В состав электростанции входят 24 подразделения, в том числе восемь энергоблоков мощностью 300 МВт каждый и гидроэлектростанция на 30 МВт.
На энергоблоке № 4 АЭС «Аккую» завершено бетонирование фундаментной плиты здания реактора
Каких-либо норм, регулирующих включение генерирующих установок в состав единой электростанции, законодательство не содержит. В состав компании на правах филиалов входят 11 действующих АЭС, на которых в эксплуатации находятся 37 энергоблоков суммарной установленной мощностью свыше 29,5 ГВт. Ростовская АЭС по итогам 2023 года возглавила рейтинг Росатома «Лидер ПСР» среди 30 предприятий Госкорпорации. Генеральный директор АЭС «Пакш-2» Гергей Якли отметил, что с течением времени это оборудование будет установлено на двух новых блоках предприятия мощностью 1 200 мегаватт каждый.
"Русгидро" ввела в эксплуатацию четыре ВИЭ-энергокомплекса в Якутии
Она в состоянии работать на различных видах топлива: газообразном природный газ, попутный нефтяной газ и жидком дизельное топливо. В то же время сам двигатель имеет преимущество перед заграничными по весу и габаритам: он меньше примерно в 1,5 - 2 раза. С 2024 года планируем выпускать не менее двух таких турбин ежегодно с дальнейшим наращиванием производства. В середине января компания "Технопромэкспорт" госкорпорации Ростех провела комплексное опробование первого энергоблока ТЭС установленной мощностью 230 мегаватт, в ходе которого были подтверждены требуемые характеристики. Сейчас он работает при номинальной нагрузке и выдает электроэнергию в Единую энергосистему России.
С октября теплоэлектростанция поставила более 120 миллионов киловатт-часов электроэнергии. Она сократит энергодефицит и повысит надежность энергетической системы страны, а также обеспечит переток мощности в Крым. Теплоэлектростанция будет поставлять электроэнергию жилищно-коммунальному сектору и промышленным предприятиям Кубани. Эксплуатацию объекта обеспечат более 280 энергетиков высокой квалификации.
Как рассказали корреспонденту "РГ" в госкорпорации Ростех, сейчас к комплексному опробованию и вводу в эксплуатацию готовится второй энергоблок. В ходе проверки он должен отработать трое суток на номинальной мощности. Кроме того, продолжается работа на третьем энергоблоке полностью завершен монтаж турбины ГТД-110М с электрогенератором. Заявленная мощность электростанции 560 мегаватт будет достигнута после его пуска, который запланирован на июнь этого года.
В этом смысле первые проекты, если они появятся в энергосистеме Татарстана и будут не очень большого размера, то существующих возможностей по регулированию здесь хватит для того, чтобы компенсировать такой негарантированный режим их работы. А дальше вопрос уже к инвесторам. Но площадки рассматриваются. Поскольку в центральной части энергосистемы в целом на сегодняшний момент присутствуют определенные избытки мощностей, то с электрической точки зрения строительство АЭС в Татарстане не выглядит оптимальным решением. Но вообще строительство атомной станции — это всегда большой набор вопросов, там свои аргументы бывают как «за», так и «против». Но именно с точки зрения востребованности, наверное, Татарстану в наименьшей степени все-таки это сейчас нужно. Какие специалисты этого вуза востребованы и как они себя проявляют в работе? Достаточно сказать, что больше половины работников регионального диспетчерского управления РДУ Татарстана — выпускники Казанского государственного энергетического университета КГЭУ. С 2012 года действует программа подготовки магистрантов «Управление режимами электроэнергетических систем», состоялось пять выпусков — в 2014, 2016, 2018, 2020 и 2022 годах.
У нас было реализовано и планируется реализовывать много совместных мероприятий с точки зрения вовлечения молодежи — это конференция «Энергетика глазами молодежи», это и визиты, во время которых мы рассказываем студентам, что такое энергетика, что она разная, это не только электростанции. Энергетика — это большая отрасль, где каждый, на мой взгляд, может найти себе применение. В прошлом году мы заключили с вузом новое соглашение, где прописали большое количество совместных мероприятий. В частности, обучение для преподавательского состава университета, в том числе режиме удаленной работы, с тем чтобы помочь более детально представить взгляд на энергосистему с точки зрения управления режимами. Всегда с удовольствием взаимодействуем, и я уверен, что продолжим конструктивную работу в дальнейшем. А Татарстан — регион, который любит быть пилотным во многих вопросах. Есть ли какие-то совместные проекты у компании с республикой, которые могут потом распространяться дальше по стране? И вы абсолютно правы, Татарстан — один из таких инновационных лидеров во многих сферах. Но в энергетике у нас предельно конкретный опыт реализации проектов, которые в дальнейшем тиражируются либо в параллельном режиме возникают в других регионах.
И это соответствует тем целям и задачам, которые «Системный оператор» как диспетчер энергосистемы внедряет, чтобы повысить эффективность и надежность работы Единой энергосистемы. Во-первых, это дистанционное управление. И один из первых проектов по дистанционному управлению оборудованием подстанции из диспетчерских центров «Системного оператора» был реализован именно здесь, в Татарстане. На сегодня дистанционное управление реализовано на трех сетевых объектах энергосистемы региона, а в течение ближайших двух лет к ним добавятся еще две подстанции 500 и 220 кВ. Во-вторых, это проекты, связанные с системой мониторинга запасов устойчивости СМЗУ , — по-простому, это такая система, которая в реальном времени определяет фактическую пропускную способность сети и использует это для более эффективной работы энергосистемы. То есть мы в среднем увеличиваем — в среднем, повторюсь, — пропускную способность сетей без строительства объектов генерации и сетевой инфраструктуры. Такие проекты тоже были реализованы в Татарстане: в республиканской энергосистеме СМЗУ уже внедрена в двух контролируемых сечениях, в этом году планируется ее внедрение еще на двух сечениях. У нас реализуются проекты по межмашинному электронному доведению графиков до электростанций система доведения плановой мощности до электростанций — СДПМ. Мы планируем внедрить эту систему на Нижнекамской ГЭС в 2024 году, а в 2025-м — на двух тепловых станциях Закамья.
Татарстан является одним из лидеров по участию потребителей в пилотной программе управления спросом — это когда потребитель на добровольной основе заключает договор и в часы максимальных цен на рынке снижает свое электропотребление. У нас идет и рабочее взаимодействие как с «Сетевой компанией», так и с генерацией в лице «Татэнерго» по совершенствованию информационного обмена. В системной цифровизации электроэнергетики один из важных кирпичиков — это переход к использованию унифицированных расчетных моделей, как для задач перспективного планирования, так и для организации информобмена в отрасли в принципе. Создаются цифровые двойники энергосистемы. А еще они позволяют организовать один язык общения информационных систем у разных собственников. У нас тоже очень активно идет взаимодействие с субъектами здесь по переводу нашего информобмена на эти стандарты — то, что называется CIM. Это выпущенные уже российские национальные стандарты, как описывать энергосистему в таком машиночитаемом виде, что, безусловно, является важным элементом в принципе цифровизации как в отрасли, так и внутри компании. Потому что, как я уже сказал, информсистема учится разговаривать на одном языке. Это важно.
Федор Опадчий — Председатель Правления «Системного оператора». Родился 4 января 1974 года в Москве. В 1997 году окончил факультет «Электроника и автоматика физических установок» Московского инженерно-физического института, получив специальность инженера-физика. Позже прошел программы переквалификации по направлению «финансовый менеджмент» в Российской академии народного хозяйства и государственной службы при Президенте РФ и в Финансовой академии при Правительстве РФ в настоящее время — Финансовый университет при Правительстве Российской Федерации.
Его разработали в КБ «Дизельзипсервис». Как рассказала руководитель проекта Елена Новикова, специалисты «Дизельзипсервиса» уже завершили настройку электростанции. Шеф-монтажные и пусконаладочные работы сейчас вышли на финальный этап. По объёму автоматизированных и автоматически выполняемых операций и времени необслуживаемой работы станция соответствует третьей степени автоматизации по ГОСТ Р 55437-2013.
Символический старт работе СЭС был дан во время начавшегося сегодня экологического форума в Уфе. Компания уделяет много внимания задаче по сокращению углеродного следа продукции, и запуск солнечной электростанции — один из примеров комплексной работы, которая ведется в этом направлении, — подчеркнул на церемонии Тупикин.
Подпишитесь на нашу рассылку.
- Отнесение отдельной генерирующей установки к составу электростанции
- Водородное топливо будущего
- В Петербурге завершают испытания новой российской мегаваттной электростанции
- Читайте также
Без мирного атома никак
- Александр Ильенко: «Ограничение выработки СЭС и ВЭС является нормальной практикой»
- На кубанской ТЭС заработал энергоблок с первой отечественной турбиной
- Новости партнеров
- Утверждён первый стандарт по техническим требованиям к солнечным электростанциям
- Отнесение отдельной генерирующей установки к составу электростанции
Отнесение отдельной генерирующей установки к составу электростанции
- Holtec представила проект комбинированной атомно-солнечной электростанции | Атомная энергия 2.0
- Курсы валюты:
- Установлены новые модульные электростанция в поселках Хабаровского края
- Установлены новые модульные электростанция в поселках Хабаровского края
Федор Опадчий: «Татарстану в наименьшей степени сейчас нужна АЭС»
В этом смысле чем больше по энергосистеме распределены возобновляемые источники, тем, скажем так, проще бывает провести интеграцию этого вида генерации в энергосистему. На сегодня в России основные объемы ВИЭ все-таки локализуются в ОЭС Юга, и там это уже приводит к определенным сложностям, в частности к ограничению выдачи ветропарков в определенные периоды, когда их киловатт-часы не могут быть потреблены на месте и переданы другим потребителям. Поэтому когда концентрация ВИЭ становится большой, это приводит к определенного рода, скажем так, технико-экономическим проблемам. То есть нужно либо развивать энергосистему, либо ограничивать их работу. В этом смысле первые проекты, если они появятся в энергосистеме Татарстана и будут не очень большого размера, то существующих возможностей по регулированию здесь хватит для того, чтобы компенсировать такой негарантированный режим их работы. А дальше вопрос уже к инвесторам. Но площадки рассматриваются. Поскольку в центральной части энергосистемы в целом на сегодняшний момент присутствуют определенные избытки мощностей, то с электрической точки зрения строительство АЭС в Татарстане не выглядит оптимальным решением.
Но вообще строительство атомной станции — это всегда большой набор вопросов, там свои аргументы бывают как «за», так и «против». Но именно с точки зрения востребованности, наверное, Татарстану в наименьшей степени все-таки это сейчас нужно. Какие специалисты этого вуза востребованы и как они себя проявляют в работе? Достаточно сказать, что больше половины работников регионального диспетчерского управления РДУ Татарстана — выпускники Казанского государственного энергетического университета КГЭУ. С 2012 года действует программа подготовки магистрантов «Управление режимами электроэнергетических систем», состоялось пять выпусков — в 2014, 2016, 2018, 2020 и 2022 годах. У нас было реализовано и планируется реализовывать много совместных мероприятий с точки зрения вовлечения молодежи — это конференция «Энергетика глазами молодежи», это и визиты, во время которых мы рассказываем студентам, что такое энергетика, что она разная, это не только электростанции. Энергетика — это большая отрасль, где каждый, на мой взгляд, может найти себе применение.
В прошлом году мы заключили с вузом новое соглашение, где прописали большое количество совместных мероприятий. В частности, обучение для преподавательского состава университета, в том числе режиме удаленной работы, с тем чтобы помочь более детально представить взгляд на энергосистему с точки зрения управления режимами. Всегда с удовольствием взаимодействуем, и я уверен, что продолжим конструктивную работу в дальнейшем. А Татарстан — регион, который любит быть пилотным во многих вопросах. Есть ли какие-то совместные проекты у компании с республикой, которые могут потом распространяться дальше по стране? И вы абсолютно правы, Татарстан — один из таких инновационных лидеров во многих сферах. Но в энергетике у нас предельно конкретный опыт реализации проектов, которые в дальнейшем тиражируются либо в параллельном режиме возникают в других регионах.
И это соответствует тем целям и задачам, которые «Системный оператор» как диспетчер энергосистемы внедряет, чтобы повысить эффективность и надежность работы Единой энергосистемы. Во-первых, это дистанционное управление. И один из первых проектов по дистанционному управлению оборудованием подстанции из диспетчерских центров «Системного оператора» был реализован именно здесь, в Татарстане. На сегодня дистанционное управление реализовано на трех сетевых объектах энергосистемы региона, а в течение ближайших двух лет к ним добавятся еще две подстанции 500 и 220 кВ. Во-вторых, это проекты, связанные с системой мониторинга запасов устойчивости СМЗУ , — по-простому, это такая система, которая в реальном времени определяет фактическую пропускную способность сети и использует это для более эффективной работы энергосистемы. То есть мы в среднем увеличиваем — в среднем, повторюсь, — пропускную способность сетей без строительства объектов генерации и сетевой инфраструктуры. Такие проекты тоже были реализованы в Татарстане: в республиканской энергосистеме СМЗУ уже внедрена в двух контролируемых сечениях, в этом году планируется ее внедрение еще на двух сечениях.
У нас реализуются проекты по межмашинному электронному доведению графиков до электростанций система доведения плановой мощности до электростанций — СДПМ. Мы планируем внедрить эту систему на Нижнекамской ГЭС в 2024 году, а в 2025-м — на двух тепловых станциях Закамья. Татарстан является одним из лидеров по участию потребителей в пилотной программе управления спросом — это когда потребитель на добровольной основе заключает договор и в часы максимальных цен на рынке снижает свое электропотребление. У нас идет и рабочее взаимодействие как с «Сетевой компанией», так и с генерацией в лице «Татэнерго» по совершенствованию информационного обмена. В системной цифровизации электроэнергетики один из важных кирпичиков — это переход к использованию унифицированных расчетных моделей, как для задач перспективного планирования, так и для организации информобмена в отрасли в принципе. Создаются цифровые двойники энергосистемы. А еще они позволяют организовать один язык общения информационных систем у разных собственников.
У нас тоже очень активно идет взаимодействие с субъектами здесь по переводу нашего информобмена на эти стандарты — то, что называется CIM. Это выпущенные уже российские национальные стандарты, как описывать энергосистему в таком машиночитаемом виде, что, безусловно, является важным элементом в принципе цифровизации как в отрасли, так и внутри компании. Потому что, как я уже сказал, информсистема учится разговаривать на одном языке. Это важно.
Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины. Применяются парогенераторы на двух- и трехконтурных АЭС. На одноконтурных их роль играет сам ядерный реактор. Это так называемые кипящие реакторы, в них пар генерируется непосредственно в активной зоне, после чего направляется в турбину. В схеме таких АЭС нет парогенератора. Пример электростанции с такими реакторами — японская АЭС «Фукусима-1». В современных реакторах типа ВВЭР водо-водяной энергетический реактор — они являются основой мировой атомной энергетики давление в первом контуре достигает 160 атмосфер. Дальше эта очень горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура. Это контур так называемого рабочего тела, т. Эта вода, которая находится под гораздо меньшим давлением половина давления первого контура и менее , поэтому она закипает. Образовавшийся водяной пар под высоким давлением поступает на лопатки турбины. Турбина и генератор Пар из парогенератора поступает на турбину, в которой энергия пара преобразуется в механическую работу. В паровой турбине потенциальная энергия сжатого и нагретого водяного пара преобразуется в энергию кинетическую, которая, в свою очередь, преобразуется в механическую работу — вращение вала турбины, а он уже вращает ротор электрогенератора. Теперь механическая энергия превратилась в электрическую. Прошедший через турбину пар поступает в конденсатор. Здесь пар охлаждается, конденсируется и превращается в воду. По второму контуру она поступает в парогенератор, где снова превратится в пар. Конденсатор охлаждается большим количеством воды из внешнего открытого источника, например водохранилища или пруда-охладителя. С водой первого контура, как мы помним, радиоактивного, паровая турбина и конденсатор не взаимодействуют, это облегчает их ремонт и уменьшает количество радиоактивных отходов при закрытии и демонтаже станции. Управление реактором Вернемся снова к ядерному реактору. Как же он управляется? Помимо твэлов с топливом и замедлителя в нем находятся еще управляющие стержни. Они предназначены для пуска и остановки реактора, поддержания его критического состояния в любой момент его работы и для перехода с одного уровня мощности на другой. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Для того чтобы реактор работал на постоянном уровне мощности, необходимо создать и поддерживать в его активной зоне такие условия, чтобы плотность нейтронов была неизменной во времени. Это состояние реактора и принято называть «критическим состоянием», или просто «критичностью». Когда активная зона сильно разогревается, в нее опускаются управляющие стержни, которые встают между твэлами и вбирают в себя избыточные нейтроны. Если нужно добавить мощности, управляющие стержни снова поднимают. Если же их опустить на всю длину твэлов, то цепная реакция прекратится, реактор будет заглушен. Кроме того, на случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с избыточным энерговыделением в активной зоне реактора, в каждом реакторе предусмотрена возможность экстренного прекращения цепной реакции.
Динамика снижения средних цен на литиевые аккумуляторы Энергоемкие доступные аккумуляторные батареи имеют важное значение для постепенного отказа мировой экономики от ископаемого топлива. До недавнего времени этот процесс не мог осуществляться без существенных государственных субсидий и специальных «зелёных» тарифов. По оценкам мировых аналитических исследований, к 2024 г. Аналогичны прогнозы динамики изменения стоимостей комплексов СНЭЭ. Увеличивающаяся популярность, единичные мощности, расширение номенклатуры и появление конкурирующих производителей неизбежно должны привести к снижению удельной стоимости производства таких систем. Это относится как к накопительной части системы, так и к преобразующей инверторной. Энергия аккумулируется в СНЭЭ разного типа с разной эффективностью. Рациональность применения каждого типа СНЭЭ определяется спецификой задач. На рис. Распределение различных технологий накопления электрической энергии по основным характеристикам Атомная энергетика — это отрасль, которая балансирует на грани использования консервативных, проверенных временем технических решений, с одной стороны, и концептуально новых и прогрессивных достижений науки и техники, с другой. Для отечественной атомной отрасли практически неизменными являются подходы к проектированию и сооружению систем аварийного электроснабжения САЭ. К достоинствам таких накопителей энергии можно отнести хорошую масштабируемость энергоемкости, высокие показатели надёжности референтность в общей мировой промышленности , высокую скорость реакции на возникнувшую потребность в запасённой энергии, хорошие удельные характеристики, приемлемый ресурс и постоянно снижающаяся цена. К недостаткам ЛИА-накопителей энергии можно отнести малые емкости единичного аккумулятора, что приводит к необходимости собирать батареи из большого количества элементов, и, следовательно, к увеличению общей площади застройки. При этом возрастает доля неосновных подсистем, как в стоимости, так и массогабаритных показателях всего изделия. С другой стороны, большое количество параллельных модулей СНЭЭ повышает надёжность системы в целом. Предварительные проработки в части оценки стоимости альтернативы ДГУ в виде СНЭЭ аналогичных параметров, обеспечивающей надежным электроснабжением энергоблок в течение не менее 72 часов, показывают десятикратное увеличение капитальных затрат.
