Лазерная связь относится к беспроводным оптическим системам связи и является одним из самых актуальных направлений.
NASA испытало систему лазерной связи на орбите
Но время не ждет! Связь необходима, причем порой надо передавать и голос и данные. Возникает вопрос: каким образом наладить связь одного здания с другим? Ответ прост: воспользуйтесь беспроводным оборудованием. Мы хотим представить читателям новый, еще недостаточно широко известный в России вид беспроводной связи — лазерную связь. Кроме того, мы постараемся показать ее преимущества перед другими видами связи. Сравнение различных способов построения канала связи Будем недалеки от истины, если предположим, что большинство компаний испытывают проблемы, связанные с недостатком каналов связи. Как их решить?
Создавать ли новую инфраструктуру? Модернизировать ли уже существующую? Какой путь выбрать? И в какую сумму это обойдется? Приблизительно такие вопросы задают себе руководители подразделений технической поддержки и обеспечения связи. Рассмотрим проблему организации канала связи между отдельными корпусами зданий, которая может возникнуть практически перед любой компанией. Предположим, необходимо наладить связь между двумя зданиями: центральным офисом и филиалом.
Например, компания хочет связать УАТС центрального офиса, подключенную к телефонной сети общего пользования, с УАТС, устанавливаемой в филиале, или организовать вынос абонентской емкости. Возможно, необходимо объединить сегменты ЛВС, расположенные в разных корпусах зданий. Обе эти задачи могут быть поставлены одновременно. В любом случае возникает проблема выбора каналообразующего оборудования. Выбор этот достаточно широк. Мы же рассмотрим следующие возможные способы построения канала связи: два беспроводных — радиосвязь и лазерная связь — и два проводных — на основе медного и волоконно-оптического кабеля с установкой соответствующей аппаратуры сопряжения рис. Допустим, вы решили использовать волоконно-оптические линии связи ВОЛС.
Они обеспечивают высокие качество частота появления ошибочных битов BER меньше 10-10 и скорость ограничена только скоростью используемого интерфейса передачи, но, к сожалению, еще достаточно дороги. Так, стоимость прокладки километра волоконно-оптического кабеля в черте города может составить в среднем 6—10 тыс. Волоконно-оптический кабель позволит увеличить пропускную способность сети и сделать ее максимально "прозрачной" для различных протоколов. Однако высокая стоимость его прокладки ограничивает использование ВОЛС. Компании, которые не могут себе позволить построение ВОЛС, в качестве канала связи используют обычный медный кабель витые пары. Однако при значительном удалении пользователей друг от друга свыше 1,5—2,2 км необходимы ретрансляторы.
Разработка МФТИ Российские исследователи из МФТИ разработали прототип компактного терминала лазерной связи для космических аппаратов, который существенно ускорит передачу данных на наземные станции и обеспечит быструю связь между аппаратами. Установку можно использовать в том числе и на малых космических аппаратах класса CubeSat , сообщила пресс-служба МФТИ.
В ближайшее время разработчики планируют подготовить и представить публике новую версию прототипа, которая будет обладать усовершенствованной оптикой и будет полностью готова к установке на борт реального космического аппарата. Фото: МФТИ Лазерная связь позволит на высокой скорости обмениваться информацией не только между аппаратами на орбите, но и с наземными станциями Корпус и некоторые другие детали системы были изготовлены при помощи систем трехмерной печати и ЧПУ-станков , при этом все компоненты системы можно уместить в небольшой коробке, которую потенциально можно установить в том числе и на борт микроспутников. В перспективе высокая скорость обмена информации и дальность работы этой лазерной системы связи позволит российским орбитальным зондам обмениваться информацией как между аппаратами на орбите, так и связываться с наземными станциями.
В дополнение к радио S-диапазона, во время миссии Артемида-2 Орион будет нести лазерную систему под названием Optical to Orion , или O2O.
