Новости почему поверхностное натяжение зависит от рода жидкости

Температурная зависимость поверхностного натяжения между жидкой и паровой фазами чистой воды Температурная зависимость поверхностного натяжения бензола Поверхностное натяжение зависит от температуры. Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Поверхностное натяжение воды и других жидкостей зависит от рода жидкости из-за различий в их межмолекулярных силах. Почему у воды поверхностное натяжение больше, чем у других жидкостей? Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости?

Почему поверхностное натяжение зависит от рода жидкости кратко

Поверхностное натяжение. Физическая химия. Поверхностное натяжение Поверхностное натяжение видео 3 - Силы межмолекулярного взаимодействия - Химия Коэффициент поверхностного натяжения.

Чем сильнее взаимодействие между молекулами, тем больше энергии требуется для разрыва этих связей и образования новой поверхности. Это приводит к повышению поверхностного натяжения. Таким образом, различия в химическом составе и структуре молекул вещества приводят к различию в межмолекулярных силах и, следовательно, в поверхностном натяжении разных жидкостей.

Это связано с тем, что при повышенном давлении молекулы жидкости сжимаются и более плотно упаковываются, что снижает силы, вызывающие поверхностное натяжение. Все эти факторы взаимодействуют и влияют на поверхностное натяжение жидкости. Понимание этих факторов позволяет лучше понять свойства и поведение жидкостей на поверхности и применять эту информацию в различных областях, таких как химия, физика и биология.

Поверхностное натяжение и форма жидкости Поверхностное натяжение жидкости играет важную роль в определении ее формы. Оно обусловлено силами, действующими между молекулами жидкости на ее поверхности. Поверхностное натяжение стремится уменьшить площадь поверхности жидкости, что приводит к образованию сферической формы. Сферическая форма капли Капля жидкости, находящаяся в свободном состоянии, принимает сферическую форму. Это происходит из-за поверхностного натяжения, которое стремится уменьшить площадь поверхности капли до минимума. Сферическая форма обеспечивает наименьшую площадь поверхности для заданного объема жидкости. Сферическая форма капли также объясняет, почему капли воды на поверхности не расплываются, а образуют шарики. Поверхностное натяжение делает поверхность капли похожей на эластичную пленку, которая позволяет капле сохранять свою форму.

Влияние поверхностного натяжения на форму жидкости Поверхностное натяжение также влияет на форму жидкости, находящейся в контейнере или на поверхности. Если поверхностное натяжение жидкости выше силы тяжести, то жидкость будет образовывать выпуклую поверхность, например, в случае капли на поверхности или в контейнере. Однако, если поверхностное натяжение жидкости ниже силы тяжести, то жидкость будет образовывать вогнутую поверхность. Примером такой формы может быть жидкость, находящаяся в тонкой трубке или капилляре. В этом случае, поверхностное натяжение преодолевает силу тяжести и создает вогнутую форму.

Равнодействующая этих сил равна нулю. Равнодействующая же сил притяжения, действующих на молекулы поверхностного слоя, не равна нулю так как над поверхностью жидкости находится пар, плотность которого во много раз меньше, чем плотность жидкости и направлена внутрь жидкости. Под действием этой силы молекулы поверхностного слоя стремятся втянуться внутрь жидкости, число молекул на поверхности уменьшается, и площадь поверхности сокращается. Но все молекулы, разумеется, не могут уйти вовнутрь. На поверхности остается такое число молекул, при котором площадь поверхности оказывается минимальной в каждом конкретном случае — при заданном объеме жидкости, силах, действующих на жидкость. Для перенесения молекул из глубины объема жидкости в ее поверхностный слой необходимо совершить работу по преодолению равнодействующей сил притяжения, действующих на молекулу в поверхностном слое.

Что такое поверхностное натяжение?

Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Как зависит поверхностное натяжение жидкости от полярности еѐ молекул? Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости). 1. Почему коэффициент поверхностного натяжения жидкостей зависит от рода жидкости? Коэффициент поверхностного натяжения зависит от химического состава жидкости, среды, с которой она граничит, температуры.

