Объект: АЭС «Три-Майл-Айленд», США Дата: март 1979 года Что произошло: в результате серии сбоев в работе оборудования и ошибок операторов на одном из энергоблоков произошло расплавление активной зоны реактора. 11. Энергоблок №1 АЭС Три-Майл-Айленд во время аварии не пострадал и продолжает свою работу и сейчас. АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию. Авария на АЭС Три-Майл-Айленд – крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции. Причина ав.
«Американскому Чернобылю» приписывали катастрофу для Китая
Авария на Три-Майл-Айленде вдохновила Чарльза Перроу Обычная теория аварии, в которой авария происходит в результате непредвиденного взаимодействия нескольких отказов в сложной системе. Но авария на Три-Майл-Айленд фактически остановила расширение отрасли, что заставило американцев обратить внимание на развитие альтернативных источников и изменить свою международную энергетическую политику. Серьёзность аварии на АЭС Три-Майл-Айленд заключалась в том, что расплавилось урановое ядерное топливо. Авария на АЭС Три-Майл-Айленд усилила уже существовавший в атомной отрасли кризис.
Авария на Три-Майл-Айленд, хроника событий
На самом деле за всю историю атомной энергетики, если ее проследить, случались три крупных инцидента: на АЭС Три-Майл-Айленд, в Чернобыле и на АЭС в Фукусиме. После аварии на Три-Майл-Айленд использовалась только одна атомная электростанция TMI-1, которая находится справа. По мнению МАГАТЭ, авария на Три-Майл-Айленде стала важным поворотным моментом в мировом развитии ядерной энергетики. Сейчас АЭС «Три-МАйл-Айленд» продолжает вырабатывать электроэнергию из первого блока и обеспечивает 800000 жителей дешёвой электроэнергией.
Американская ядерная катастрофа 1979 года
История и развитие В начале XX века Три-Майл-Айленд привлек внимание ученых и инженеров своим стратегическим расположением. В 1948 году на острове была построена первая атомная лаборатория, которая заложила основы для будущих исследований в области ядерной физики. В 1962 году на Три-Майл-Айленде началось строительство ядерной электростанции, предназначенной для обеспечения энергией окрестных регионов. Завершение строительства и запуск станции в 1974 году сделали остров центром внимания в области энергетики. Однако в 1979 году произошел тяжелый ядерный инцидент. Инцидент на Три-Майл-Айлендской ядерной электростанции вызвал обеспокоенность общественности и привел к изменениям в законодательстве и нормах безопасности в ядерной энергетике. После инцидента правительство приняло решение провести обширный анализ безопасности ядерных электростанций. Это привело к ужесточению норм и стандартов в области ядерной безопасности, что содействовало более тщательному контролю за ядерными установками. В последующие десятилетия научные исследования на Три-Майл-Айленде стали сосредотачиваться не только на энергетике, но и на экологически устойчивом развитии и новых технологиях.
Остров превратился в центр инноваций и экологического исследования. С приходом новых технологий и усиленного внимания к экологии началась программа по восстановлению природы на острове. Создание заповедников и охраняемых природных зон способствовало сохранению уникальной флоры и фауны региона. В настоящее время Три-Майл-Айленд продолжает развиваться как центр инноваций и экологически устойчивого развития. Остров стал примером того, как научные исследования и технологии могут совмещаться с заботой о окружающей среде, создавая уникальное сообщество, стремящееся к устойчивому будущему. Последствия и воздействие на окружающую среду Последствия включали выброс радиоактивных материалов в окружающую среду из-за перегрева реактора и разрушения топливных элементов. Однако, в отличие от аварии на Чернобыльской АЭС или Фукусиме, в этом случае большая часть радиоактивных материалов осталась внутри контейнмента, что смягчило масштаб выбросов. Последствия для окружающей среды были ограниченными, но влияние на общественное мнение и отношение к ядерной энергетике в США было значительным.
