По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами – и Nano Diamond Battery будет не только питать. Не вечная батарейка, наверное, а то сразу захочется и вечного двигателя! Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет.
Ученые разработали вечные батарейки со сроком службы в тысячи лет
«Вечная атомная батарейка». В 2020 году американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая потенциально может проработать. Российские физики создали материал для "вечной" космической батарейки читайте также. Изготовил из платины и золота электроды, получив таким образом пару примитивных батареек, которые соединил последовательно, создав цепь напряжением между ними 1 В. Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. В зависимости от потребляемой мощности аккумулятор, который никогда не требует подзарядки, проработает весь срок службы и дольше.
Портал правительства Москвы
Такой мир рисуют представители NDB. Кстати, «вечный» аккумулятор для электромобиля из ядерных отходов в силу высокого энергопотребления, будет работать на самом деле не 28 тысяч лет, а всего лет 90, как показывают расчеты NDB, то этого хватит, чтобы сменить с ним десятка два машин двум поколениям одной семьи. Насколько это все реалистично? Компания провела проверку концепции в Ливерморской национальной лаборатории и Кавендишской лаборатории Кембриджского университета. Следующий шаг — это создание первого рабочего прототипа. Он должен появиться до конца этого года. Ожидается, что коммерческая версия батареи с низким энергопотреблением выйдет на рынок менее чем через два года, а версия с высокой мощностью появится через пять лет. О прорыве в солнечной энергетике заявила накануне группа немецких ученых и инженеров.
Источником энергии в устройстве служит изотоп никель-63 с периодом полураспада около 100 лет, но вопросы к конструкции атомной батарейки всё равно остаются. Украсть ключи от ядерной ракеты.
В РВСН задержали украинского шпиона Изобретение атомной батарейки неслучайно сравнивают с созданием вечного двигателя. Применение такой технологии безгранично: небольшая батарейка может питать практически любой — как бытовой, так и военный прибор. От "вечных" спутников и небольших беспилотников до суперкомпьютеров и небольших полярных станций — одного элемента с радиоактивным изотопом будет достаточно, чтобы подогреть еду, дать свет и даже набрать горячую ванну. Защита от взрыва и теракта. Аспирант факультета прикладной физики Массачусетского технологического института Егор Касаткин отметил, что рынок для атомных батареек даже в существующих условиях безграничен. Военная и гражданская авиация, добывающая промышленность, автономные системы энергоснабжения — можно миллион направлений подобрать, где такая технология будет пользоваться спросом. Весь вопрос в том, насколько гибкой в конечном счёте получится архитектура — можно ли надстроить источник питания для подключения, скажем, не компьютера, а полноценного жилого помещения? Егор Касаткин Аспирант факультета прикладной физики Массачусетского технологического института Конкуренты тоже есть Промышленный выпуск радиоактивных изотопов для российских атомных батареек хотят наладить до конца 2020 года. Если коронавирус и спровоцированные им изменения не преподнесут дополнительных сюрпризов, то "бензин" для маленьких реакторов со слабым бета-излучением начнут делать в достаточных для экспорта количествах.
К созданию батареек, в которых радиоактивный изотоп и алмазный преобразователь для электрической энергии могут спокойно работать 50 и даже 100 лет, в разных странах подошли практически одновременно. Первые разработки российских учёных в этом направлении датируются 2018 годом, их британские коллеги создали такую же технологию в 2019-м, однако ни те ни другие батарейки в продаже ещё не появились. Третий Чернобыль? Что в КНДР с реактором атомной станции Зато у американских учёных есть вполне жизнеспособный образец.
Модуль BV-100 рекомендован к применению в широком спектре современных электронных устройств: в сотовых телефонах и радиостанциях, робототехнике миниатюрных роботах , БПЛА, устройствах с ИИ, медицинских электронных приборах и датчиках разного назначения, в том числе работающих удалённо от основного блока управления или сервера.
Особую роль пророчат изобретению в аэрокосмической промышленности, в частности, в микропроцессорной технике. Батарея имеет многослойную конструкцию, устойчива к огню и даже сильному воздействию детонации, приравниваемому к взрывной среде. При этом модуль безопасен и не имеет излучения, ибо в процессе отдачи электроэнергии изотопы распадаются, превращаясь в стабильные и нерадиоактивные изотопы меди. Атомная батарея не имеет внешнего радиоактивного излучения, пригодна для использования даже в условиях высоких требований к стерильности: в медицинских устройствах, таких как кардиостимуляторы, мониторы разного назначения, элементы искусственного сердца, соприкасающиеся с телом человека. Модуль позиционируют не только «ядерным», но и «вечным», ведь его не надо заряжать.