Ее главная задача будет заключаться в передаче 4K-видео с Луны зрителям на Землю. В случае успеха O2O откроет дверь для обмена большими объемами информации между будущими миссиями и Землей, позволяя проводить видеочаты с семьей, частные консультации с врачами или даже просто смотреть спортивные соревнования во время отдыха. Чем больше времени люди будут проводить на Луне, тем важнее будет быстрая связь для их психического благополучия. И в конце концов, видео станет критически важным для экипажей в дальнем космосе.
Прежде чем O2O можно будет испытать в космосе, он должен будет пережить путешествие. Лазерные системы, установленные на космическом корабле, используют телескопы для отправки и приема сигналов. Эти телескопы полагаются на сложно расположенные зеркала и множество других движущихся частей. O2O будет использовать внеосевую систему Кассегрена , телескоп с двумя зеркалами для фокусировки захваченного света, установленный на вращающемся карданном подвесе.
Исследователи из Lincoln Lab выбрали именно такой тип, потому что он позволит им отделить телескоп от оптического приемопередатчика, что сделает всю систему более модульной. Инженеры также должны убедиться, что ракета-носитель, выводящий Орион в космос, «не растрясет» драгоценное оборудование. Они разработали специальные застежки и крепления, которые, как они надеются, уменьшат вибрации и сохранят все в целости и сохранности во время бурного запуска. Когда O2O окажется в космосе, она должна быть точно нацелена на приемник на Земле.
Трудно пропустить радиосигнал, если он имеет поперечное сечение размером с большую страну. А вот оптический импульс диаметром в 6 км может легко промахнуться мимо Земли при небольшом отклонении космического корабля. Бортовое оборудование Ориона также будет генерировать постоянные незначительные вибрации, любой из которых будет достаточно для неточной отправки оптического сигнала. Она будет измерять вибрации от корабля и производить противоположные вибрации, чтобы в итоге устранить их — «как наушники с шумоподавлением», говорит Корнуэлл.
Последнее препятствие для работы O2O — это облачный покров на Земле. Инфракрасные волны с длиной 1550 нм, которые использует O2O, легко поглощаются облаками. Лазерный луч может без проблем пройти почти 400 000 км от Луны и быть заблокированным всего в паре километров над поверхностью Земли.
Устройства могут выполнять индивидуальные, групповые или экстренные голосовые вызовы, отправлять текстовые сообщения, отслеживать координаты абонентов, контролировать состояние и даже положение раций. Радиостанции работают в двух диапазонах частот 146-174 МГц и 401-486 МГц. Выставка «Связь» проходит с 23 по 26 апреля в Центральном выставочном комплексе «Экспоцентр» в Москве.
Лазерная связь - еще один способ беспроводной связи
Эксперимент НАСА "Оптическая связь в глубоком космосе" (DSOC) призван проложить путь к использованию лазерной связи для передачи данных из глубокого космоса. Выставка «Связь» проходит с 23 по 26 апреля в Центральном выставочном комплексе «Экспоцентр» в Москве. Как заявил глава «Роскосмоса» Рогозин, в рамках проекта «Сфера» госкорпорация будет заниматься лазерной связью. Лазерная связь позволит на высокой скорости обмениваться информацией не только между аппаратами на орбите, но и с наземными станциями. Технология лазерной связи в этой демонстрации предназначена для передачи данных из глубокого космоса со скоростью в 10-100 раз быстрее. Эксперимент «ЭКОЛИНС» запланирован на 2023 год, по нему уже завершена стадия технического проектирования, сообщают «РИА Новости».
"Дочка" "ИКС Холдинга" займется лазерной связью вслед за Starlink
Развертывание системы «Сфера», состоящей из 600 спутников, начнется в 2023 году и продлится до 2028 года. Ранее сообщалось , что проект прошел согласование в Военно-промышленной комиссии. Сейчас рассматривается вопрос финансирования на 2020 год. По словам вице-премьера РФ Юрия Борисова, правительство заложило в проект бюджета на 2020-2022 годы финансирование проекта "Сфера" в размере свыше 10 млрд руб.