Форум самогонщиков, пивоваров, виноделов

В результате, полярные жидкости имеют более высокое поверхностное натяжение по сравнению с неполярными жидкостями. Поверхностное натяжение полярных жидкостей проявляется в форме устойчивой пленки на поверхности, которая удерживает молекулы жидкости внутри и не позволяет им легко выходить из нее. Неполярные жидкости, такие как масло или толуол, имеют слабый или отсутствующий дипольный момент. Взаимодействия между молекулами таких жидкостей менее сильны, что приводит к более низкому поверхностному натяжению. Это проявляется в виде менее стабильной пленки на поверхности неполярной жидкости. Роль межмолекулярных взаимодействий в поверхностном натяжении Межмолекулярные взаимодействия играют важную роль в формировании поверхностного натяжения. Эти взаимодействия могут быть различными в зависимости от рода жидкости — молекулярных веществ, которые составляют данную жидкость. Вода, например, обладает высоким поверхностным натяжением благодаря сильным водородным связям между молекулами. Когда вода находится в контакте с воздухом, возникает напряженная плотная пленка на ее поверхности, которая имеет свойство сокращаться. При наличии слабых межмолекулярных взаимодействий на поверхности жидкости образуется слабая плёнка и, следовательно, меньшее поверхностное натяжение.

В то же время, сильные межмолекулярные связи приводят к образованию более плотной пленки и большему поверхностному натяжению.

Ответить Поверхностное натяжение зависит от рода жидкости из-за различной структуры и взаимодействия молекул вещества. Поверхностное натяжение возникает из-за сил взаимодействия молекул внутри жидкости и на ее поверхности. Молекулы вещества в жидкости притягиваются друг к другу силами взаимодействия, называемыми межмолекулярными силами.

Из рис. В соответствии с 37.

Это имеет место в двух случаях. В этом случае жидкость неограниченно растекается по поверхности твердого тела — имеет место полное смачивание. Замена поверхности твердое тело — газ двумя поверхностями, твердое тело — жидкость и жидкость — газ, оказывается энергетически выгодной. При полном смачивании краевой угол равен нулю. Замена поверхности твердое тело — жидкость двумя поверхностями, твердое тело — газ и жидкость — газ, оказывается энергетически выгодной. В этом случае имеет место частичное смачивание.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Почему поверхностное натяжение зависит от рода воды? Почему поверхностное натяжение зависит от рода жидкости?

Поверхностное натяжение жидкости - формулы и определение с примерами

Почему у воды поверхностное натяжение больше, чем у других жидкостей? Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами. тем большая сила поверхносного натяжения. Поверхностное натяжение. Высота подъема влаги зависит от радиуса капилляра и свойств жидкости, таких как поверхностное натяжение и вязкость.

Поверхностное натяжение воды. НПК.

Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается. Рис.2.5. Зависимость поверхностного натяжения неполярной жидкости от Т. Другие вещества менее строго следуют этой зависимости, но часто отклонениями можно пренебречь, т.к. dσ/dТ слабо зависит от температуры (для воды dσ/dТ= -0,16 10-3 Дж/м2). Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).

Глава 6 Поверхностное натяжение: капли и молекулы

Важно понимать, что поверхностное натяжение зависит от рода жидкости и может быть сильным или слабым в зависимости от типа взаимодействия между молекулами. Важно понимать, что поверхностное натяжение зависит от рода жидкости и может быть сильным или слабым в зависимости от типа взаимодействия между молекулами. тем большая сила поверхносного натяжения. Почему поверхностное натяжение воды зависит от рода жидкости. ма») называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред и от их состояния. Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит.

Как можно объяснить поверхностное натяжение жидкостей?

Однако это практически никогда не наблюдается, так как между молекулами жидкости и твёрдого тела всегда действуют силы притяжения. Полное смачивание или полное несмачиваение являются крайними случаями. Между ними в зависимости от соотношения молекулярных сил промежуточное положение занимают переходные случаи неполного смачивания. Смачиваемость и несмачиваемость — понятия относительные: жидкость,смачивающая одно твёрдое тело, может не смачивать другое тело.

Например,вода смачивает стекло, но не смачивает парафин; ртуть не смачивает стекло, но смачивает медь. Смачивание обычно трактуется как результат действия сил поверхностного натяжения. В случае равновесия все силы должны уравновешивать друг друга.

Определённое влияние на смачивание оказывает состояние поверхности. Смачиваемость резко меняется уже при наличии мономолекулярного слоя углеводородов. Последние же всегда присутствуют в атмосфере в достаточных количествах.

Определённое влияние на смачивание оказывает и микрорельеф поверхности. Однако до настоящего времени пока не выявлена единая закономерность влияния шероховатости любой поверхности на смачивание её любой жидкостью. Однако на практике это уравнение не всегда соблюдается.