Но это не означает, что электронные устройства с питанием от «волшебной таблетки» могут работать вечно. Заявлено, что батарея может храниться 50 лет без подзарядки и иного обслуживания. Пока не ясно, какими испытаниями этот срок установлен, но он заявлен производителем в анонсе [6]. Также непонятно, нужны ли батареи со столь длительным сроком эксплуатации в смартфонах: нередко пользователи меняют устройства на более новые и функциональные каждые 1—2 года. Остаётся загадкой и то, насколько потребители готовы к использованию «карманного ядерного реактора», несмотря на гарантии безопасности.
Предпосылки к созданию миниатюрного, пусть пока и маломощного, ядерного энергетического модуля известны ещё в ХХ веке, когда учёные СССР и США разработали электронную технологию для использования в космических кораблях, подводных системах и удалённых научных модулях-станциях, однако термоядерные батареи позиционировались как дорогостоящие и громоздкие. Стремление к миниатюризации и коммерциализации ядерных батарей предпринято в рамках 14-го пятилетнего плана Китая, призванного укрепить экономику страны в период 2021—2025 гг. Надо отметить, что научные коллективы в США и Европе также работают над разработкой подобных батарей. В пресс-релизе сообщается, что новая энергетическая инновация поможет Китаю получить преимущество в новом раунде технологической революции искусственного интеллекта [6]. Пока новейшая разработка находится на стадии пилотных испытаний, создатели первой портативной ядерной батареи утверждают, что будут работать над созданием к началу 2025 года аккумуляторной батареи мощностью 1 Вт.
Применение нетрадиционных источников питания в качестве селективно излучающих систем в инфракрасном диапазоне позволяет увеличить эффективность их работы, ибо часть энергии безвозвратно превращается в тепловую. Это более чем в 2 раза превосходит КПД преобразования радиоизотопных источников питания, выполненных по технологии радиоизотопных термоэлектрических генераторов РИТЭГ. Также было проведено исследование технических характеристик прототипа, разработан комплект конструкторской документации для масштабирования, отработана технология преобразования тепловой энергии ядерного распада в электричество с помощью термофотовольтаических преобразователей, позволяющих работать в ближнем ИК-диапазоне. Такие же разработки в настоящее время активно ведутся в США и Европе для аппаратов исследования космоса. Увеличение КПД солнечных элементов питания посредством использования термофотовольтаических материалов — новый импульс к совершенствованию ядерных батарей.
Поэтому путь создания высокоэффективных радиоизотопных источников энергии представляет собой поиск новых или модифицированных материалов, по своим полупроводниковым свойствам способных заменить кремний, германий и другие узкозонные полупроводники. Источник питания на плутонии-238 Созданный в Национальном исследовательском ядерном университете НИЯУ «МИФИ» прототип источника электроэнергии на плутонии-238 мало похож на пальчиковые батарейки или аккумуляторы мобильных телефонов. Это состоящее из нескольких технологических слоёв 30-килограммовое устройство с многочисленными разъёмами [4]. Стремление к тому, чтобы добиться крайне продолжительной работы данного источника, прямо связано с предназначением и условиями эксплуатации рассматриваемых нетипичных электрических батарей. В пример уместно привести автономные метеопосты на территории Крайнего Севера, створные навигационные знаки и в целом оборудование гидрографических станций, оборудование световых «маяков» для ориентации судов, находящихся в море, в том числе на наземных объектах вдоль трассы Северного морского пути, а также космические спутники.
Разумеется, сфера применения ядерных батарей не ограничивается приведёнными выше примерами. Так, при установке в качестве источников питания с мощностью даже 5—10 Вт на удалённые и необслуживаемые оператором обслуживаемые дистанционно метеостанции, предназначенные для передачи информации о погоде на Большую землю посредством телеметрии, удастся добиться более точных прогнозов. Это возможно в том числе из-за стабильного автономного питания удалённых зондов, для которых изотопные батареи будут дополнительным фактором стабилизации питания в комплексе с источниками возобновляемых источников энергии ветра ветрогенераторы и солнца солнечные панели и преобразователи в электрический ток. Долговечность и принцип работы изотопных батарей Чем больше период полураспада активного изотопа, тем больший ресурс имеет источник питания на его основе. Вот почему так важны характеристики материалов: к примеру, период полураспада тория-228 составляет 2 года, а америция-241 — около 400 лет.