Разработкой платформы занималась компания Orbital Systems LLC, которая отвечает за сервисные системы и силовую структуру спутника. Кроме того, спутник оснащен двумя ключевыми приборами полезной нагрузки: 1. Современный прибор, предназначенный для регистрации электромагнитных всплесков в солнечной короне и определения их энергии и спектрального состава. Этот прибор предназначен для опробования лазерного канала передачи данных, соединяющего спутник с наземной станцией.
Прибор размером с холодильник был установлен снаружи японского экспериментального модуля "Кибо". Оба прибора — часть программы космической связи и навигации NASA SCaN, которая должна протестировать то, как технологии лазерной связи могут быть полезны для научных исследований. Далее специалисты будут проводить эксперименты, которые позволят оптимизировать внедрение новой технологии в проекты NASA, чтобы сделать научные исследования максимально эффективными.
Росатом запланировал эксперимент с космической лазерной связью на 2024 год 23. Саров, Нижегородская область, входит в госкорпорацию Росатом к 2024 году. В настоящее время в институте заканчивают разработку конструкторской документации для изготовления опытных образцов аппаратуры. У лазерной связи частота колебаний очень высокая, мы можем передавать по одному каналу до 100 Гб.
Космическая лазерная связь - это будущее подключения к Интернету
Так, компоненты лазера не были предназначены для работы в суровых условиях космоса. Во время теплового испытания, имитирующего экстремальные температуры, расплавились волокна в усилителе оптического сигнала. Чтобы решить эту проблему, исследователи работали с поставщиком усилителя. Устройство модифицировали так, чтобы оно выделяло тепло за счёт проводимости. Кроме того, лазерные лучи могут искажаться из-за атмосферных воздействий и погодных условий. Это может привести к потере мощности и, в свою очередь, к потере данных. Чтобы решить проблему, учёные разработали собственную версию автоматического повторного запроса ARQ — протокола для контроля ошибок при передаче данных по каналу связи. Наземный терминал использует низкоскоростной сигнал восходящей линии связи, чтобы сообщить спутнику, что он должен повторно передать любой блок данных или кадр, которые были потеряны или повреждены.
Преимущества лазерной связи известны уже много лет, но лишь недавно инженеры смогли создать системы, превосходящие радиосвязь. Например, в 2013 году демонстрацией лунной лазерной связи НАСА доказала, что оптические сигналы могут надежно передавать информацию с лунной орбиты обратно на Землю. Lincoln Lab сыграла важную роль в разработке многих систем лазерной связи в миссиях НАСА, начиная с первых демонстраций, проведенных с помощью засекреченного спутника GeoLITE в 2001 году. Я был рад, что НАСА все же решила использовать лазерную связь в этой миссии». Наземная установка для лазерной связи. В дополнение к радио S-диапазона, во время миссии Артемида-2 Орион будет нести лазерную систему под названием Optical to Orion , или O2O. Ее главная задача будет заключаться в передаче 4K-видео с Луны зрителям на Землю. В случае успеха O2O откроет дверь для обмена большими объемами информации между будущими миссиями и Землей, позволяя проводить видеочаты с семьей, частные консультации с врачами или даже просто смотреть спортивные соревнования во время отдыха. Чем больше времени люди будут проводить на Луне, тем важнее будет быстрая связь для их психического благополучия. И в конце концов, видео станет критически важным для экипажей в дальнем космосе.
Прежде чем O2O можно будет испытать в космосе, он должен будет пережить путешествие. Лазерные системы, установленные на космическом корабле, используют телескопы для отправки и приема сигналов. Эти телескопы полагаются на сложно расположенные зеркала и множество других движущихся частей. O2O будет использовать внеосевую систему Кассегрена , телескоп с двумя зеркалами для фокусировки захваченного света, установленный на вращающемся карданном подвесе. Исследователи из Lincoln Lab выбрали именно такой тип, потому что он позволит им отделить телескоп от оптического приемопередатчика, что сделает всю систему более модульной. Инженеры также должны убедиться, что ракета-носитель, выводящий Орион в космос, «не растрясет» драгоценное оборудование. Они разработали специальные застежки и крепления, которые, как они надеются, уменьшат вибрации и сохранят все в целости и сохранности во время бурного запуска. Когда O2O окажется в космосе, она должна быть точно нацелена на приемник на Земле. Трудно пропустить радиосигнал, если он имеет поперечное сечение размером с большую страну. А вот оптический импульс диаметром в 6 км может легко промахнуться мимо Земли при небольшом отклонении космического корабля.
Она позволит дополнительно использовать радиочастотный дипазон, увеличив пропускную способность от 10 до 100 раз по сравнению с традиционной технологией передачи сигналов. Изображение взято с: youtube. На первом этапе проведут тестирование по действующему проекту LCRD. Глобальная система связи аэрокосмического ведомства Соединённых Штатов будет значительно модернизирована.
Над актуальной задачей лазерной передачи данных между аппаратами многоспутниковых группировок связи наперегонки работают также и американские, и китайские разработчики. Разработка МФТИ Российские исследователи из МФТИ разработали прототип компактного терминала лазерной связи для космических аппаратов, который существенно ускорит передачу данных на наземные станции и обеспечит быструю связь между аппаратами. Установку можно использовать в том числе и на малых космических аппаратах класса CubeSat , сообщила пресс-служба МФТИ. В ближайшее время разработчики планируют подготовить и представить публике новую версию прототипа, которая будет обладать усовершенствованной оптикой и будет полностью готова к установке на борт реального космического аппарата. Фото: МФТИ Лазерная связь позволит на высокой скорости обмениваться информацией не только между аппаратами на орбите, но и с наземными станциями Корпус и некоторые другие детали системы были изготовлены при помощи систем трехмерной печати и ЧПУ-станков , при этом все компоненты системы можно уместить в небольшой коробке, которую потенциально можно установить в том числе и на борт микроспутников.
Учёные протестировали лазерную связь на расстоянии 226 000 000 км (2 фото + видео)
Новые лазерные системы связи могут обеспечить быструю передачу огромных объемов данных с Луны. Задача связи на таких дистанциях требует астрономической точности, но, в случае успеха, сулит огромные преимущества, поскольку лазерный свет имеет более короткие длины волн. В России создан прототип компактного терминала космической лазерной связи, который можно использовать на спутниках формата кубсат.
NASA запускает лазерную связь сегодня, 5 декабря
Сеанс связи с зондом состоялся, когда тот был на удалении 226 млн км. Специалисты создали самую стабильную систему связи со спутником с помощью лазерного луча. Лазерный луч обеспечивает высокоскоростную связь с очень низкой вероятностью обнаружения, малыми затратами на. Лазерная связь относится к беспроводным оптическим системам связи и является одним из самых актуальных направлений. Лазерная связь сильно зависит от атмосферных показателей, с радиосвязью же вопрос давно изучен и отработан», — заключил эксперт.
Земля впервые получила лазерный сигнал с расстояния 16 миллионов километров
После того, как она прибудет на землю, данные будут переданы команде ILLUMA-T в Центре космических полетов имени Годдарда, чтобы проверить, что они по-прежнему точны и высокого качества на этих скоростях. Если эксперимент увенчается успехом, НАСА надеется, что лазерная связь может стать регулярной частью операций не только на МКС, но и для сети ближнего космоса, которая будет охватывать спутники, вращающиеся вокруг Земли и Луны, и сети Дальнего космоса.
Лазерная связь значительно повышает эффективность передачи данных. Прибор размером с холодильник был установлен снаружи японского экспериментального модуля "Кибо". Оба прибора — часть программы космической связи и навигации NASA SCaN, которая должна протестировать то, как технологии лазерной связи могут быть полезны для научных исследований.