Обучение операторов было нацелено прежде всего на их работу при нормальной эксплуатации, поэтому, наблюдая конфликтующие симптомы, персонал предпочёл отдать приоритет регулированию уровня в компенсаторе давления [28] , а не обеспечению непрерывной работы системы аварийного охлаждения, способной поддерживать высокое давление в контуре при протечках [29]. Операторы не восприняли всерьёз автоматическое включение системы безопасности ещё и потому, что на Три-Майл-Айленд эта система за последний год срабатывала четыре раза по причинам, никак не связанным с потерей теплоносителя [30]. Недостатки щита управления и длительная работа станции с неустранёнными дефектами не позволили персоналу быстро определить состояние электромагнитного клапана компенсатора давления. Указателя фактического положения запорного органа клапана предусмотрено не было, а лампа на панели управления сигнализировала лишь о наличии питания на его приводе, соответственно, сигнал указывал на то, что клапан закрыт [16]. Косвенные признаки, такие как повышенная температура в трубопроводе после клапана и состояние бака-барботера также не были восприняты однозначно. Срабатывание предохранительных устройств бака-барботера также не осталось незамеченным, но персонал никак не связал это событие с продолжительной утечкой из первого контура [33] , приписав его скачку давления при кратковременном срабатывании электромагнитного клапана в самом начале аварии [34]. В эксплуатационной документации был определён перечень признаков течи из первого контура [35] , одни из них действительно имели место, например падение давления в реакторной установке, повышение температуры под гермооболочкой и наличие воды на её нижнем уровне. Однако операторов привело в замешательство отсутствие симптомов, которые они считали ключевыми: не было снижения уровня в компенсаторе давления он, наоборот, возрастал , также не было сигнализации о повышенном уровне радиации в атмосфере гермооболочки возможно, порог срабатывания датчика был некорректно установлен. Таким образом, даже зная о наличии воды в помещениях гермооболочки, персонал не смог адекватно определить источник её происхождения [36] [37].
Разрушение активной зоны [ править править код ] Конечное состояние активной зоны реактора: 1 — вход 2-й петли B; 2 — вход 1-й петли А; 3 — каверна; 4 — верхний слой обломков топливных сборок; 5 — корка вокруг центра активной зоны; 6 — затвердевший расплав; 7 — нижний слой обломков топливных сборок; 8 — вероятный объём расплава, который стёк вниз; 9 — разрушенные гильзы внутриреакторного контроля; 10 — отверстие в выгородке активной зоны; 11 — слой затвердевшего расплава в полостях выгородки; 12 — повреждения плиты блока защитных труб Прибывший в 6 часов утра персонал следующей смены, благодаря свежему взгляду, смог наконец определить состояние электромагнитного клапана компенсатора давления [38] [25]. Установив тем самым факт продолжительной потери теплоносителя, операторы должны были приступить к ликвидации аварии, запустив систему аварийного охлаждения, однако по неустановленным причинам это действие не было незамедлительно выполнено [22] [40] [41]. Около 06:30 началось быстрое окисление оболочек твэлов в верхней части активной зоны за счёт пароциркониевой реакции с образованием водорода. Образовавшаяся расплавленная смесь из топлива, стали и циркония стекала вниз и затвердевала на границе кипения теплоносителя [43]. Ближе к 7 часам утра кипящий теплоноситель покрывал уже менее четверти высоты активной зоны [44]. Не имея в своём распоряжении приборов, позволявших определить уровень жидкости непосредственно в корпусе реактора [45] , и не осознавая нехватку теплоносителя, операторы попытались возобновить принудительное охлаждение активной зоны. Были предприняты попытки запуска каждого из четырёх главных циркуляционных насосов. В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43]. На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55].
С этого момента процесс разрушения активной зоны был остановлен [48]. Возобновление охлаждения реактора [ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях. Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок. Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар. Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии.
С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62].
Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось. По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67]. За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды. В любом случае поставленная цель была принципиально ошибочной, так как система планового расхолаживания не предназначена для работы с первым контуром, лишь частично заполненным жидкостью [62]. Положительным следствием принятой стратегии явилось то, что большой объём неконденсирующихся газов, прежде всего водорода, был удалён из первого контура в атмосферу защитной оболочки [68]. Таким образом содержание газов в пределах реакторной установки было существенно уменьшено, хотя для этого и не требовалось поддерживать низкое давление так долго [62].
С другой стороны, возможно, в это время имело место повторное осушение части активной зоны [69] , подача охлаждающей воды в реактор была снижена [70] и в целом реакторная установка была близка к состоянию, которое существовало перед закрытием отсечного клапана в 06:22 [71]. Учитывая безуспешность попыток снизить давление в первом контуре до 2 МПа и риск осушения активной зоны, было принято решение вернуться к стратегии восстановления принудительной циркуляции в первом контуре, как к хорошо известному для персонала способу охлаждения реактора [72]. Успех в возобновлении принудительной циркуляции теплоносителя был обусловлен тем, что контур уже был достаточно заполнен водой, а газовые пробки были существенно уменьшены при предыдущей попытке снизить давление. Стабильное охлаждение активной зоны было наконец-то восстановлено [75]. Остаточное энерговыделение в топливе постепенно снижалось, и 27 апреля единственный работающий главный циркуляционный насос был остановлен, после чего в первом контуре установилась естественная циркуляция. К этому времени тепло, производимое работой насоса, в два раза превышало энерговыделение в активной зоне [76]. Уже к вечеру 27 апреля теплоноситель остыл настолько, что было достигнуто состояние «холодного останова» [примечание 5] реактора. Только к ноябрю 1980 года тепловыделение в активной зоне упало до столь незначительных величин порядка 95 кВт , что позволило отказаться от использования парогенераторов. В январе 1981 года реакторная установка была изолирована от второго контура и охлаждалась исключительно за счёт передачи тепла от поверхности оборудования к атмосфере герметичной оболочки [77].
Удаление водорода из первого контура [ править править код ] К концу 29 марта стало очевидным, что в теплоносителе первого контура всё ещё имеется большое содержание газов, в первую очередь водорода, образовавшегося ранее при пароциркониевой реакции [78] [79]. Эта информация вызвала в СМИ совершенно беспочвенную панику о возможности взрыва внутри корпуса реактора, тогда как фактически в объёме первого контура отсутствовал кислород, что делало такой взрыв невозможным [81].
Однако естественная конвекция блокировалась водородом, уже захваченным в парогенераторах, поэтому тепло не отводилось парогенераторами, и испарение воды из первого контура еще больше ускорялось. В этот момент начала открываться верхняя часть сердца. Первичный контур снова начал опорожняться в кожухе, но на этот раз из-за очень сильно загрязненной воды в результате разрушения топливных элементов, что вызвало срабатывание аварийной сигнализации. Изоляция для поддержания приемлемое давление которое обычно являлось ролью неисправного клапана. Это снова привело к выбросу сотен кубометров загрязненной воды в защитную оболочку.
В течение следующих часов операторы пытались заполнить первый контур водой, что было затруднительно, поскольку большие количества водорода были захвачены в верхних точках парогенераторов. Состояние реактора было очень ухудшенным, но, тем не менее, топливо можно было охладить. Квебекского журналиста Жан-Клода Леклерка поразил тот факт, что «государственным властям пришлось импровизировать массовую эвакуацию населения».
Пока не пройдет расследование инцидента, и здание не будет очищено, к работе они не вернутся. С 26 октября первый энергоблок находился на профилактике. Он был остановлен, на нем шли ремонтно-восстановительные работы, и система радиологической тревоги сработала во время замены паровых генераторов.
По данным проведенных исследований, максимальная доза облучения у одного из сотрудников составила всего 16 миллирентген в час. Это лишь в два раза больше количества, которое человек получает при однократном облучении рентгеновскими лучами. Но тем не менее власти всерьез отнеслись к произошедшему.
День в истории: 28 марта
Крупнейшая авария в истории атомной энергетики США произошла 28 марта 1979 года на втором энергоблоке АЭС Три-Майл-Айленд по причине своевременно не обнаруженной утечки теплоносителя первого. Первая в мире крупнейшая авария на АЭС произошла на станции Три-Майл-Айленд в США в 1979 году. Первая в мире крупнейшая авария на АЭС произошла на станции Три-Майл-Айленд в США в 1979 году.