Выбранный плутоний-238 — элемент с 87-летним периодом полураспада. Гарантированный срок службы изделий обозначен разработчиками в 30 лет. Как и в любом «рукотворном» устройстве со сложными элементами, в том числе в РЭА, отдельные элементы изделия неравномерно сохраняют свойства, а общая надёжность зависит от расчёта «наработки до отказа» самых нестабильных компонентов. Поэтому в расчётах долговременности эксплуатации учитываются риски разрушения проводников в том числе с алмазным напылением , деградация поверхности и кристаллов фотоэлементов, возможная потеря вакуума в капсуле. При нарушении целостности оболочки и корпуса изотопный источник автономного питания можно переместить в новую оболочку, и сохранённая энергия обеспечит разность потенциалов на полюсах.
Таким образом, теоретически ядро, если оно сохранено, можно использовать и далее в других источниках питания РЭА. Но вот что крайне важно: чем меньше живёт активный изотоп, тем выше при одинаковой энергии распада и прочих равных условиях его энергоёмкость и отдаваемая в нагрузку полезная мощность. Как мы отметили выше, изотопный источник тока практически лишён эффекта саморазряда, так как реакция происходит только при наличии «внутреннего тока» и ЭДС, связанной с подключением внешней нагрузки. Применяемый в плутониевой электрической батарее принцип преобразования энергии ядерного распада в электрическую называют термофотовольтаическим [4].
Как российские подлодки стреляют ядерным залпом В компании NDB разработчик батарейки утверждают, что продукт позволит "вечно" снабжать энергией абсолютно любое устройство: от смартфона до небольшой баллистической ракеты, которая может автономно и скрытно храниться где-нибудь недалеко от противника. Прототипы атомной батарейки NDB уже прошли испытания в Ливерморской национальной лаборатории и "атомной" лаборатории Кембриджского университета. Американцам, кстати, принадлежит и пальма первенства по внедрению такой технологии на военные и гражданские спутники и космические аппараты. Первые образцы атомных батареек устанавливали на спутники Transit 4A и 4B.
В обоих случаях учёные подтвердили, что эффективность энерговыделения у прототипов NDB оказалась на уровне 40 процентов. Для сравнения: КПД конкурирующих батарей колеблется в районе 15 процентов. С американской атомной батарейкой всё почти идеально — она не превышает в размерах обычный микрочип, не требует обслуживания и позволяет обеспечить значительным количеством электроэнергии целую серверную крупного предприятия. Единственный недостаток американского устройства — быстрый выход из строя. Научный сотрудник факультета физики Сямэньского университета в Китае Константин Ян отметил, что этот ресурс может вырабатываться за несколько лет. Заявляемый ресурс — почти 30 тыс. Это очень много, но с учётом отсутствия буферных зон — конденсаторов или литийионных аккумуляторов, большая часть электроэнергии будет просто уходить в никуда. Суть в том, что пока не будет придумано хранилище для излишков энергии, смысла в таких батарейках нет.
Российская разработка в этом смысле почти идеальна — небольшой размер, отсутствие потерь энергии и высокий КПД. Её стоимость может оказаться в десятки раз ниже, чем зарубежных аналогов Константин Ян Научный сотрудник факультета физики Сямэньского университета в Китае Кто первый взял, того и тапки С точки зрения перспектив эксперты ожидают первого технологического "взрыва" на рынке мобильной электроники. Ноутбуки, смартфоны, смарт-часы, фитнес-трекеры и вообще любое устройство "интернета вещей" может быть оснащено как упрощённой версией атомной батарейки, так и "топовой" конфигурацией с повышенной выработкой электроэнергии.
Рекомендации
- Как работают такие батареи
- Ученые представили новую разработку ядерную батарейку, которая не превосходит по размерам монету.
- Регистрация
- Вечные батарейки: новые изобретения ученых из Поднебесной очистят планету
- Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
Комментарии
- «Вечные» батарейки и аккумуляторы - Общероссийское общественное движение «Народный Собор»
- Бесконечное мыло в Китае
- Делаем электричество из изотопов
- В Китае создали ядерную батарейку, способную проработать 50 лет
- Невероятно, но в России создана «Вечная батарейка»
Появился проект вечной квантовой батарейки
Представлена «вечная» ядерная батарейка - Академия Selectel | Год 1775 оказался для физики по-своему судьбоносным: «бессмертные» Парижской академии наук, заваленные проектами вечных двигателей, отказались их. |
Самарские ученые разработали «вечную» батарейку со сроком службы 100 лет | Интересно: Ну а пока полмира ждет появления новых «вечных» батареек, другие полмира закупают миллиарды источников питания, чтобы прокормить Пожирателя батареек. |
Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет | Российские ученые разработали технологию "вечной" ядерной батарейки. |
Физики придумали «вечную» батарейку на основе алмаза
Она стоит дешевле литиевых аккумуляторов. Видео В США созданы первые прототипы бета-гальванической батареи, способной работать 28 тыс. В ее основе лежит сердечник из переработанных ядерных отходов, но для человека она безопасна за счет покрытия из специальных синтетических алмазов. В России тоже есть подобные батареи, но они работают не дольше 20 лет. Бесконечный источник энергии Американские ученые из компании Nano Diamond Battery разработали «вечный» источник питания , способный работать тысячи и даже десятки тысяч лет. Они создали так называемую «бета-гальваническую батарею» betavoltaic и, по их заверениям, даже успешно испытали их в лабораторных условиях. Такой элемент питания может использоваться, по мнению разработчиков, в самых разных видах техники, начиная от носимых устройств и мобильных гаджетов и заканчивая средствами передвижения — поездами, электромобилями и даже самолетами. Как работают такие батареи В основе работы бета-гальванических батарей лежит принцип преобразования альфа- и бета-излучений радиоактивного вещества в обычный электрический ток, питающий всю современную технику.
Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час. Представьте себе это. Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц… Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке NDB сотрудник стартапа Нил Найкер. Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года. Заключены два предварительных контракта на поставку батарей американским компаниям. Будущие бета-тестеры занимаются производством, обслуживанием и утилизацией продуктов ядерного топлива, а также производством аэрокосмической, оборонной и охранной продукции. Названия первых клиентов пока держат в секрете.
У таких батарей низкий КПД на уровне единиц процентов, но работать они могут десятилетиями, поэтому, например, нашли применение в качестве бортовых систем питания межпланетных станций, которые направляются вглубь Солнечной системы. Пригодные для использования в массовой электронике портативные прототипы атомных бета-гальванических батарей безуспешно пытаются создать в США, России и не только. Они безопасны, но достаточной для работы тех же смартфонов мощности ещё никто из разработчиков не выжал. Китайская Betavolt тоже этого не сделала и обещает революцию завтра, а не сегодня. Хотелось бы в это верить. В основе атомной батарейки Betavolt используется изотоп никель-63 и алмазные полупроводники.
Разработка представляет собой специальный […] Американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая способна проработать тысячи лет. Разработка представляет собой специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный сердечник. В процессе неупругого рассеивания бета-излучение изотопов преобразуется в электрический ток. В качестве топлива используются переработанные ядерные отходы углерода-14. Этот изотоп применяется для радиоизотопного датирования и диагностики некоторых заболеваний желудочно-кишечного тракта. Он также накапливается в графитовых деталях ядерных реакторов, которые поглощают излучение ядерных топливных стержней. Хранить такие отходы опасно, дорого и трудно. Батареи на углероде-14 решают сразу две проблемы — недолговечность обычных элементов питания и переработки радиоактивных отходов. В Nano Diamond Battery отмечают, что батарейки безопасны для человека и окружающей среды.
Портал правительства Москвы
изобретение, родственное скатерти-самобранке и ковру-самолёту. При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору. Устройство размерами 15х15х5 миллиметров (меньше рублевой монеты) способно в течение 50 лет выдавать напряжение три вольта — вдвое больше, чем стандартная пальчиковая батарейка. protivostad, Первые новости о супер пупер мега прорывных аккумуляторах которые уже практически начали производить появились лет 20 назад. Над созданием этой "вечной батарейки" в течении 8-ми лет работала большая команда учёных Роскосмоса и Росатома.
Вечные батарейки: новые изобретения ученых из Поднебесной очистят планету
Разработчик NDB заявляет, что опасность для человека у данных батареек ответствует, также окружающая среда может быть в безопасности. Тестирование показало стабильный фон радиации. А суперпрочная алмазная оболочка отлично защищает сердечник от любых повреждений. Кроме того, в ходе работы нет выделения углекислого газа. Продуктивность и безопасность данного источника подтвердил Кембриджский университет. Сердечник будет «фонить» пару-тройку десятков тысяч лет, поэтому батарейка проработает намного дольше, чем гаджет, куда ее поставят.
Хотелось бы в это верить. В основе атомной батарейки Betavolt используется изотоп никель-63 и алмазные полупроводники.
В процессе радиоактивного распада он превращается в изотоп медь-64. В природе изотопа никель-63 не существует. Он получается в специальных ядерных реакторах, поэтому цена 1 г изотопа запредельная. Явно не для батареек смартфонов.
Тестирование прототипа уже завершено, его работоспособность подтверждена, и стартап обещает вывести на рынок готовый продукт уже в конце 2020 года.
Сможет она продержаться без подзарядки десятки тысяч лет — разбирался научный обозреватель Николай Гринько. У него нет разъема для подзарядки, но гаджет все равно исправно работает — день за днем, месяц за месяцем, не требуя подключения к розетке. Спустя несколько лет смартфон сломался, и вы купили новый. Но прежде чем избавиться от старого, вы вынули из него батарейку, вставили ее в новый, и он проработал еще несколько лет. Вы еще много раз меняли гаджеты, каждый раз используя в них одну и ту же батарейку — ту самую, первую.
Затем вы завещали ее сыну. А он — вашему внуку.
Как утверждают в стартапе, многослойная конструкция батареи позволяет избежать возгорания или взрыва из-за внешнего воздействия. Она также способна работать при температуре от минус 60 до плюс 120 градусов Цельсия.
Фото: Betavolt Фото: Betavolt Также в компании заявили, что атомная батарея абсолютно безопасна для здоровья человека и окружающей среды, не генерирует ионизирующего излучения и пригодна для использования в медицинских устройствах, таких как кардиостимуляторы и искусственные сердца. После распада 63 изотопа превращаются в стабильный изотоп меди, который нерадиоактивен и не представляет никакой угрозы. США и Европа также работают над созданием миниатюрных ядерных батарей Ядерные батареи или радиоизотопные генераторы — это устройство, в которых энергия распада радиоактивного изотопа преобразуется в электрическую энергию. От ядерных реакторов они отличаются тем, что в них не используется цепная реакция.
Технически радиоизотопные генераторы не являются батареями, поскольку в отличие от электрохимических аккумуляторов их нельзя заряжать или перезаряжать.
Российские ученые создали батарейку из плутония, которая может работать вечно
Весь смысл такого источника питания заключается в том, чтобы преобразовать радиоактивную энергию в электрическую. И хотя такие прототипы уже разрабатывали ученые других стран, но отечественная детище обещает стать более дешевым, экологичным и обладать большим сроком использования. Подложкой радиоактивного элемента будет выступать разработанная карбидокремневая структура. Ее использования также способствует удешевлению конечного продукта.
Дело в том, что нанопровод очень тонкий и хрупкий.
В условиях эксплуатации он может растрескиваться и вовсе разрушаться. Случайное улучшение Проблема была решена Мией, которая просто покрыла активный элемент электролитным гелем и диоксидом марганца. Но самое интересное, что укрепление конструкции в итоге привело и к улучшению ее функциональных качеств.
Если выделить из них углерод-14, их радиоактивность снизится, что уменьшит стоимость и повысит безопасность хранения этих ядерных отходов. Несмотря на малую мощность новых источников энергии, они обладают удивительным сроком действия.
Аккумулятор, содержащий один грамм углерода-14, будет давать 15 джоулей в день — меньше, чем батареи типа АА. Этот срок сопоставим с временм существования современной человеческой цивилизации. Очевидные приложения — маломощные электрические устройства, где требуется длительный срок службы источника энергии.
Вот почему так важны характеристики материалов: к примеру, период полураспада тория-228 составляет 2 года, а америция-241 — около 400 лет. Выбранный плутоний-238 — элемент с 87-летним периодом полураспада. Гарантированный срок службы изделий обозначен разработчиками в 30 лет. Как и в любом «рукотворном» устройстве со сложными элементами, в том числе в РЭА, отдельные элементы изделия неравномерно сохраняют свойства, а общая надёжность зависит от расчёта «наработки до отказа» самых нестабильных компонентов. Поэтому в расчётах долговременности эксплуатации учитываются риски разрушения проводников в том числе с алмазным напылением , деградация поверхности и кристаллов фотоэлементов, возможная потеря вакуума в капсуле. При нарушении целостности оболочки и корпуса изотопный источник автономного питания можно переместить в новую оболочку, и сохранённая энергия обеспечит разность потенциалов на полюсах.
