здорового образа жизни на основе искусственного интеллекта, такие как MyFitnessPal и HealthTap, предоставляют людям полный контроль над своим здоровьем и благополучием, обратную связь с медучреждением и рекомендации для поддержания здоровья.
Роман Душкин: «Медицина — это область доверия»
Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. Области применения технологий на основе искусственного интеллекта быстро расширяются, в частности, умные технологии приходят на помощь врачам и пациентам. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии.
Эксперт объяснил провал искусственного интеллекта в медицине
Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. Технологии искусственного интеллекта для системы здравоохранения. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает.
Роман Душкин: «Медицина — это область доверия»
Ляпунова начал свою работу семинар «Автоматы и мышление». В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине. Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны. Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей.
Руководитель исследовательской группы Центра прикладного ИИ Сколтеха, кандидат физико-математических наук Максим Шараев Источник: Анастасия Пешкова Словарь Коллинс, который издает одна из крупнейших англоязычных издательских компаний «ХарперКоллинс», назвал искусственный интеллект ИИ, AI словом 2023 года. Эксперты связывают с появлением этой технологии новую техническую революцию, и она действительно может сильно повлиять на многие сферы жизни. Ученые из Сколковского института наук и технологий Сколтех занимаются применением методов машинного обучения и искусственного интеллекта в медицине.
Об этом рассказал руководитель исследовательской группы Центра прикладного ИИ Сколтеха, кандидат физико-математических наук Максим Шараев. Учился на кафедре биофизики. Максим — эксперт в области нейровизуализации, нейротехнологий и машинного обучения, автор ряда исследований в области когнитивных технологий и нейроинтерфейсов. Мне с детства было очень интересно находить новую информацию, которую приходилось буквально собирать по крупицам. Когда начал работать в науке, стало понятно, что и здесь много рутины. Это только в кино каждый день какие-то прорывы, а в реальности работа ученого — это в основном кропотливый труд. Больше всего раздражают бюрократические, административные вопросы, которые отвлекают от научной деятельности и сильно выматывают. Но зато, когда что-то получается, подтверждается гипотеза и есть результат — например, научная статья в авторитетном журнале — это радует и вдохновляет.
Максим с детства хотел заниматься наукой Источник: Анастасия Пешкова — А почему вы выбрали биофизику? Еще с ранних лет мне было интересно всё, что связано с изучением мозга. Когда я был маленьким, мне казалось, что для этого нужны знания по биологии, нейрофизиологии, психологии. Но потом, в том числе благодаря родителям и учителям, я понял, что современные науки, особенно те, где есть большое количество экспериментальных данных, сложные приборы, установки, невозможно постичь без естественно-научного образования в качестве базы. Эмпирическая биология и нейрофизиология, когда было достаточно простых наблюдений и анализов, давно закончилась. Сейчас любая сложная наука — это наука данных, а методы их анализа одни и те же в любых областях. Биохимическая физика — это применение физико-математических методов к биологическим системам. Исследования по большей части имеют прикладной характер Источник: Анастасия Пешкова — Наша лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией — получением и анализом данных работы мозга.
Для этого применяются математическое моделирование, методы машинного обучения и искусственного интеллекта. Но в процессе решения прикладных задач часто возникают и фундаментальные, например, касающиеся методов: разработка новых типов нейронных сетей, новых архитектур, подходов к анализу данных. Также мы занимаемся так называемой персонализированной медициной.
Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике. Отдельно будут рассмотрены современные технологические решения для практического здравоохранения и превентивной медицины: информационные системы сбора и анализа медицинских данных, облачные хранилища, мобильные приложения и веб-сервисы для врачей и пациентов. Участие в конференции бесплатное.
Конференция "Вычислительная биология и искусственный интеллект для персонализированной медицины — 2024" - яркое ежегодное событие для врачей, ученых, представителей IT-отрасли и всех специалистов, которых волнуют вопросы медицины будущего. Программа конференции подробно отразит все современные возможности применения информационных технологий в биомедицинских исследованиях и клинической деятельности. Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике.