Может показаться, что самый низкий коэффициент Джини существует только в Нарнии, но и на нашей карте все же есть страна, в которой удалось добиться равномерного распределения благ, — Словакия. "В скандинавских странах, которые порой называют государствами "победившего рыночного социализма", Коэффициент Джини достаточно стабилен, и если и меняется, то крайне невысокими темпами. Ниже приведены коэффициенты Джини дохода для каждой страны, данные по которой представлены Всемирным Банком.
What you should know about this indicator
- Как сломать систему неравенств
- Штаты США по коэффициенту Джини
- Индекс Джини и неравенство доходов
- Поделиться
- Индекс Джини
- Как сломать систему неравенств
В России зафиксирован рост доходного неравенства
Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Свое название данный коэффициент получил по инициалам демографа и статиста Корадо Джини, предложившего эту статистическую модель. News turk | новости турции. The average for 2020 based on 53 countries was 35.03 index points. The highest value was in Colombia: 53.5 index points and the lowest value was in Slovenia: 24 index points. The indicator is available from 1963 to 2022. Below is a chart for all countries where data are available.
Минфин пообещал больше не повышать налоги на богатых
Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего.
Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор.
Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем.
Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Для понимания доказательства необходимо базовое понимание метрики ROC-AUC — что это вообще такое, как строится график и в каких осях.
Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него.
По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой. Сравним все полученные результаты метрик. Из таблицы следует, что включение нового фактора F18 увеличивает прогнозную силу модели. Однако, такой вывод стал доступен после расчета дополнительной метрики. Напрашивается вывод, что коэффициента Джини недостаточно для оценки качества модели.
Согласно отчету Всемирного банка о бедности и общем процветании за 2020 год, в течение пяти лет после крупных эпидемий, таких как вирусы H1N1 2009 , Эбола 2014 и Зика 2016 , коэффициент Джини увеличивается примерно на 1,5 пункта. Хотя последствия пандемии COVID-19 все еще подсчитываются, ранние оценки прогнозируют увеличение коэффициента Джини на 1,2—1,9 в год в 2020 и 2021 годах, что свидетельствует об увеличении неравенства доходов. Использование индекса Джини в мире Коэффициент Джини в ЕС в целом ниже, чем в других государствах мира, и по состоянию на 2020 год варьируется от 29 до 35 в зависимости от страны. Для сравнения индекс Соединенных Штатов Америки в том же году составлял 39,7. Показатель Джини позволяет определить наиболее достоверные данные, выделяя конкретные сегменты экономики, поэтому европейские государства решили начать использовать его и в торговом секторе. С учетом меняющейся экономической картины мира применение статистического показателя для измерения структуры торговли страны приводит экспертов к новому, более подробному показателю участия фирм в торговле — торговому индексу Джини GTI. Торговый индекс Джини измеряет асимметрию в торговле на основе количества экспортеров и их доли в стоимости экспорта. Основными источниками данных для корректного измерения GTI являются торговая статистики на уровне фирмы и база данных Евростата о торговле с разбивкой по характеристикам предприятий TEC. База данных TEC показывает количество микро менее 10 сотрудников , малых менее 50 сотрудников , средних менее 250 сотрудников и крупных фирм более 250 сотрудников , занятых в торговле, и категории товаров, экспортируемые каждым классом фирм. Торговый индекс Джини может быть рассчитан для всех этих четырех размерных классов экспортеров, начиная от микрофирм и заканчивая «суперэкспортерами» крупными предприятиями. Несмотря на то, что главы государств обычно не подкрепляют свои заявления торговой статистикой на уровне компаний, они стараются проводить целенаправленную торговую политику для поддержки участия своих МСП в глобальных цепочках поставок. Так, в ноябре 2023 года президент Франции Эммануэль Макрон, ссылаясь на статистические данные, которые указывают на неиспользованный экспортный потенциал, заявил, что доля французских МСП в общем объеме французского экспорта невелика и ниже, чем у немецких и итальянских коллег.