Таким образом, теоретически ядро, если оно сохранено, можно использовать и далее в других источниках питания РЭА. Но вот что крайне важно: чем меньше живёт активный изотоп, тем выше при одинаковой энергии распада и прочих равных условиях его энергоёмкость и отдаваемая в нагрузку полезная мощность. Как мы отметили выше, изотопный источник тока практически лишён эффекта саморазряда, так как реакция происходит только при наличии «внутреннего тока» и ЭДС, связанной с подключением внешней нагрузки. Применяемый в плутониевой электрической батарее принцип преобразования энергии ядерного распада в электрическую называют термофотовольтаическим [4]. Альфа-источник окружён вакуумной капсулой, внешние стенки которой покрыты слоем наночастиц. Тепло от ионизирующего излучения нагревает капсулу до 1500 К, заставляя её поверхность светиться. Чувствительные и адаптированные к среде фотоэлементы, окружающие капсулу и способные выдерживать колоссальный нагрев окружающей температуры, улавливают эти изменения спектра. В принципе работы изделий особенности фотогенерации: образование подвижных электронов и дырок при поглощении квантов света, в том числе в органических полупроводниках с изменениями от освещённости и температуры. Это знание способствует созданию разных устройств в сегменте органической фотовольтаики, таких как солнечные панели и батареи.
Перенос заряда и энергии в конденсатах квантовых точек описан довольно давно [3, 5]. Однако с появлением изотопных источников тока задача моделирования транспорта носителей заряда, необходимого для оптимизации характеристик оптоэлектронных устройств на основе квантовых точек, решается лучше. Наногибридные материалы Неупорядоченные органические полупроводники применяются в РЭА даже в производстве кристаллов светодиодов. Активно исследуются возможности применения в тонкоплёночных транзисторах, фотовольтаике, сенсорах и др. Преимущества неупорядоченных органических полупроводников перед другими материалами — гибкость, лёгкость, разнообразие свойств и возможность производства по дешёвой массовой технологии. В связи с относительно малой величиной диэлектрической проницаемости поглощение фотона приводит к образованию пар, в которых электрон и дырка разделены в пространстве, но связаны кулоновским взаимодействием геминальные пары. Вероятность полного разделения геминальной пары определяет фотогенерацию свободных носителей заряда: «электронов» и «дырок». Вот почему увеличение эффективности фотогенерации важно для развития устройств органической фотовольтаики и, в частности, солнечных элементов. Разъяснение феномена и предтечи открытий связано с физическими свойствами наногибридных материалов.
Изготовление конденсатов квантовых точек производится доступными методами, но для получения качественного покрытия необходимо тщательно соблюдать технологию и условия изготовления, а также выбирать тип органических молекул, «сшивающих» квантовые точки между собой [5]. Возможность замены лигандов позволяет менять расстояние между квантовыми точками и оптимизировать перенос энергии и заряда. Технология замены лигандов при комнатной температуре облегчает данный процесс, а наногибридные материалы с квантовыми точками разработчики РЭА используют не только для создания фотовольтаических элементов или светодиодов, но и для сложных полупроводниковых структур как основы новейших высокочувствительных сенсоров. Он работал на бета-частицах стронция-90 по термоэлектрическому принципу, почти как термопара: между холодным и разогретым от активного источника полюсами-контактами возникала разность потенциалов напряжение , при подключении нагрузки создавалась классическая электрическая цепь с постоянным родом тока. Интересно, что для безопасной утилизации последних РИТЭГов с автономных антарктических метеопостов в 2015 году снаряжали полярную миссию. Пока же необслуживаемые метеостанции в труднодоступных районах питают электроэнергией от возобновляемых источников ветра и солнца. В рассматриваемом прототипе изотопной батареи он в 2,5 раза больше. Специальные термо-фотоэлементы, преобразующие свет ближнего диапазона ИК-спектра в электрический ток, дают такой эффект, что энергии тратится меньше [4]. Можно сказать, батарея «сама себя экономит» и является аккумулятором для своей же энергии.