Исходя из этого и даются, как правило, сведения о влиянии шероховатости на смачивание. По мнению многих авторов, скорость растекания жидкости на шероховатой поверхности ниже вследствие того, что жидкость при растекании испытывает задерживающее влияние встречающихся бугорков гребней шероховатостей. Необходимо отметить, что именно скорость изменения диаметра пятна, образованного строго дозированной каплей жидкости, нанесённой на чистую поверхность материала, используется в качестве основной характеристики смачивания в капиллярах.

Её величина зависит как от поверхностных явлений, так и от вязкости жидкости, её плотности, летучести. Очевидно, что более вязкая жидкость с прочими одинаковыми свойствами дольше растекается по поверхности и следовательно медленнее протекает по капиллярному каналу. Капиллярные явления Капиллярные явления, совокупность явлений, обусловленных поверхностным натяжением на границе раздела несмешивающихся сред в системах жидкость - жидкость, жидкость - газ или пар при наличии искривления поверхности.

Частный случай поверхностных явлений. Изучив подробно силы, лежащих в основе капиллярных явлений, стоит перейти непосредственно к капиллярам. Так, опытным путём можно пронаблюдать, что смачивающая жидкость например, вода в стеклянной трубке поднимается по капилляру.

При этом, чем меньше радиус капилляра, тем на большую высоту поднимается в ней жидкость. Жидкость, не смачивающая стенки капилляра например, ртуть с стеклянной трубке , опускается ниже уровня жидкости в широком сосуде. Так почему же смачивающая жидкость поднимается по капилляру, а несмачивающая опускается?

Не трудно заметить, что непосредственно у стенок сосуда поверхность жидкости несколько искривлена. Если молекулы жидкости, соприкасающиеся со стенкой сосуда, взаимодействуют с молекулами твёрдого тела сильнее, чем между собой, в этом случае жидкость стремится увеличить площадь соприкосновения с твёрдым телом смачивающая жидкость. При этом поверхность жидкости изгибается вниз и говорят, что она смачивает стенки сосуда, в котором находится.

Если же молекулы жидкости взаимодействуют между собой сильнее, чем с молекулами стенок сосуда, то жидкость стремится сократить площадь соприкосновения с твёрдым телом, её поверхность искривляется вверх. В этом случае говорят о несмачивании жидкостью стенок сосуда. В узких трубочках, диаметр которых составляет доли миллиметра, искривлённые края жидкости охватывают весь поверхностный слой, и вся поверхность жидкости в таких трубочках имеет вид, напоминающий полусферу.

Это так называемый мениск. Он может быть вогнутым, что наблюдается в случае смачивания, и выпуклым при несмачивании. Радиус кривизны поверхности жидкости при этом того же порядка, что и радиус трубки.

Под вогнутым мениском смачивающей жидкости давление меньше, чем под плоской поверхностью. Поэтому жидкость в узкой трубке капилляре поднимается до тех пор, пока гидростатическое давление поднятой в капилляре жидкости на уровне плоской поверхности не скомпенсирует разность давлений. Под выпуклым мениском несмачивающей жидкости давление больше, чем под плоской поверхностью, и это ведёт к опусканию несмачивающей жидкости.

Знак капиллярного давления «плюс» или «минус» зависит от знака кривизны.

Это делает воду «сильной» жидкостью, которая может образовывать капли и позволяет насекомым, таким как стрекозы, ходить по поверхности воды. Таким образом, различия в поверхностном натяжении между разными жидкостями обусловлены их молекулярной структурой и взаимодействием между молекулами.

Энергетическое термодинамическое определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое механическое определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости [1]. Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. В СИ он измеряется в ньютонах на метр.

В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

Молекулярные силы, краевой угол и капиллярность. Поверхность жидкости располагается перпендикулярно равнодействующей R сил притяжения, действующих на ее молекулы. Это является результатом короткодействующих сил, которые проявляются при столкновениях с другими молекулами. Когда краевой угол равен нулю, стеклянная стенка, вероятно, на всем протяжении покрыта тонким слоем жидкости толщиной в несколько молекул.

