Новости презентация биотехнологии

Биотехнологии, биоинженерия, биомедицина и смежные области.

Презентация на тему «Успехи современной биотехнологии»

На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства и награждение научно-исследовательских коллективов за актуальные разработки. Основная цель Форума — предоставить специалистам в фундаментальных и прикладных отраслях биотехнологий, медицины, фармацевтических и пищевых производств возможность презентовать свои исследования, наладить контакты, провести плодотворные научные дискуссии, в том числе для возможности инициирования совместных проектов — междисциплинарных и международных. На мероприятии встретились учёные и разработчики наукоёмких технологий из России, Индии, Китая, Ирана, Австралии, Кубы и других стран. Требуется взаимодействие между людьми разных специальностей, это дает толчок к развитию», — обратился с приветствием к участникам Алексей Николаевич Фёдоров, директор ФИЦ Биотехнологии РАН. На торжественном открытии академик РАН Владимир Олегович Попов, научный руководитель ФИЦ Биотехнологии РАН, рассказал о направлениях работы Центра, его достижениях и ведущих проектах, а также подчеркнул значимость международной кооперации при реализации научных исследований.

Господин Субрата Дас, Министр образования и социального обеспечения Посольства Республики Индия в РФ, отметил, что сотрудничество в развитии научных исследований и технологий — важнейшая часть отношений между Россией и Индией, а направления сотрудничества в области разработок для сельского хозяйства и энергетики являются одними из самых привлекательных для сотрудничества и инвестиций.

В качестве векторов чаще всего используют вирусы, плазмиды бактерий, хромосомы митохондрий и пластид, а также искусственно сконструированные молекулы ДНК. Процесс введения вектора новой Процесс введения вектора новой ДНК в клетку-хозяина называется трансформацией.

Последний этап работы заключается в размножении организмов-хозяев и отборе тех из них, в которых «прижился» введенный ген. В настоящее время применяют и прямое введение ДНК в клетки эукариот с помощью электрических разрядов, генной пушки и другими способами. Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными.

Клонирование — это получение многочисленных копий гена, белка, клетки или организма Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы. Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т.

Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли. Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери.

Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы. После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери. Из пяти пересаженных эмбрионов выжил лишь один.

Овечка Долли 5. Овца Долли являлась генетической копией овцы-донора клетки.

Победить катаракту поможет искусственный хрусталик — линза из органического стекла, силикона или акрила, которая может заменить испортившийся собственный. Сейчас заменить поврежденный хрусталик на искусственный — вполне реально. А значит, у пациентов появился шанс снова увидеть мир четко и ярко. Более того, возможности современной офтальмологии уже не исчерпываются одними лишь лазерной коррекцией зрения и искусственным хрусталиком. Уже появились бионические протезы глаз, которые также помогают людям, потерявшим зрение, восстановить его по крайней мере, частично. При попадании в него эти гены начинают работать и нарабатывать этот самый антиген, на что, в свою очередь, реагирует наш организм, распознает и запоминает его. Таким образом возникает иммунитет против инфекционного заболевания.

Преимуществом таких вакцин является простота их создания и производства. Однако и проблем, которые необходимо преодолеть при разработке и применении таких вакцин, также немало. Тем не менее, многие ученые считают, что именно за такими вакцинами — будущее.

ООН и Всемирный банк впервые выступили против крупного агробизнеса и генетически-модифицированных технологий. Эксперты ООН убеждены, что в голоде сотен миллионов людей заинтересован крупный агробизнес, который строит свою политику на создании искусственного дефицита продовольствия. Впервые ООН фактически осудила использование в сельском хозяйстве генетически-модифицированных технологий, поскольку они, во-первых, не решают проблемы голода, а во-вторых, представляют угрозу здоровью населению и будущему планеты. В последние годы сложилось впечатление, что крупные агропромышленные корпорации потихоньку сворачивают исследования по генной модификации растений и переключаются на более благодарную сферу деятельности - микроорганизмы. Корни биотехнологии применительно к микроорганизмам уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, брожение с участием микроорганизмов, было известно и широко применялось еще в древнем Вавилоне. Микроорганизмы синтезируют целый ряд ценных веществ. С развитием генной инженерии удается не только увеличить продуктивность биосинтеза, но и получать вещества, химическое производство которых ранее было невозможно. Пищевые добавки, аминокислоты, витамины, ароматизаторы, ферменты — вот далеко не полный перечень веществ, которые получают при помощи генетически модифицированных микроорганизмов. В ряде случаев, биотехнологические методы производства этих соединений уже заменили традиционный химический синтез. Преимущества биотехнологического производства с использованием генетически модифицированных микроорганизмов очевидны: микроорганизмы быстро растут и, в большинстве случаев, легко культивируются. В отличие от традиционного химического синтеза, биосинтез протекает при нормальных условиях, а значит, для него не требуется создание таких дополнительных условий как повышенная температура, давление, или применение агрессивных химикатов. Генетически модифицированные микроорганизмы используются в настоящее время для производства фармацевтических препаратов, вакцин, продуктов тонкого органического синтеза, пищевых добавок и других сопутствующих соединений пищевой промышленности. Вот только некоторые примеры продуктов микробного синтеза: витамин B2, витамин С, лимонная кислота, консерванты натамицин, низин, лизоцим, аминокислоты глутамат, аспартам, цистеин. Впечатляющим успехом является производство в промышленных масштабах человеческого инсулина, вырабатываемого генно-модифицированной кишечной палочкой. Кроме крупных корпораций, биосинтезом сейчас занялись небольшие стартапы, выращивающие генно-модифицированные дрожжи. Роботизированные системы тасуют гены иногда с умыслом, иногда случайным образом, получая и проверяя десятки тысяч штаммов в месяц. Наиболее удачные выращиваются на продажу в чанах вместимостью 200 тыс. Таким образом им удается получать различные вещества, гораздо более дешевые, чем оригиналы — от пряностей ваниль, шафран, экстракты цитрусовых и сандалового дерева до лекарств пока известно о морфине и противомалярийном препарате артемизинине. Методы биосинтеза с использованием микроорганизмов встречают в мире гораздо меньшее сопротивление, чем выращивание генно-модифицированных растений. Связано это с тем соображением, что в качестве продукции биосинтеза человеком употребляются не сами микроорганизмы, а продукты их метаболизма. Считается, что методы контроля качества исключают попадание генетического кода бактерий и грибов в конечный продукт, и этот продукт ничем не отличается от природного оригинала. Нельзя, правда, не вспомнить о случае в США в конце 80-х годов, когда бактерия, генно-модифицированная для производства пищевой добавки триптофан, стала вдруг по неизвестным причинам также вырабатывать токсичное вещество этилен-бис-триптофан. В результате употребления пищевой добавки погибло 38 человек, и более тысячи стали инвалидами. К счастью, в дальнейшем подобных крупных инцидентов не было зафиксировано. Перспективы: Очень хорошие. Единственные недовольные голоса раздаются от разоряющихся производителей тех натуральных веществ, чья продукция постепенно вытесняется биосинтезом. Впрочем, подобные соображения в мире ещё никого не останавливали. Биотехнология активно применяется в целях очистки всех компонентов биосферы воды, почвы, воздуха и др. Кроме того, существенным является не только сам процесс очистки, но и возможность использования выделенных отходов в качестве вторичного сырья. Существуют микроорганизмы, для которых загрязнения, содержащиеся в сточных водах, являются питательными веществами. В начале ХХ века произошла революция в очистке сточных вод с помощью активного ила - сложной смеси микроорганизмов. Хотя при этом требуется перемешивать жидкость и непрерывно аэрировать её воздухом, такой способ позволяет перерабатывать большие объёмы стоков с самыми разнообразными загрязнениями от хозяйственно-бытовых до промышленных. Оставшийся ил затем подвергают брожению с получением ценного удобрения. Многие выбросы в атмосферу содержат вредные или дурно пахнущие примеси. Для их очистки применяют биофильтры, заполненные насадкой, на которой закреплены специальные микроорганизмы. Вредные примеси сорбируются на насадке и затем потребляются и обезвреживаются микроорганизмами. С утилизацией твердых отходов дело обстоит сложнее. Например, различные пластмассы, составляющие сейчас, наверное, основной компонент городских свалок, разлагаются в естественных условиях за сотни лет. Эффективной технологии микробиологической переработки пластмассы пока не найдено. Тем не менее, недавно появились сообщения, что на пластиковом мусоре, скапливающемся в океанах в виде плавучих островов, обнаружены обширные колонии микроорганизмов. На поверхности пластика при тщательном осмотре были найдены микроскопические трещины и ямки, появление которых косвенно демонстрирует способность данных микробов разлагать углеводороды. Это оставляет надежду на разработку технологии биодеградации пластмасс в ближайшем будущем. Описаны также опыты по успешному очищению почвы от загрязнения пестицидами, ртутью и тяжелыми металлами. Опытные участки засеиваются модифицированными бактериями, способными перерабатывать или связывать опасные вещества. Причем бактерии высеиваются вместе с питательным веществом, дозировка которого строго рассчитана. По прошествии определенного срока времени питательное вещество заканчивается и бактерии, сделав своё дело, погибают. Так предотвращается неконтролируемый рост модифицированных бактерий. Технология, безусловно, будет в дальнейшем развиваться. В 2010 году в Мексиканском заливе в ликвидации последствий разлива нефти участвовали бактерии-деструкторы, выведенные российскими учеными. Перспективы: С неизбежностью хорошие. Переработка промышленных и бытовых отходов микроорганизмами - дело, конечно, хлопотное.

Современные биотехнологии и проблемы биоэтики Выполнила студентка VI

Презентация на тему "Биотехнологии" Фон для презентации по биотехнологии Открыть оригинал.
На Форуме «РОСБИОТЕХ-2024» представили новейшие разработки биотехнологий для сельского хозяйства И каковы перспективы развития биотехнологий и продуктов биотехнологоческого производства?
На Форуме «РОСБИОТЕХ-2024» представили новейшие разработки биотехнологий для сельского хозяйства Главная Работы на конкурс Предметное образование Естественно-научные дисциплины Презентация к исследовательской работе «Зеленые биотехнологии».
Биотехнологии - новости и статьи | Rusbase ЗАДАЧИ, МЕТОДЫ И ДОСТИЖЕНИЯ - Презентация абсолютно бесплатно.

Основные направления биотехнологии презентация - 83 фото

Привлечены партнеры из ERA-Net EuroTransBio (ETB). (эффективный инструмент финансирования малых предприятий, работающих в области современных биотехнологий). И каковы перспективы развития биотехнологий и продуктов биотехнологоческого производства? Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего».

Презентация на тему Перспективы развития биотехнологии

Целью мероприятия стало вовлечение молодого поколения в научные проекты и процессы в области биотехнологии. По традиции работа конференции проходила по нескольким направлениям: конференция молодых учёных, выставка достижений биотехнологических компаний и круглые столы для обмена опытом и обсуждения перспектив сотрудничества. Кроме научных и образовательных сессий было место для проведения заседаний школы молодых ученых «Биоинженерия для решения инновационных задач промышленных технологий» Федеральной научно-технической программы развития генетических технологий на 2019-2027 годы. Работа ежегодной конференции охватывает следующие направления: «Сельскохозяйственная биотехнология»; «Пищевая биотехнология»; «Биоинформатика, клеточная и генетическая инженерия»; Медицинская биотехнология и биофармацевтика»; «Экология, биоэнергетика и биогеотехнология»; Секция «Промышленная биотехнология и производство БАВ».

Поднесённые к ноге робота электроды, по которым через жидкость и мышцу пропускается ток Учёные отметили, что предложенное ими решение работает, и робот с живыми мышцами способен перемещаться и совершать манёвры на местности.