Индекс Джини — процентное представление этого коэффициента. Расчёт коэффициента Джини базируется на кривой Лоренца — для её построения требуется частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.
Gini Coefficient By Country
На карте ниже, составленной по данным Credit Suisse в 2019 году, самые неравные по распределению богатств являются Россия и США. Во всех остальных странах дела обстоят получше. Данную редакцию карты ее используют в американской версии Википедии подвергли критике российские экономисты. В российской Википедии используют карту на основе данных Всемирного банка см.
Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией полного равенства.
Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5. Эта цифра представляет собой чрезвычайно высокое неравенство.
Другой способ восприятия коэффициента Джини — это показатель отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем меньше равноправия в обществе. В приведенном выше примере Гаити более неравное, чем Боливия. Коэффициент Джини в мире Глобальный Джини По оценкам Кристофа Лакнера из Всемирного банка и Бранко Милановича из Городского университета Нью-Йорка, коэффициент Джини для глобального дохода составлял 0,705 в 2008 году по сравнению с 0,722 в 1988 году.
Однако цифры значительно различаются. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Книга Лакнера и Милановича показывает снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов.
В то время как неравенство между странами в последние десятилетия снизилось, неравенство внутри стран возросло.
Показатель неравенства не должен зависеть от какой-либо характеристики отдельных лиц, кроме их дохода. Независимость от масштаба экономики: коэффициент Джини не учитывает размер экономики. Независимость от размера населения: не имеет значения, насколько велико население страны. Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения.
Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки.
Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него.
Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него. По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой. Сравним все полученные результаты метрик. Из таблицы следует, что включение нового фактора F18 увеличивает прогнозную силу модели. Однако, такой вывод стал доступен после расчета дополнительной метрики. Напрашивается вывод, что коэффициента Джини недостаточно для оценки качества модели.
В Турции рекордно увеличился разрыв между богатыми и бедными
Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини. Коэффициент или индекс Джини позволяют оценить данное неравенство в конкретной стране или в мире в целом. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). Сравнение коэффициента Джини по странам, конечно, довольно условно, так как размер страны влияет на уровень неравенства: чем больше территория, население и ВВП, тем больше неравенство.
Неравенство и экономический рост в регионах России
"В скандинавских странах, которые порой называют государствами "победившего рыночного социализма", Коэффициент Джини достаточно стабилен, и если и меняется, то крайне невысокими темпами. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). About In the News Newsletter API. Различия в равенстве доходов в разных странах по коэффициенту Джини. Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные. Самая высокая степень социального неравенства по коэффициенту Джини отмечена в странах Африки, Латинской Америки, Азии.
Индекс Джини в странах мира
Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство.
И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам.
Преимущество данного коэффициента в том, что его легче посчитать. Но не всегда он точно отражает ситуацию с неравенством. Есть 2 офиса, в каждом по 100 сотрудников, децильный коэффициент составляет 10. В обоих офисах первый дециль получает 200 тысяч рублей в месяц в среднем, по 20 тысяч рублей в месяц на сотрудника , а десятый — 2 миллиона в среднем, по 200 тысяч рублей в месяц на сотрудника. Но в первом офисе 90 человек получают по 20 тысяч рублей в месяц, а 10 человек — по 200 тысяч, а во втором офисе 10 человек получают по 20 тысяч, другие 10 — по 30 тысяч, ещё 70 человек — от 40 до 100 тысяч, и 10 человек по 200 тысяч.
Конечно, ситуация с неравенством в этих компаниях будет разной, хотя децильный коэффициент одинаков. Децильный коэффициент подходит для грубой оценки неравенства в обществе, а для более точных значений, всё же, лучше использовать Коэффициент Джини. Почему растёт социальное неравенство Современный мир устроен таким образом, что богатые имеют тенденцию к тому, чтобы становиться ещё богаче, а бедные — к тому, чтобы становиться ещё беднее. Это не хорошо и не плохо. Это просто факт.