Мениск всползает по этому слою жидкости. Рисунки весьма упрощены, так как на них не учтена сила тяжести. Вещества, облегчающие смачивание: мыла и моющие средства Очень часто, когда нужен малый краевой угол, природа дает нам большой. Овечья шерсть, например, не смачивается водой; это мешает обработке отары растворами при дезинсекции. С обеденной посуды вода скатывается, как со спины утки, и даже на чайных стаканах порой остаются несмачиваемые отпечатки пальцев.

А новые посудные полотенца, поступающие со склада с ужасной восковой отделкой! Нам необходимы молекулы-посредники, которые образовывали бы промежуточный слой и уменьшали бы краевой угол между водой и жирными тарелками, покрытыми воском волокнами одежды и т. Сейчас эту роль выполняют моющие средства, предшественником которых было мыло. Мыло действует на жир с помощью поверхностного натяжения, помогая воде заползать под жир и отрывать его частички, которые смываются в виде эмульсии скопление мелких частиц жира, взвешенных в воде. Один конец молекулы мыла имеет сродство к воде вследствие химического или электрического притяжения[76], а другой конец инертен к воде, но легко присоединяется к жиру.

В то время как «жирные» концы образуют облако вокруг частиц жира, «водяные» концы выступают наружу и притягивают воду. Современные синтетические мыла или стиральные порошки обычно облегчают смачивание. Их молекулы действуют как посредники и уменьшают краевой угол. Они проникают в любую щель между жиром и тарелкой, облегчая попадание туда воды. Вообразим себя в роли физиков-судомоек, которые приходят к группе химиков и говорят: «Пожалуйста, разработайте и пустите в производство вещество, которое было бы пригодно в качестве моющего средства.

Производство этого средства должно быть недорогим». Современные химики-органики ответят: «Это легко сделать». Чтобы прицепиться к воску или к жиру, молекулы должны иметь длинную углеводородную цепь, подобную следующей[77]»: но не слишком длинную, иначе она не будет растворяться в воде. Воски и жиры имеют аналогичную цепную структуру, и они должны притягивать такие цепи. Затем это вещество на одном из концов должно иметь нечто обладающее сродством к воде, например атом натрия.

Такого рода молекулы были сконструированы и изготовлены, и сейчас мы покупаем их в больших количествах в хозяйственных магазинах. Ниже приведены примеры обычного мыла и синтетического стирального порошка подобной структуры[78]. К числу таких веществ относится также применяемый в фотографии и исследовательской работе аэрозоль. На покрытое воском стекло наносят каплю чистой воды фиг. Концом спички добавляют раствор моющего средства и следят за изменением краевого угла.

Действие смачивающего агента. Длинные молекулы показаны линией с точкой, которая обозначает группу, имеющую сродство к воде. Молекулы смачивающего агента аэрозоля показаны не в масштабе, а увеличены во много раз. Опыт 14. Новое посудное полотенце с воскообразной поверхностью разрезают на два куска и растягивают на наклонном столе.

На один кусок выливают крепкий раствор красителя. Краситель впитывается с трудом, большая его часть стекает. Затем на другой кусок выливают остаток красителя, к которому добавлено небольшое количество моющего средства. Действие мыла и моющих средств. Когда раствор моющего средства попадает на покрытую воском поверхность, его молекулы скапливаются вокруг воска, причем их «жирные» концы направлены в сторону воска, а «водяные» — наружу.

Эти внешние концы создают оболочку, которая притягивает воду, и этим облегчают смачивание. Аэрозоль, молекула которого имеет удвоенную длину, прикрепляется к воску, жиру или целлюлозе обоими концами и поднимает имеющую сродство к воде середину, подобно выгнувшей спину гусенице; выпяченные «спины» создают притягивающую воду оболочку. Мытье посуды. Молекулы большинства моющих средств и мыла имеют на одном конце группу, обладающую сродством к воде. Действие этих веществ при мытье посуды схематически изображено на фиг.

Действие моющего вещества натурального или синтетического. Мыльные пузыри на вид достаточно прочны; если их ударить, они подскакивают и, если испарения нет, сохраняются довольно долго. Происходит это по следующим причинам: 1 Молекулы мыла собираются с обеих сторон пленки, причем их концы, имеющие сродство к воде, направлены внутрь, а инертные — наружу, создавая нейтральную поверхностную оболочку[79] которая ни к чему не прилипает. В то же время чистая жидкость редко образует устойчивые пузырьки или пену, поэтому остерегайтесь пить воду из прудов, на поверхности которых бывает пена. Чтобы плащ не пропускал воду, поверхностное натяжение не должно позволять воде проникать в поры.