В будущем они планируют разработать устройства подвода питания к мышцам, чтобы они могли работать на воздухе, а также эффективные схемы подачи электрических сигналов для управления движением. Можно не сомневаться, что исследователи найдут удобное решение. Ранее мы рассказывали, например, что японские учёные смогли научить роботов обрастать кожей из живых человеческих клеток, хотя это уже другая история. Первый шаг в этом направлении сделали российские разработчики.

Впервые в мире под присмотром хирурга робот самостоятельно восстановил повреждение мягких тканей пациента непосредственно на ране без какой-либо предварительной подготовки. Источник изображений: НИТУ МИСИС «Мы сделали первый шаг в то будущее, в котором хирурги будут не просто манипулировать роботическими системами, но роботы будут полноправными автономными участниками операций. Создан важнейший прецедент использования биопринтера для залечивания крупных повреждений мягких тканей сразу на пациенте без предварительной подготовки 3Д-моделей и без необходимости имплантации напечатанных заранее эквивалентов ткани», — сообщил директор Института биомедицинской инженерии НИТУ МИСИС Фёдор Сенатов. Её главной особенностью стало использование коммерчески доступной компонентной базы.

В частности, роботизированного манипулятора белорусской компании Rozum Robotics. Печать непосредственно на ране представляется наиболее быстрым и доступным способом восстановить ткани пациента. До сих пор для этого ткани для восстановления выращивались отдельно в стерильных условиях, что требовало времени и затрат. Роботизированный комплекс сразу в процессе операции сканировал рану, создавал её 3D-модель и корректировал заполнение с учётом перемещений тела, например, в процессе дыхания.

Ранее комплекс был испытан на животных и показал свою состоятельность. Первая операция на человеке была проведена в Главном Военном Клиническом Госпитале им. Живые клетки для «чернил» принтера брались из костного мозга пациента. Композиция состоит из смеси высокоочищенного концентрированного стерильного раствора коллагена и клеток.

Такая методика проводилась впервые, она особенно актуальна при множественных осколочных ранениях конечностей, когда донорский ресурс ограничен. При обширных ранениях в перспективе мы планируем сканировать тело полностью и замещать все раны таким методом. Это ускорит время их заживления и позволит сократить время пребывания пациентов в стационаре», — подчеркнул травматолог-ортопед 1 квалификационной категории, хирург Владимир Беседин, контролировавший операцию в ГВКГ им. Как отметил директор Института биомедицинской инженерии НИТУ МИСИС Фёдор Сенатов, в скором будущем мы можем ожидать более масштабного внедрения в клиническую практику технологии биопечати in situ непосредственно в рану.

Колония живых нейронов обучалась быстрее искусственных моделей с почти таким же результатом. Если отбросить вопрос с этикой, до проблем с которой пока далеко, живые клетки человеческого мозга могут превзойти современные и будущие нейронные сети, работающие на кремниевых чипах, как по производительности, так и по экономическим соображениям. Источник изображений: Nature Electronics С помощью стволовых клеток учёные вырастили так называемый органоид мозга — объёмную колонию клеток, повторяющих структуру нейронов и их связей в мозге. Это не первый и наверняка не последний эксперимент с живыми клетками, позаимствованными у человека.

Ранее органоид мозга, например, научили игре в «Понг», с чем он успешно справился. В таких исследованиях самым сложным бывает донести информацию до «мозга» и считать её. Группа профессора Го Фэня из Университета штата Индиана в Блумингтоне США предложила достаточно простое решение — они вырастили органоид на высокоплотном массиве электродов. Электроды, а это, по сути, компьютерный интерфейс, вносили данные в клетки «мозга» и считывали результат его последующей активности.

Тем самым на практике была реализована такая архитектура спайковой импульсной нейросети, как резервуарная. Что происходило в массиве нейронов, учёным было неизвестно, но условно живая модель показала способность к быстрому обучению и расчётам. Свою нейросеть учёные назвали Brainoware. Система прошла двухдневное обучение на наборе из 240 аудиозаписей речи восьми японских мужчин, произносящих гласные звуки.