Электростанция состоит из 842 солнечных панелей и имеет мощность 252 кВт. Установленные модули — российские. Система размещена на площади 1441 квадратов.
На Нововоронежской АЭС построят новые энергоблоки
Первый заместитель главного инженера Белоярской АЭС Илья Филин заявил, что все работы проходили штатно. Первый заместитель главного инженера Белоярской АЭС Илья Филин заявил, что все работы проходили штатно. В его состав входит солнечная электростанция мощностью 1030 кВт, накопитель энергии мощностью 300 кВт и емкостью 1300 кВт-ч., а также ранее модернизированная и оснащенная современным оборудованием дизельная электростанция мощностью 2310 кВт.
"РусГидро" приняла решение о строительстве двух новых ГЭС
АЭС «Аккую» — первая атомная электростанция в Турецкой Республике. Проект АЭС «Аккую» включает четыре энергоблока с реакторами российского дизайна ВВЭР поколения 3+. Плавучие солнечные электростанции в Германии по-прежнему остаются редкостью и, как правило, имеют небольшие размеры. выпускает дизельные электростанции и установки (ДЭС, ДГУ), дизель-насосные установки (ДНУ), высоковольтные электростанции. Также в состав электростанции входит единственная на реке Урал гидроэлектростанция — Ириклинская ГЭС, которая играет огромную роль в водоснабжении и регулировании водных ресурсов региона.
Александр Ильенко: «Ограничение выработки СЭС и ВЭС является нормальной практикой»
Новости. ООО «Внешнеэкономическое объединение «Технопромэкспорт» (входит в структуру «Ростеха») объявило тендер на строительство тепловой электростанции (ТЭС) «Ударная» в Тамани. Смотрите видео онлайн «Как работает тепловая электростанция» на канале «Теплоэнергетика. Главная Новости «Норильскгазпром» реконструировал систему электроснабжения на Северо-Соленинском месторождении. В Новокуйбышевске солнечная электростанция филиала АО «Транснефть – Приволга» выработала первый миллион киловатт часов электроэнергии. газопоршневая установка Hunan Liyu Gas Power, электростанция 1.5 МВт. Компания «Электросистемы» выполнила необходимые доработки для объединения системы управления всеми тремя ГПУ в общую АСУ, синхронизации всех трех ГПУ по электроснабжению и.
Утверждён первый стандарт по техническим требованиям к солнечным электростанциям
Их собственные освободившиеся нейтроны идут атаковать ещё не разделённые ядра. Так возникает цепная реакция, во время которой выделяется много тепла. Атомное топливо выглядит необычно скромно — оно похоже на таблетки или лакричные конфеты, но из спрессованного урана-235. В реакторе они находятся в металлических тепловыделяющих элементах твэлах , размещённых в активной зоне. Работники АЭС направляют нейтроны на топливные таблетки, находящиеся внутри этих металлических трубок. Начинается реакция — атомные ядра дробятся на части.
При расщеплении атомного ядра выделяется тепло. Его избыток нужно отвести, и с этой задачей справляется теплоноситель — жидкое или газообразное вещество, которое проходит через активную зону.
Сейчас же через ГЭС сбрасывается всего 410 кубометров в секунду, а зимой, когда нет навигации, еще меньше. Поэтому к выработке электроэнергии агрегаты подключаются поочередно.
Уже 1970 года из-за повторяющихся маоводных лет Цимлянская ГЭС была переведена в вынужденный режим работы, при котором расходы воды через гидроагрегаты определяются потребностями не гидроэнергетики, а водного транспорта и других неэнергетических водопользователей. Но у ГЭС есть две важные функции. Она конструирует качество электроэнергии и быстро восполняет ее нехватку во время вечерних и утренних пиковых часов потребления. Турбина ГЭС может начать работать за считанные минуты, чего электростанции других типов позволить себе не могут.