Но если ты чётко его осознаешь — это будет очень хорошо. Всё очень просто. Богатые используют деньги в качестве инструмента обогащения. У бедных же денег нет, и большинство из них тонут в болоте кредитов, из-за чего они становятся ещё беднее. Тут, конечно, нужен пример.
Смотри, допустим есть 5 человек: Вася Пупкин капитал 20 рублей Иван Иванов капитал 2 000 рублей Средняк Средняков капитал 20 000 рублей Игорь Альфаинвестор капитал 2 000 000 рублей Вагит Алекперов капитал 200 000 000 000 рублей Прошёл год. Вася и Иван, не имея средств к существованию, перебивались мелкими подработками, мелкими кражами и потребительскими кредитами. В итоге, Вася должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняк Средняков как работал, так и работает.
Более высокий индекс Джини указывает на большее неравенство, когда люди с высоким доходом получают гораздо больший процент от общего дохода населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и может скрывать важную информацию о распределении доходов. Понимание индекса Джини В стране, где каждый житель имеет одинаковый доход, коэффициент Джини дохода будет равен 0.
Страна, в которой один резидент получил весь доход, а все остальные ничего не заработал, будет иметь коэффициент Джини дохода 1. Тот же анализ может быть применен к распределению богатства «коэффициент Джини богатства» , но поскольку богатство труднее измерить, чем доход, коэффициенты Джини обычно относятся к доходу и выглядят просто как «коэффициент Джини» или «индекс Джини», без указав, что они относятся к доходу. Коэффициенты богатства Джини, как правило, намного выше, чем для дохода. Коэффициент Джини — важный инструмент для анализа распределения доходов или богатства в стране или регионе, но его не следует принимать за абсолютное измерение дохода или богатства. По данным ОЭСР , в стране с высоким и низким уровнем доходов может быть один и тот же коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: в Турции и США в 2016 году коэффициенты Джини по доходам составляли около 0,39-0,40. Графическое представление индекса Джини Индекс Джини часто представлен графически через кривую Лоренца , которая показывает распределение доходов или богатства путем нанесения процентиля населения по доходу на горизонтальную ось и совокупного дохода на вертикальной оси. Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией абсолютного равенства.
Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5.
Если доходы каждой доли абсолютно одинаковы, получим вот такой график с прямой линией. А теперь изменим доходы. Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини. Если доходы равны, графики совпадут, а коэффициент будет равен нулю.
Россия занимает 1-е место в мире по неравенству благосостояния
Индекс Джини — процентное представление этого коэффициента. Расчёт коэффициента Джини базируется на кривой Лоренца — для её построения требуется частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.
Но рекордный рост благосостояния в первую очередь в Северной Америке и Китае замедлился в 2022-м из-за сложной рыночной конъюнктуры и геополитических событий. Повышение процентных ставок в 2022 году уже негативно повлияло на цены облигаций и акций, а также, вероятно, будет препятствовать инвестициям в нефинансовые активы.
Инфляция и более высокие процентные ставки могут замедлить рост благосостояния домохозяйств в ближайшем будущем», — таков прогноз, сделанный в отчете.
Неравномерность роста заработка по отраслям. За счет продолжения в 2023 г. Несмотря на отсутствие официальных данных о росте зарплат в ВПК, полная загрузка производственных мощностей в отрасли увеличила спрос на кадры, а следовательно, и уровень дохода сотрудников. Дефицит кадров в определённых отраслях. Например, за счет значительного сокращения в 2022 г.
Мы пришли к культурной деградации, к мировой изоляции, к 30-ти млн человек, выживающим за счёт милостыни в виде субсидий, маткапиталов и пр. Да ещё и стоим на пороге третьей мировой, в одиночестве.
Показать список оценивших.