Также система смогла решать уравнения по отображениям Эно примерно с такой же точностью. На это ушло ещё четыре дня обучения. Более того, решение дифференциальных уравнений проходило с большей точностью, чем в случае искусственной нейронной сети без блока длинной цепи элементов краткосрочной памяти. Мозг Brainoware в «возрасте» 7, 14, 28 дней и через несколько месяцев нижний ряд в увеличенном виде Живой искусственный «мозг» был не такой точный, как искусственные нейронные сети с длинной цепью элементов краткосрочной памяти, но каждая из этих сетей прошла 50 этапов обучения.

Для этого раствор армируется волокнами со спорами особых бактерий. Разработка может избавить от дорогостоящих ремонтных работ, что также снизит потребность в стройматериале, производство которого наносит один из тяжёлых уронов окружающей среде. Источник изображения: Drexel University Человечество бесконечно строит и ремонтирует. Бетон стал самым востребованным материалом в этом процессе.

Самовосстанавливающиеся бетонные конструкции помогли бы сэкономить на средствах для ремонта, и это также сократило бы вредные выбросы в атмосферу. Группа физиков, химиков, биологов, материаловедов и строителей из Дрексельского университета нашла возможное решение проблемы. Учёным давно известны бактерии, которые минерализуют добытый из воздуха углерод, превращая его в «камень». Если в трещинах бетона поселить колонии таких бактерий, то они самостоятельно заполнят трещины минералами и сцементируют её края.

Исследователи подобрали перспективный для поставленной задачи штамм бактерий Lysinibacillus sphaericus. Оставался вопрос, как сохранить бактерии и активировать их только для случая появления трещин. Для этого споры бактерий поместили в гидрогель и покрыли всё это полимерной оболочкой. Получилась тончайшая полимерная арматура, которая сама по себе придавала бетону дополнительную прочность.

Если в бетоне с полимерной арматурой возникала трещина, то когда она доходила до волокна, внутреннее давление высвобождало гидрогель и споры бактерий. Споры превращались в живых бактерий, которые питались кальцием и поглощали углерод из воздуха, образуя взамен минеральные соединения в виде карбоната кальция. Трещина зарастала с такой скоростью, которая обещает залечивать подобные раны в бетоне за сутки или двое. Разработанный учёными материал пока не годится для коммерческого применения, для этого с ним ещё предстоит много работы.

Однако идея вполне рабочая и может со временем воплотиться в жизнь. Бактерии можно будет даже подселять лишь в трещины, не добавляя изначально в раствор.

Горбатова РАН, Ирина Рудольфовна Куклина, исполнительный директор Аналитического центра международных научно-технологических и образовательных программ и другие гости. Основными темами докладов Форума стали применение нанотехнологий и IT в здравоохранении и медицине, современные подходы к диагностике, лечению и реабилитации пациентов при социально значимых заболеваниях, разработка и внедрение инновационных биомедицинских технологий, профилактика онкологических заболеваний, биотехнологии в производстве продуктов питания в том числе, функциональных и специализированных и другие направления. Секция Форума «Пищевые биотехнологии и стратегии развития пищевых систем» прошла во второй день работы Форума и была организована в ФНЦ пищевых систем имени В. Горбатого РАН. С пленарными докладами о новых разработках в области пищевых технологий, функционального и специализированного питания выступили профессор Линдси Браун из Университета Гриффита в Австралии и доцент Института пищевых наук Чжэцзянской академии сельскохозяйственных наук Кэ Кэ Чжао, Китай. Академик РАН Владимир Алексеевич Черепенин рассказал о возможности применения мощных ультракоротких электромагнитных импульсов для борьбы с онкологическими заболеваниями, в том числе с карциномой.

Один из продуктов этой отрасли биотехнологии — генетически модифицированные сорта растений, устойчивые, например, к грибковым и бактериальным заболеваниям. Некоторые культуры, такие как соя и кукуруза, были снабжены геном устойчивости к гербицидам. Примером белка, полученного учеными методами биотехнологии, является инсулин, который сегодня спасает жизни людей с диабетом.