28 марта 1979 года авария на АЭС Три-Майл-Айленд в США. Хронология событий
Самым серьезным инцидентом в атомной энергетике США стала авария на АЭС Тримайл-Айленд в штате Пенсильвания, произошедшая 28 марта 1979 года. Авария на Три-Майл-Айленде произошла в результате частичного расплавления реактора энергоблока 2 (ТМИ-2) в Пенсильвании. Three Mile Island nuclear facility, c. 1979. Date. Карты • Штат Пенсильвания • Электростанции. АЭС Три-Майл-Айленд. «Авария на АЭС «Три-Майл-Айленд» 28 марта 1979 года стала крупнейшей в истории атомной энергетики США.
АВАРИЯ НА АЭС ТРИ-МАЙЛ-АЙЛЕНД
В окружающую среду попали в основном летучие радиоактивные элементы, такие как изотопы йода и цезия. В декабре 2013 года АЭС была официально закрыта. На территории станции продолжаются работы по ликвидации последствий аварии. В Международном агентстве по атомной энергии признают, что атаки на ЗАЭС могут привести к катастрофическим последствиям. Однако агентство так и не потребовало от Киева прекратить эти нападения. Госкорпорация «Росатом» сразу же категорически осудила беспрецедентную атаку на объекты атомной станции и ее инфраструктуры и призвала руководство МАГАТЭ, а также правительства стран ЕС незамедлительно отреагировать на прямую угрозу безопасности Запорожской АЭС. Радионуклиды накроют территории в Польше, Словакии и Германии. По его словам, выброс даже четверти содержимого одного из реакторов накроет Скандинавию. Чрезвычайная ситуация вызовет массовую миграцию населения и будет иметь катастрофические последствия. В августе 2022 года в Государственном агентстве Украины по управлению зоной отчуждения заявили, что последствия аварии на Запорожской АЭС могут быть в десять раз мощнее, чем при Чернобыле.
Помещения АЭС подверглись значительному радиоактивному загрязнению, однако радиационные последствия для населения и окружающей среды оказались несущественными.
Аварии присвоен уровень 5 по шкале INES. Ну, а в кулуарах говорилось, что причины были скрыты. Вы пишете о 1976 годе.
Власти решили, что масштабная эвакуация населения не нужна, но губернатор Пенсильвании все же рекомендовал беременным женщинам и детям дошкольного возраста покинуть 8-километровую зону вокруг аварийного реактора. Снимок 30 марта 1979 года. Миссис Дэвид Нил вместе со своей дочкой Даниэль и домашним питомцем собираются покинуть опасную зону вокруг аварийного реактора. Их сосед, Джон Суайтзер, помогает им загрузить вещи в автомобиль. В непосредственной близости от градирни находится детская игровая площадка.
Снимок сделан 30 марта 1979 года. Безлюдная улица города Голдсборо, Пенсильвания 31 марта 1979 года. Часть населения этого города уехала подальше от аварийной АЭС, те же, кто не смог или не захотел уехать, старались не выходить на улицу без особой необходимости. Власти утверждали, что в результате этой аварии жители 16-километровой зоны вокруг АЭС получили эквивалентную дозу облучения не более 100 миллибэр, что составляет примерно одну треть от годовой дозы облучения, получаемой американцами за счет естественного фонового излучения.