В 2019 году на станции была модернизирована система телемеханики и связи, а в 2020 году - внедрена система группового регулирования активной и реактивной мощности ГРАРМ агрегатов станции. Это позволило ГЭС автоматически регулировать частоту и мощность в энергосистеме. За это станция получает дополнительный доход в виде надбавки к оплате мощности. Незаметная для посторонних глаз модернизация Базовая конфигурация станции осталась неизменной с 50-х годов, но основное оборудование прошло 2 этапа модернизации.
Первый этап модернизации станции стартовал в 70-е годы. Тогда мощность четырех основных гидроагрегатов была увеличена с 40 до 50 МВт. В 1985 году институт «Гидропроект» разработал технико-экономическое обоснование по реконструкции гидроэлектростанции. Реализация этой программы растянулась на много лет и пока только близится к завершению.
Тогда в этих работах поучаствовал даже волгодонский «Атоммаш». В 90-е годы было завершено и строительство нового административно-бытового корпуса станции через дорогу от основного здания ГЭС. Интерьеры Цимлянской ГЭС до сих сохраняют дух 50-х годов. Фото - скриншот видео телеканала "Дон 24".
В итоге мощность станции увеличилась ещё на 2,5 МВт, достигнув 211,5 МВт.
На горизонте 2036 года «Вчера с губернатором Воронежской области Александром Гусевым обсуждали эти вопросы, — уточнил генеральный директор концерна. Проект возведения восьмого энергоблока в Нововоронеже уже включен в Федеральную программу развития ядерной энергетики до 2045 года. Но в отличие от генеральной схемы размещения новых блоков до 2035 года, в долгосрочной программе возможны корректировки. Логично встает вопрос о замещении выбывающих мощностей за счет ввода в эксплуатацию новых. Любое развитие предполагает, что технологии сделали свое дело, обеспечили научно-техническую базу, и теперь дело за новыми инновационными энергоблоками». Однако этого недостаточно для реализации стратегической цели Воронежского региона войти в топ-20 лидеров по темпам промышленного развития. Сейчас в области идет строительство новых производственных предприятий в особой экономической зоне «Центр» и на территории индустриального парка «Масловский», что ведет к росту энергопотребления. Залог дальнейшего развития промышленности — наличие избытка энергомощностей. Руководство региона это понимает, поэтому считает целесообразным возведение сразу двух энергоблоков.
Причем заверяет о готовности приступить к реализации проекта по строительству даже ранее запланированного срока, в 2025 году.
Уже утверждена дорожная карта сооружения на площадке. Проектирование завершится в 2025 году. Представители станции отмечают, что новый реактор позволит: повторно использовать отработавшее ядерное топливо других АЭС; вовлечь в производственный цикл неиспользованный изотоп урана U-238, так называемые «урановые хвосты»; минимизировать радиоактивные отходы путем дожигания наиболее долгоживущих изотопов из отработанного ядерного топлива других реакторов. Ввести реактор в эксплуатацию намерены в 2032 - 3035 годах. Сапегин объяснил, что в нем предусмотрена пассивная защита. Во многом он защищен естественными обратными связями и пассивными системами безопасности.
Здесь ковали ядерный щит России: как работает единственная в мире подземная АЭС
Заявленная мощность электростанции 560 мегаватт будет достигнута после его пуска, который запланирован на июнь этого года. В Омске появится еще одна, четвертая солнечная электростанция «Авангард-1». Система безопасности на российских АЭС, состоящих на эксплуатации в Концерне «Росатом», основана на целом ряде факторов, в составе которых можно видеть: принцип самозащищённости ядерного реактора, присутствие нескольких барьеров безопасности.