Практическое применение биотехнологий Биотехнологические процессы использовались человеком с древности — для производства спиртных напитков, сыра и хлеба, а также для разведения растений и животных. В настоящее время они используются в основном в промышленных масштабах и в меньшей степени — на приусадебных участках и кухнях. Маринование и консервация Ферментация фруктов и овощей с применением молочнокислого брожения является одним из древнейших биотехнологических процессов, хотя его биологический и химический механизм не был изучен и описан до 19 века, во времена, когда холодильники и морозильники еще не были изобретены и сырое молоко не могло храниться слишком долго.

Поэтому для их длительного хранения использовалась молочная кислота — продукт метаболизма молочнокислых бактерий. Молочнокислое брожение — это процесс превращения сахаров углеводов в молочную кислоту, в результате чего казеин — белок, присутствующий в молоке — сгущается. Этот процесс используется для производства молочных продуктов и сыра.

Маринованные продукты можно хранить в течение многих месяцев без риска порчи, поскольку кислота предотвращает развитие других сапрофитных микроорганизмов, кроме молочнокислых бактерий, которые ее переносят. Долговечность маринованных продуктов в прошлом обеспечивалась понижением температуры хранения в подвалах, на дне ручьев и плотным закрытием для поддержания анаэробных условий. В промышленных масштабах засолку овощей проводят в бетонных или металлических бочках, оборудованных установкой для удаления выделяющегося углекислого газа.

После периода ферментации овощи упаковывают в пластиковую или деревянную тару. Пивоварение, изготовление вина В древности дрожжи применялись для получения спирта, хотя, конечно, тогда никто не знал, что за превращение сладкого сока в вино отвечают дрожжи. Лучше всего для ферментации подходит виноград, богатый сахаром, в котором естественным образом содержатся дрожжи.

Так что достаточно раздавить плод, закрыть его в контейнере с отверстием, позволяющим выходить углекислому газу, и оставить настаиваться в теплом месте, чтобы получить спиртосодержащий напиток. В настоящее время для производства вина и пива используются специальные штаммы дрожжей так называемые винные или пивные дрожжи , отобранные с учетом эффективности и типа продукта, который нужно получить. Производство пива в занимает около 8-10 дней.

Необходимым сырьем является зерно ячменя, которое подвергают проращиванию. Его цель — активировать ферменты, расщепляющие крахмал и белки, хранящиеся в зернах в качестве резервного материала. Пророщенное зерно, называемое солодом, измельчают, заливают водой и нагревают до образования месива.

Биотехнология: изображения без лицензионных платежей

Презентация биотические факторы среды взаимоотношения между организмами. Фото Пипетка, уронившая синий химикат образца на молодое растение в пробирке, концепция исследования биотехнологии. Discover the magic of the internet at Imgur, a community powered entertainment destination. Lift your spirits with funny jokes, trending memes, entertaining gifs, inspiring stories, viral videos, and so much. Ученые рассказали ребятам о том, как биотехнологии применяют в современном мире.

Презентация на тему Перспективы развития биотехнологии

Еще одной причиной активного изучения и усовершенствования знаний в биотехнологии стал вопрос в недостатке или будущем дефиците социально-экономических потребностей. В мире существуют такие проблемы, как: нехватка пресной или очищенной воды в некоторых странах ; загрязнение окружающей среды различными химическими веществами; дефицит энергетического ресурса; необходимость усовершенствования и получения совершенно новые экологически чистых материалов и продуктов; повышение уровня медицины. Ученые уверенны, что решить эти и многие другие проблемы возможно при помощи биотехнологии. Основные типовые технологические приемы современной биотехнологии Биотехнологию можно выделить не только как науку, но еще и как сферу практической деятельности человека, которая отвечает за производство разного вида продукции при участии живых организмов или их клеток. Теоретической основой для биотехнологии в свое время стала такая наука, как генетика, это случилось в ХХ веке. А вот практически биотехнология основывалась на микробиологической промышленности.