Для этого поры не закрывают, а покрывают волокна воском, чтобы создать большой краевой угол при контакте с водой. Тогда, если поры малы, вода в них не проникает, а задерживается выпяченной поверхностной пленкой. Опыт 15. Схему можно показать через проекционный фонарь; тот же эффект можно продемонстрировать на небольшом решете с металлической сеткой. Если проволочки решета покрыть парафином, чтобы они сделались несмачиваемыми, решето будет удерживать осторожно налитую на него воду.

Но стоит снизу к решету прикоснуться влажным пальцем, как оболочка воды разрушится и начнется дождь. Таким же образом палатка начинает протекать, если кто-нибудь из любопытства прикоснется изнутри к полотнищу мокрой головой. Водонепроницаемость и смачивание. В сильно увеличенном виде показаны в разрезе волокна ткани для зонтов или брезента для палаток с налитой на них водой. Поры не закрыты, но когда на волокна нанесено покрытие, создающее большой краевой угол между водой и покрытием , вода выпячивается между волокнами и удерживается поверхностным натяжением.

Химия поверхностных явлений и чудеса в горном деле Химия веществ, изменяющих краевой угол, творит поистине чудеса в технике и в быту. Моющие средства помогают прачкам, протирщикам окон и мойщикам овец. Ничтожные добавки к каплям от насморка позволят им проникнуть в носу пациента сквозь барьер, созданный волосками слизистой. Водоотталкивающие вещества делают непромокаемыми плащи и промышленные фильтры. Наконец, избирательные смачивающие вещества отделяют ценные минералы от бесполезной породы.

Для этого породу, содержащую металлическую руду, размалывают, а затем полученную пыль размешивают в чане с водой. В воду добавляют соответствующее вещество, которое покрывает частички руды, делает их несмачиваемыми и позволяет им легко «плавать»[80], тогда как бесполезный песок намокает и опускается на дно в виде грязи, которую затем удаляют. Поверхность соприкосновения воды с открытым воздухом слишком мала, чтобы на ней могли собраться все несмачиваемые водой частицы руды, поэтому через взвесь продувают пузырьки воздуха, которые создают пену и поднимают руду кверху, где ее и собирают. Такая схема «пенной флотации» отнюдь не бесполезная игрушка. Этот процесс успешно применяется в горной промышленности, и с его помощью разделяют миллионы тонн руды в день.

Подбор веществ, которые будут охватывать руду защитной оболочкой и не будут защищать песок, требует от химиков большого искусства. Более того, некоторые вещества даже отделяют в смешанных рудах один металл от другого; для этого требуется еще более тонкая химия. Сейчас пенная флотация находит много новых применений, например отделение грибка спорыньи от спелого зерна, сортировка гороха для консервирования, улавливание потерянных частичек каучука, но основное ее применение — это разделение свинца, цинка, серебра и т. Амебы и поверхностное натяжение Каким образом мелкие простейшие организмы, живущие в воде, передвигаются и находят пищу? Некоторое представление об этом можно получить с помощью грубых химических моделей, вроде движущейся зигзагами «лодки» из камфары или искусственной ртутной «амебы» фиг.

На небольшую лужицу ртути на часовом стекле в блюдце наливают разбавленную азотную кислоту. Около ртути помещают кристалл бихромата калия. Ртуть начинает двигаться подобно амебе; ее перемещения вызваны изменениями поверхностного натяжения вследствие химических или электрических эффектов. Настоящая амеба тоже образует такие неправильные выступы и впадины, возможно также используя изменения поверхностного натяжения. Здесь приведены некоторые красивые опыты, демонстрирующие изменения поверхностного натяжения.

Опыт 16. Швейную иглу или тонкий листочек металла можно заставить плавать в блюдце с водой. Если поверхностное натяжение уменьшить, предмет потонет. Попробуйте добавить к воде спирт или мыло. Опыт 17.

Посыпьте поверхность чистой воды несмачиваемым порошком сажей, тальком или ликоподием. По движению порошка можно обнаружить ослабление поверхностного натяжения. Если на поверхность нанести капли спирта, порошок разбежится в стороны фиг. Капли спирта падают на воду, которая посыпана порошком. Обычное объяснение таково: спирт образует слабую оболочку, и порошок растаскивается в стороны прочной оболочкой чистой воды.

