Таким образом, новое весомое доказательство получила так называемая гипотеза РНК-мира, согласно которой именно молекулы РНК стояли у истоков земной жизни, и они стали первыми сохранять и передавать генетическую информацию. А раз так, то верна гипотеза о том, что РНК должны была возникнуть на Земле раньше, чем ДНК. Ученые Института биологических исследований Солка обнаружили доказательства гипотезы РНК-мира, согласно которой ключевым предшественником живых клеток стали самовоспроизводящиеся молекулы РНК. В рамках своего проекта ученые поставили под сомнение достоверность гипотезы РНК-мира.
Получено экспериментальное подтверждение гипотезы РНК-мира
Гипотеза РНК-мира для ЕГЭ по биологии. Гипотеза мира РНК — это гипотетический этап процесса зарождения и развития жизни на Земле, когда молекулы рибонуклеиновых кислот (РНК) выполняли две ключевых функции. Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов.
Происхождение жизни, часть 2: РНК-мир
Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь. В обзоре рассматривается развитие исследований необычных свойств РНК, интенсивно начавшиеся в самом начале 80-ых годов XX века, что привело к формированию концепции «Мир РНК». Окончательная уверенность в том, что «мир РНК» действительно существовал, наступила после выявления деталей строения кристаллов рибосом методом рентгеноструктурного анализа. Понятно, что существенный аргумент гипотезы РНК-мира состоит в том, что эта гипотеза создает "простой" переходный мостик между абиогенной органикой и клетками. Новости по тэгу. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. Мир РНК — это красивая гипотеза о самозарождении жизни, и вчера ее доказательство стало на шаг ближе.
Обнаружены новые доказательства РНК-мира
В конце концов, был написан сценарий «Мир РНК», согласно которому сначала якобы образовалась РНК, содержащая информацию о белке, а затем и сам белок. и, возможно, единственной - формой жизни до появления первой ДНК- клетки. гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. Сегодня Зоя Андреева рассматривает гипотезу РНК-мира, необязательно верную, но способную свергнуть центральную догму.
Ученые нашли новое потенциальное объяснение возникновению жизни на Земле
Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. Последние новости дня на этот час. Строение РНК Типы РНК Гипотеза РНК мира. Пост автора «Хайтек+» в Дзене: Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина, это наследование с модификациями. Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили о новых доказательствах в пользу гипотезы РНК-мира. Главная/Биология/Моделирование происхождения жизни: Новые доказательства существования "мира РНК". Ученые из Института биологических исследований Солка провели исследования, подтверждающие гипотезу о мире РНК.
Как в мир РНК пришли белки
Другой гипотезой абиогенного синтеза РНК, призванной решить проблему низкой оценочной вероятности синтеза РНК, является гипотеза мира полиароматических углеводородов. В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты. Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки.
Японские ученые впервые доказали способность РНК эволюционировать
С другой стороны возникли специализированные хранилища генетической информации — ДНК. РНК сохранилась между ними как посредник. В 2009 году группе учёных из университета Манчестера под руководством Джона Сазерленда удалось продемонстрировать возможность синтеза уридина и цитидина с высокой эффективностью и степенью закрепления результата реакции а также с возможностью накопления конечных продуктов в условиях ранней Земли. В то же время, хотя абиогенный синтез пуриновых оснований продемонстрирован достаточно давно в частности, аденин является пентамером синильной кислоты , их гликозилирование свободной рибозой аденозина и гуанозина пока показано лишь в малоэффективном варианте.
Сначала темп синтеза был замедлен ядом, но примерно после девяти «пробирочных поколений» эволюции в процессе естественного отбора вывелась новая порода РНК, стойкая к яду. Путём последовательного удвоения доз яда была выведена порода РНК, стойкая к очень высоким его концентрациям. Всего в эксперименте сменилось 100 пробирочных поколений и намного больше поколений РНК, так как поколения сменялись и внутри каждой пробирки.
Хотя в этом эксперименте РНК-репликаза добавлялась в раствор самими экспериментаторами, Оргел обнаружил, что РНК способны и к спонтанному самокопированию, без добавления фермента, правда, намного медленнее. Дополнительный эксперимент был позже проведён в лаборатории немецкой школы Манфреда Ейгена. Она была создана постепенно нарастающей эволюцией.
После открытия каталитической активности РНК рибозимов их эволюция в автоматизированном устройстве под управлением компьютера наблюдалась в экспериментах Брайана Пегеля и Джеральда Джойса из Исследовательского института имени Скриппса в Калифорнии в 2008 году. Фактором, играющим роль давления отбора, являлась ограниченность субстрата, куда входили олигонуклеотиды, которые рибозим распознавал и присоединял к себе, и нуклеотиды для синтеза РНК и ДНК. При построении копий иногда случались дефекты — мутации — влияющие на их каталитическую активность для ускорения процесса несколько раз смесь подвергалась мутированию с помощью полимеразной цепной реакции с использованием "неточных" полимераз.