Микробиологическая промышленность в свою очередь получила сильный толчок в развитии после открытия и активного производства антибиотиков. Объектами, с которыми работает биотехнология, являются вирусы, бактерии, различные представители флоры и фауны, грибы, а также органоиды и изолированные клетки. Наглядная биотехнология. Генная и клеточная инженерия Генетическая и клеточная инженерия в сочетании с биохимией — это основные сферы современной биотехнологии. Клеточная инженерия — выращивание в специальных условиях клеток различных живых организмов растений, животных, бактерий , разного рода исследования над ними комбинация, извлечение или пересадка.

Самой успешной считается клеточная инженерия растений. При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур. Теперь выведение нового сорта сократилось от 11 лет до 3-4. Генетическая или генная инженерия — отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы.

Биотехнологии клонирования Клонирование — это процесс получения клонов то есть потомков полностью идентичных прототипу. Первый опыт клонирования был проведен на растениях, которые клонировались вегетативным путем. Каждое отдельное растение, которое получилось вследствие клонирования, называлось клоном.

Возможно, кого-то заинтересует это направление, а кто-то захочет продолжить свою деятельность в данной сфере, - отметила в заключение Елена Бахтенко. Добавим, что в рамках мероприятия прошло заседание Биотехнологического кластера Вологодской области. Участники обсудили вопросы формирования бюджета, вступление новых предприятий в кластер, а также организацию конференции по биотехнологиям, которая пройдет уже этой осенью. Учебные подразделения.

Слайды и текст этой презентации Слайд 1 Биотехнология Направления развития и достижения Слайд 2 Описание слайда: Население планеты В 1980 г. В настоящее время на планете - 6 млрд. Чтобы этого не произошло, нужно удовлетворять возрастающие потребности людей в продуктах питания Слайд 3 Биотехнология Нужны принципиально новые технологии производства. Деление — быстрое размножение Потрясающая выживаемость Простота генетической организации Слайд 6 Описание слайда: Направления развития -Выращивание бактерий, низших грибов, дрожжей на спец.

Флеминг Слайд 10 Биоинженерия или биомедицинская инженерия это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач. Слайд 11 Важные достижения биоинженерии Среди важных можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Слайд 12 Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения. Слайд 14 Наномедицина Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся адресная доставка лекарств к больным клеткам, лаборатории на чипе, новые бактерицидные средства. Раздел фармакологии, который изучает физиологические эффекты, производимые веществами биологического и биотехнологического происхождения.

Презентация "Биотехнология и её достижения"

Биотехнология — наука, изучающая использование живых организмов и биологических процессов в производстве. Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности. Главное по теме «Биотехнологии» – читайте на сайте

Презентация Биотехнологии

Фон для презентации по биотехнологии Открыть оригинал. Работа ежегодной конференции охватывает следующие направления: «Сельскохозяйственная биотехнология»; «Пищевая биотехнология»; «Биоинформатика, клеточная и генетическая. Презентация на тему: " Биотехнология " — Транскрипт: 1 Биотехнология дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их. Таким чекпойнтом для многих молодых биологов, биотехнологов, предпринимателей стали зимние школы «Современная биология и Биотехнологии будущего».

Презентация, доклад по теме Биотехнологии

Будущее в биотехнологии, генетике и селекции растений - Российское Общество «Знание» Автор рассказывает нам об истории биотехнологии, о целях и задачах, которые она перед собой ставит.
#биотехнологии Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.
Биотехнологии — последние и свежие новости сегодня и за 2024 год на | Известия Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности.

Презентация к исследовательской работе «Зеленые биотехнологии»

Вы можете ознакомиться и скачать Биотехнология Направления развития и достижения. Презентация содержит 20 слайдов. Слайд 3Биотехнологией часто называют применение генной инженерии в XX—XXI веках Однако, термин относится. Имя файла: Количество просмотров: 15 Количество скачиваний: 0. Найдите нужное среди 340 529 стоковых фото, картинок и изображений роялти-фри на тему «биотехнологии» на iStock. В данной презентации речь идет о биотехнологии, ее задачах и методах.

Похожие новости:

Оцените статью
Добавить комментарий