В настоящее время люди не покидают пределы земной орбиты, на которой находится МКС, поэтому радиосвязи пока достаточно для задач, которые стоят перед астронавтами. Беспилотные миссии, разумеется, передают данные с гораздо большего расстояния.
Для этих целей используют электромагнитные волны. Однако эту связь все равно нельзя назвать идеальной. Даже при максимальной скорости передачи данных, которая составляет 5,2 мегабит в секунду космический аппарат Mars Reconnaissance Orbiter MRO передает все данные своего самописца в течение более 7 часов. Лазерный приемо-передатчик DSOC В будущем наверняка потребуется стабильная и быстрая связь сквозь глубокий космос. Например, она необходима будет для видеотрансляции в реальном времени или быстрой передачи изображений высокой четкости. Например, более эффективная связь будет нужно для во время пилотируемых миссий на Марс. В лазерном луче фотоны движутся в одном направлении на одной и той же длине волны.
При этом в колебаниях световых волн упакованы огромные объемы данных, которые передаются с беспрецедентной скоростью.
Исследователи пишут, что их работа стала очередным шагом на пути создания эффективных систем передачи лазерных сигналов на большие расстояния. Такие системы в будущем могут использоваться для связи между наземными станциями и спутниками или орбитальными космическими кораблями. Их можно использовать и для подключения атомных часов.
Кстати, такой эксперимент позволил бы, наконец, проверить в деле общую теорию относительности Эйнштейна. Для этого необходимо одни атомные часы установить на борту космического аппарата, а другие - на Земле. Если теория Эйнштейна верна, то часы в космосе должны идти немного быстрее, чем на планете.
В NASA испытали лазерный «интернет»: 25 Мбит/с на расстояние 226 миллионов километров
Terran Orbital из Ирвина, Калифорния, предоставляет космический корабль, интегрирует полезную нагрузку и выполняет миссии PTD. Такой подход позволяет серии PTD быстро и недорого демонстрировать новые технологии подсистем для увеличения возможностей малых космических аппаратов. Помимо того, что TBIRD находится на стандартном коммерческом космическом корабле, он также был построен из существующих коммерческих телекоммуникационных аппаратных продуктов, которые были модифицированы для экстремальных условий космоса. Использование существующих компонентов повышает эффективность и обеспечивает экономию средств. В ходе миссии PTD-3 продемонстрирует очень стабильное наведение тела, что означает, что космический корабль может быть точно направлен на наземную станцию , чтобы облегчить демонстрацию TBIRD на нисходящей линии связи.
В ближайшей перспективе разработчики планирует представить версию терминала с усовершенствованной оптикой. Ранее издание SpaceNews сообщило, что американская компания John Deere выбрала SpaceX для подключения своих беспилотных тракторов к спутниковому интернету для обеспечения их автономной работы в условиях сельской местн ости.
Блок лазерного приёмопередатчика «Психеи» не предназначен для передачи научных данных с борта зонда на Землю. Для демонстрации и испытаний возможностей оптической связи видео и другие данные были записаны в него ещё на Земле.
Тем не менее, команда зонда смогла продублировать передачу фрагмента инженерных данных с борта зонда по оптическому каналу в то же время, как эти данные передавались по основному радиоканалу. Тем самым NASA получило возможность заявить, что впервые по оптике были переданы инженерные данные с борта космического корабля из глубокого космоса.
Сеанс связи с зондом состоялся, когда тот был на удалении 226 млн км от Земли, что в полтора раза больше, чем расстояние между Солнцем и Землёй. Это лучше всяких слов доказало, что концепция дальней космической оптической связи по сути верна и успешно реализуется. По крайней мере, в экспериментальных установках. На более близких дистанциях скорость оптической связи ощутимо выше. Например, первый сеанс оптической связи с «Психеей» состоялся , когда она улетела от Земли на 31 млн км.