Основной диагноз в Караболке — рак. Онкологию выявляют и у взрослых, и у молодежи, и даже у детей. Всего здесь восемь кладбищ, люди умирают катастрофически быстро, но вот никакой помощи от государства не получают сейчас, равно как не получали и на протяжении тех долгих трех десятилетий, пока о трагедии молчали. Замалчивание трагедии было обусловлено рядом причин: авария произошла в закрытом городе Челябинск-40, поэтому информацию нельзя было афишировать. Кроме того, завод «Маяк» работал на ядерную промышленность, что тоже надлежало хранить в секрете. Эвакуированные люди подписывали бумагу, согласно которой обещали хранить молчание о случившемся на протяжении 25 лет. Жители Татарской Караболки до сих пор пытаются добиться признания своего особого статуса, однако пока это безрезультатно. На протяжении многих лет они отапливали дома дровами и только спустя годы узнали, что жечь деревья было ни в коем случае нельзя из-за того, что они накапливают загрязнение. Еще одна проблема — вода. Экспертиза признала, что местная вода не пригодна к употреблению, но обеспечить регулярный подвоз воды так и не смогли, поэтому людям ничего не остается делать, как использовать воду из колодцев. Самое трагическое в этой истории — то, что по документам жители Татарской Караболки были эвакуированы после аварии. Бумага была подписана, а люди остались жить, ежедневно борясь со смертью, страдая от тяжелейших болей… Только двадцать лет назад Татарскую Караболку вновь нанесли на карты, с которых ее изображение исчезло в конце 1950-х годов. Аварии с выбросом радиоактивных веществ в россии. Радиационные катастрофы в России Самая крупная авария произошла в Челябинской области в 1948 году на комбинате «Маяк» в процессе ввода атомного реактора на плутониевом топливе на заданную проектом мощность. Вследствие плохого охлаждения реактора несколько блоков с ураном соединились с графитом, расположенным вокруг них. Ликвидация происшествия длилась 9 дней. Позже, в 1949 году, был произведен сброс опасного жидкого содержимого в реку Теча. Пострадало население 41 пункта, расположенного поблизости. В 1957 году на этом же комбинате произошла техногенная катастрофа под названием «Куштымская». Чернобыльская зона отчуждения. В 1970 году в Нижнем Новгороде в процессе производства атомного судна на заводе «Красное Сормово» произошел запрещенный запуск атомного реактора, который начал работать на запредельной мощности. Пятнадцати секундный сбой стал причиной загрязнения закрытой территории цеха, радиоактивное содержимое не попало за территорию завода. Ликвидация последствий длилась 4 месяца, большинство ликвидаторов погибло из-за переизбытка облучения. Еще одна техногенная авария была скрыта от общественности. В 1967 году произошла крупнейшая катастрофа АЛВЗ-67, в результате которой пострадало население Тюменской и Свердловской областей. Подробности были скрыты, и до настоящего времени о происшедшем известно немного. Загрязнение территории произошло неравномерно, появились очаги, в которых плотность покрытия превышает 50 кюри на 100 км. Аварии на электростанциях в России носят локальный характер и не несут опасности для населения, к ним относятся: пожар на Белоярской АЭС в 1978 вследствие падения перекрытия на маслобак турбогенератора, в 1992 году по халатности сотрудников при перекачке радиоактивных компонентов для последующей специализированной очистки; разрыв трубопровода в 1984 году на Балаковской АЭС; при обесточивании источников электроснабжения Кольской АЭС вследствие урагана; сбои в работе реактора в 1987 году на Ленинградской АЭС с выбросом радиации за пределы станции, незначительные сбои в 2004 и 2015 гг. В 1986 году на Украине произошла авария на электростанции мирового масштаба. Была разрушена часть активной зоны реакции, в результате глобальной катастрофа радиоактивными веществами была заражена Западная часть Украины, 19 западных регионов России и Беларусь, а 30-киллометровая зона стала непригодна для жизни. Выбросы активного содержимого длились почти две недели. Взрывы на атомных станциях в России за все период существования атомной энергетики зафиксированы не были. Радиационные аварии примеры. Самые страшные ядерные аварии и катастрофы По данным Международного агентства по атомной энергии INAEA , ядерная или радиационная авария определяется как «Событие, которое привело к значительным последствиям для людей, окружающей среды или объекта. Примеры включают летальные эффекты для отдельных лиц, большой выброс радиоактивности в окружающую среду или расплавление активной зоны реактора». Независимо от того, случайно или запланировано, какова бы ни была форма и причина, ядерная авария — это катастрофа, которая воздействует на людей физически, умственно, эмоционально, экономически и генетически, изменяя и повреждая гены, чтобы вызвать серьезный эффект для будущих поколений. Помещения АЭС подверглись значительному радиоактивному загрязнению, однако радиационные последствия для окружающей среды оказались несущественными.
Авария на атомной станции. США 1979 год
Three Mile Island nuclear facility, c. 1979. Date. АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию. Авария на АЭС Три-Майл-Айленд, произошедшая 28 марта 1979 года, является самой тяжёлой ядерной аварией в США. Авария на Три-Майл-Айленде произошла в результате частичного расплавления реактора энергоблока 2 (ТМИ-2) в Пенсильвании. это одна из самых известных аварий в ядерной энергетике, произошедшая 28 марта 1979 года на одной из ядерных электростанций США.