Но иногда предпочитают говорить, что молекулы спирта, растекаясь, создают «поверхностное давление» и расталкивают порошок. Хотя эти взгляды различны, любой из них полезен для объяснения опытов. Опыт 18. На посыпанную порошком чистую поверхность воды нанесите оливковое масло. Его требуется так мало, что достаточно погрузить в масло спичку и затем вытереть ее насухо.

Даже палец, потертый о волосы, соберет достаточное количество природного жира. В предыдущем опыте после действии спирта поверхность восстанавливается, но влияние жира остается, поэтому этот опыт требует очень чистых, свободных от жира приспособлений. Мыло и слюна действуют подобно спирту. Личинки москитов живут в прудах и просовывают наружу расположенные в хвосте дыхательные трубки. Масло, нанесенное на поверхность, проникает в эти трубки и убивает личинку.

Прежнее объяснение, согласно которому масло настолько ослабляет поверхностную пленку, что личинки не могут висеть на ней и дышать, следует отбросить. Опыт 19. Небольшая капля масла, помещенная в большое блюдо со слегка припудренной чистой водой, очень быстро растекается в большое круглое пятно, которое потом сохраняет свои размеры. Так ведут себя растительные масла; они являются «жирными кислотами», и у них один конец, кислотный, имеет сродство к воде: Молекулы минерального масла, у которых инертны оба конца, видимому, располагаются по поверхности воды и движутся подобно двумерному газу, растекаясь случайным образом. Кажется, что пленка масла сверху «давит» на поверхность раздела.

Такое объяснение представляется более правильным, чем «ослабление поверхностного натяжения воды». Сейчас это внешнее давление измеряют с помощью точных весов, которые взвешивают давление пленки масла на подвижную перекладину. Применение длинных молекул масла Смазывание. При смазывании высокоскоростных подшипников молекулы растительного масла присоединяются к металлу металл вытесняет водород из кислотного конца молекулы масла , и масло образует мономолекулярные бархатистые «ковры», инертные внешние слои которых удобно скользят друг по другу. К смазке добавляют также минеральные масла, чтобы между этими «коврами» получить инертные масляные «ролики».

При крайне небрежном обращении с металла сдираются даже бархатистые монослои; тогда движущиеся металлические детали с большой силой прилипают друг к другу «схватываются» , и это чревато неприятными последствиями. Ланолиновый жир пристает к коже и проникает в нее, перенося с собой необходимые медикаменты, тогда как инертные минеральные масла беспорядочно распределяются на коже в виде жирных комков; поэтому избегайте мазей, изготовленных не на ланолине, а на минеральных маслах. К коже пристают и молекулы хорошей ваксы, а парафин разновидность минерального масла с более длинной цепью образует беспорядочные пятна[81]. Полировка обуви щеткой облегчает прилипание и распределяет молекулы по поверхности более равномерно. Укрощение штормов в море.

Укрощение бурных морей с помощью масла — отнюдь не сказка. Достаточно вылить за борт совсем немного подходящего масла, чтобы оно распространилось по большой поверхности. Ветер пытается создать большие волны, раскачивая небольшую рябь, масло сдувается в лужи неправильной формы, и различие поверхностного натяжения помешает действию ветра, создав своего рода поверхностное трение. Поэтому в таком месте образуется меньше больших волн. А волны, приходящие издалека, не смогут по крайней мере создать разрушительных гребней.

Поверхностное натяжение играет важную роль при образовании вспененных гребней, и масло может помешать их образованию. Как изменится поверхностное натяжение при повышении температуры? Попробуйте нагреть припудренную поверхность воды, поднося к ней раскаленную докрасна кочергу. Опыт 21. Распылите по чистой воде камфару.

Каждая частица совершает беспорядочные движения. Это происходит потому, что камфара медленно растворяется в воде, ослабляя поверхностную оболочку. Каждую частицу вперед тянет чистая вода, а назад — слабее вода с камфарой, поэтому частица плывет вперед, подобно лодке, крутясь и поворачиваясь из-за своей неправильной формы. Попробуйте добавить еще немного масла. Движение камфары сразу прекратится.

Не правда ли, это красивый несложный опыт, немного похожий на детскую забаву?

Поверхностное натяжение воды. НПК.

Поверхностное натяжение на границе двух жидкостей зависит от полярности. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода воды). Знание о зависимости поверхностного натяжения от рода жидкости является важным для множества процессов и приложений.

Похожие новости:

Оцените статью
Добавить комментарий