По этому признаку и происходил отбор молекул: наиболее быстро копирующиеся молекулы быстро начинали доминировать в среде. За 3 суток каталитическая активность молекул за счёт всего 11 мутаций увеличилась в 90 раз.
Испытания показали, что полученная рибозома не только повторяет функции оригинальной, но и со временем у нее возникают новые вариации.
Благодаря новым мутациям им стало легче реплицироваться, то есть они приобрели эволюционное преимущество. Нечто на уровне отдельных молекул могло поддержать дарвиновскую эволюцию, это могла быть какая-то искра, которая позволила жизни стать более сложной и развиться от молекул до клеток и многоклеточных организмов». Иногда, чтобы восстановиться после повреждений, молекулам РНК требуется химическая модификация.
Один из таких процессов — трехэтапное лигирование или соединение двух цепочек РНК. Эту реакцию запускают специальные ферменты, РНК-лигазы, и она присутствует во всех формах жизни, от вирусов до растений. Междисциплинарная команда ученых из Германии открыла первую человеческую РНК-лигазу.
Он защищает этот фермент от клеточного стресса.
Атомы в структурах могли быть организованы двумя эквивалентными способами, зеркально отличающимися друг от друга, но все структуры используют только один способ. Картер начал считать РНК и полипептиды дополняющими друг друга структурами, и смоделировал комплекс, в котором «они были созданы друг для друга, как рука и перчатка». Это подразумевает возможность элементарного кодирования, основу для обмена информацией между РНК и полипептидами. Он работал над набросками того, как этот процесс мог выглядеть, экстраполируя назад от современного, гораздо более сложного генетического кода. Когда гипотеза, которую в 1986 году назвали «мир РНК», набрала популярность, Картер, по его признанию, был выбит из колеи.
Ему казалось, что его мир пептидов и РНК, предложенный за десять лет до этого, полностью проигнорировали. С тех пор он, Уиллс и другие совместно работали над теорией, возвращающейся к тому исследованию. Их главной целью было вывести простейший генетический код, предшествующий современному, более специфичному и сложному. Поэтому они обратились не только к вычислениям, но и к генетике. В основе их теории лежат 20 «нагрузочных» молекул, аминоацил-тРНК-синтетазы. Эти каталитические ферменты позволяют РНК связываться с определёнными аминокислотами в соответствии с правилами генетического кода.
Предыдущие исследования показали, что 20 ферментов можно поровну разделить на две группы по 10 штук на основе их структуры и последовательностей. Два этих класса ферментов обладают определёнными последовательностями, кодирующими взаимоисключающие аминокислоты — то есть, эти ферменты должны были появиться из дополняющих цепочек одного древнего гена. Картер, Уиллс и их коллеги обнаружили, что в таком случае РНК кодировала пептиды при помощи набора всего из двух правил или, иначе говоря, использовала два типа аминокислот. Получившиеся пептиды поддерживали те же самые правила, что управляют процессом передачи, благодаря чему возникает ключевая для этой теории петля обратной связи.
ДНК и РНК две основные современные формы генетического кода, лежащие в основе всей земной биологии, могли сосуществовать на нашей планете еще до того, как здесь возникла жизнь, предполагает группа ученых из Англии, Шотландии и Польши. Исследование опубликованно в журнале Nature , кратко о нем пишет Scientific American.
Используя химическую систему на основе цианистого водорода, имитирующую среду ранней стадии развития Земли, исследователи создали четыре основания, своего рода «буквы» генетического алфавита. Соединенные вместе они образуют последовательности генов, которые клетки переводят в белки.
Ученые предположили новое объяснение возникновения жизни на Земле
Впервые она была выделена в далеком 1868 году. Тогда швейцарский физиолог Иоганн Фридрих Мишер выделил ее вместе с ДНК в виде непонятного нового вещества, которое он назвал нуклеином — в честь клеточного ядра по-латински nucleus. Потом удалось выяснить состав сахаров, и РНК получила свое современное название. Вплоть до 1940-х годов многие считали , что РНК — это нуклеиновая кислота растений и одноклеточных, тогда как ДНК можно найти только у животных. Когда экспериментально было показано, что это не так, тут же начались разговоры о том, зачем вообще она нужна. Уже в середине века стала складываться концепция молекулярной догмы, когда было обнаружено, что РНК участвует в синтезе белка, связываясь с микросомами — теперь мы знаем эти органеллы под названием рибосом. Постепенно РНК заняла свою позицию в догме — она работает как агент, связывающий ДНК и белок, параллельно с этим выполняя ряд других функций: от переноски аминокислот до регуляции генов. И чем больше открывали у РНК возможностей, тем больше было вопросов к ее реальному месту в жизненном цикле клетки и организма в целом. Предпосылки развития гипотезы РНК — уникальная молекула.