Теплопроводность в сердцевине изделия отсутствует, а в перспективе добиваются, чтобы максимум возможной энергии альфа-распада переходил в излучение. Нагрев рабочей зоны капсулы имитирует ТЭН, поэтому вакуум в рабочей камере нужен для исключения конвекционных потерь. По теме РИТЭГ уместно вспомнить, что тепло, как неизменный спутник процесса радиоактивного распада, уже является условием возникновения электрического тока после соответствующего преобразования. Для иллюстрации этого тезиса уместно вспомнить принцип работы элементов Пельтье; кроме прочего, ими комплектуются электронные устройства охлаждения: кулеры, пурифаеры и др. Из истории автономных элементов питания История автономных элементов питания по-своему любопытна. Древняя багдадская она же парфянская электрическая батарея была похожа на глиняный горшок, внутрь которого вставлен и зафиксирован полый цилиндр из меди. По центру, так, чтобы тот не соприкасался со стенками трубы, установлен металлический железный стержень.
Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет
Данный проект является взглядом в будущее. Представленная батарейка находится в специальном корпусе, в производстве которого использовались синтетические алмазы, внутри имеется стержень из радиоактивного материала. Неупругое рассеивание изотопного бета-излучения позволяет создавать электрическую энергию. Горючим в данном процессе служат отходы после переработки углерода-14. Радиокарбон используется при радиометрическом датировании, а также во время обследования болезней ЖКТ. Этот изотоп можно найти в элементах из графита ядерного реактора, поглощающих излучение от топливного ядерного стержня. Подобные отходы хранить нельзя ввиду их опасности, сложности и дороговизны процесса.
Но и это далеко не предел. По мнению авторов проекта, инновационный аккумулятор в принципе изменит представление об элементах питания как о расходниках. К примеру, одна такая батарея смогла бы работать несколько служебных сроков обслуживаемой техники. Успешные эксперименты Мия продолжала месяц, что позволило в деталях исследовать работу нового аккумулятора и сделать обнадеживающие выводы о его возможном применении уже в коммерческих целях.
Правда, не совсем как обычное. Этот брусок из нержавейки удаляет не грязь, а запах. Секрет — в составе. Стальной сплав нейтрализует сульфоксиды. Эти органические кислоты — главная причина появления стойких кухонных ароматов. На моем пальце до сих пор остался чеснок с маслом, я специально нанес. Сначала мы увидим, что масло прилипло к мылу. Но оно буквально соскочило с моих пальцев, а дальше, видите, оно мокрое и чистое, и руки", — поделился блогер Даниэль Кортес. Эту проблему решит вечный источник воды. Такое устройство тоже уже придумали — в Израиле. Оно прогоняет воздух через охлаждающий элемент и собирает влагу. Несколько ступеней фильтрации избавляют жидкость от грязи и микробов — и стакан чистой воды из воздуха готов. Он вытягивает воду из воздуха, он очищает воду, он использует революционный пластиковый теплообменник", — рассказал изобретатель Алан Дершовиц. Такое всегда происходит в самый неподходящий момент. В России придумали батарейку, которая может бесперебойно работать 28 тысяч лет. Ученые догадались поместить отработанное ядерное топливо в оболочку из искусственных наноалмазов.
Пригодные для использования в массовой электронике портативные прототипы атомных бета-гальванических батарей безуспешно пытаются создать в США, России и не только. Они безопасны, но достаточной для работы тех же смартфонов мощности ещё никто из разработчиков не выжал. Китайская Betavolt тоже этого не сделала и обещает революцию завтра, а не сегодня. Хотелось бы в это верить. В основе атомной батарейки Betavolt используется изотоп никель-63 и алмазные полупроводники. В процессе радиоактивного распада он превращается в изотоп медь-64.
Создана первая в мире «вечная» батарейка. Она стоит дешевле литиевых аккумуляторов. Видео
В батарейках, созданных командой Скотта, радиоактивные изотопы выделяют электроны сверхвысокой энергии, подвергаясь радиоактивному распаду. Принцип атомной батарейки в том, что радиоактивный изотоп, распадаясь, излучает тепло и разогревает капсулу, в которой он находится, до полутора тысяч градусов. Смотрите видео онлайн «Российские ученые создали батарейку из плутония, которая может работать вечно» на канале «Телеканал МИР» в хорошем качестве и бесплатно.