Основная ее функция — это связь между геном и белком, она выражена в центральной догме молекулярной биологии: ДНК — РНК — белок. Нужный для синтеза ген, представленный в виде двухцепочечной ДНК, служит матрицей для создания одноцепочечной РНК, точно повторяющей структуру этого гена и способной перенести инструкцию по сборке белка из ядра в цитоплазму клетки. В цитоплазме РНК «находит» рибосому — молекулярную «машину» для синтеза белка. Рибосома, «читая» нуклеотиды в РНК, подбирает для будущего белка аминокислоты согласно генетическому коду — почти каждому триплету то есть трем нуклеотидам соответствует какая-то аминокислота есть еще несколько стоп-кодонов, прерывающих синтез белка, и старт-кодон, с которого всё начинается. Так, нанизывая аминокислоту за аминокислотой, рибосома формирует белок. И если раньше считалось, что РНК — это просто помощник, то за последние годы появилось много данных, опровергающих ее подчиненное положение. Вполне возможно, что РНК не серая мышь рядом со своей куда более известной сестрой, а серый кардинал за ее троном. Оказалось, что РНК не только играет роль посредника между ДНК и синтезом белка, но и обладает каталитической активностью, то есть может работать как фермент.
Долгое время считалось, что ферментами могут быть исключительно белки, и открытие рибозимов — РНК-ферментов — перевернуло представления науки о функциях РНК. Обнаружили каталитическую активность практически случайно. Зачем в ферментах РНК? Белок и нуклеиновую кислоту «разделили» и… неожиданно отметили, что и лишенная белка РНК справлялась со своей каталитической функцией. Сначала биохимики подумали, что это ошибка, артефакт, оставшийся или занесенный извне белок — но и искусственно созданная РНК с той же последовательностью работала как фермент. Стало понятно, что ферментативная активность больше не прерогатива белков. Дальше — больше. Помимо каталитической активности удалось обнаружить еще одно свойство — это регулирование экспрессии генов, то есть степени их проявления.
Даже сейчас известны тысячи различных РНК, участвующие в подавлении активности гена на всех стадиях его проявления, от считывания ДНК до непосредственного белкового синтеза. Причем оказалось, что интерферирующая РНК может быть даже… двухцепочечной.
Есть гипотезы, по которым белки могли возникнуть сами по себе , причём без каких-то экстремальных условий. Но как бы они ни появились, они должны были начать взаимодействовать с нуклеиновыми кислотами. Причём взаимодействовать очень тесно: всё-таки сейчас у нас информация о белках закодирована в именно ДНК и РНК, последовательности аминокислот соответствует последовательность генетических букв. Сотрудники Мюнхенского университета имени Людвига и Максимилиана описывают в Nature , как это могло произойти. Дело в том, что азотистые основания — аденин А , тимин Т , гуанин Г , цитозин Ц и урацил У вместо тимина в РНК — нередко получают химические модификации, и в таком модифицированном виде сидят в цепях нуклеиновых кислот. Если говорить о РНК, то модифицированные «буквы» есть, например, в рибосомах. Так называют большие молекулярные машины, которые заняты синтезом белка во всех живых клетках.
Каждая рибосома — это сложный комплекс, в котором на каркасе специальных рибосомных РНК сидит множество рибосомных же белков. Информацию для синтеза белка рибосома считывает с другой РНК, матричной мРНК — она едет по мРНК и считывает последовательность букв, которая кодирует тот или иной белок. В общих чертах получается следующая картина: транспортная РНК с той или иной аминокислотой соприкасается с участком матричной РНК, и если к рибосоме пришла нужная тРНК с нужной аминокислотой, она эту аминокислоту присоединяет к растущей белковой цепи. Причём здесь модифицированные азотистые основания в рибосомной РНК?
Вместо этого она должна быть продуктом мира рибонуклеопротеидов, древнего мира, который напоминает наш собственный. По-видимому, основные строительные блоки этой клеточной машины всегда — от начала жизни и до настоящего времени — были одними и теми же: это эволюционирующие и взаимодействующие белки и молекулы РНК».
Используя химическую систему на основе цианистого водорода, имитирующую среду ранней стадии развития Земли, исследователи создали четыре основания, своего рода «буквы» генетического алфавита. Соединенные вместе они образуют последовательности генов, которые клетки переводят в белки. Удивительно, что из четырех молекулярных оснований два были в форме, обнаруженной в ДНК, а два другие — в виде, существующем в РНК. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно.
Содержание
- Научно: Панспермия
- Ученые нашли новые доказательства РНК-мира - Москва NEWS
- Моделирование происхождения жизни: Новые доказательства существования "мира РНК"
- Гипотеза мира РНК | это... Что такое Гипотеза мира РНК?
- Ученые нашли новые доказательства РНК-мира - Газета России
- Молекулы РНК появились на Земле раньше молекул ДНК и белков - Российская газета
Научно: Панспермия
- Ученые обнаружили новые доказательства теории РНК-мира | 01.04.2024 | Рязань.Лайф
- Из Википедии — свободной энциклопедии
- РНК-мир: открыто происхождение жизни на Земле
- Решена главная проблема появления жизни на Земле