22 видео-конференции “Про Плазму” – это основной источник информации про плазму и плазменную воду Мехрана Кеше от русскоязычного плазменного сообщества. На основе принципа токамака строится международный экспериментальный термоядерный реактор ITER во Франции.
ГОСУДАРСТВЕННАЯ ФЕЛЬДЪЕГЕРСКАЯ СЛУЖБА РОССИЙСКОЙ ФЕДЕРАЦИИ (ГФС России)
- Полезные ссылки
- Термоядерный реактор KSTAR смог удержать раскалённую плазму в течение 30 секунд
- В России запущена уникальная плазменная установка
- Впервые в мире термоядерную плазму протестировали в токамаке нового поколения
- Публикации
- Комментарии
НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР
Магнитное поле удерживает плазменный жгут от соприкосновения со стенками реактора и не даёт плазме остыть, а также повредить стенки реактора, вследствие чего происходит. В распоряжении ученых нет реактора размером с Солнце, тяготение которого сжимает плазму так, что она становится в 20 раз плотнее стали. Плазменный двигатель — разновидность электрического ракетного двигателя (ЭРД), расходуемое вещество которого получает ускорение в состоянии плазмы. Для сравнения — в проекте международного термоядерного реактора ITER предполагается достижение ионной температуры в 8 и выше килоэлектронвольт. Плазменный физический реактор – сложное оборудование, обеспечивающее нормальное выполнение химической реакции.
Проблема термоядерного реактора оказалась преимуществом для плазменного двигателя
Таким образом, перспективы развития всего направления легководных реакторов при нынешних материалах оболочек твэлов представляются туманными. Ученые всего мира начали работать над усовершенствованием материалов оболочек еще в середине XX века, и эти работы продолжаются до сих пор. Разрабатываются новые коррозионностойкие циркониевые сплавы, способные эффективнее сопротивляться агрессивному воздействию теплоносителя. Кроме того, рассматриваются различные варианты обработки поверхности циркониевых оболочек твэлов и нанесения на них защитных покрытий. Однако появление тех или иных удачных технологических решений может занимать даже не годы, а десятилетия. Почему так долго?
Разработка новых сплавов и методов обработки поверхности требует постоянного проведения дореакторных испытаний. Эффект от каждого минимального изменения в составе сплава или в технологии его обработки должен быть проверен в условиях, приближенных к реакторным. Для этого берется специальный стальной автоклав с толстыми стенками, в который заливается определенное количество воды и помещаются исследуемые образцы новых материалов. После этого автоклав герметизируется и устанавливается в печь, в которой нагревается до эксплуатационной температуры оболочек твэлов. А вот дальше придется запастись терпением, потому как прежде, чем можно будет сделать какой-то вывод о коррозионной стойкости исследуемых образцов, должен пройти не один месяц.
Ведь если даже в активной зоне реактора коррозия оболочек твэлов длится годами, то что уж говорить про условия водной среды автоклава, где, в отличие от реактора, нет химически активных продуктов радиолиза воды и реакторного облучения, ускоряющего коррозию. Очевидно, что в условиях, когда каждый шаг разработчика должен верифицироваться испытаниями, длящимися месяцами, невозможно говорить об интенсивном развитии реакторных материалов.
Например, сдвиги средней энергии нейтронов от номинального значения в 14 мегаэлектронвольт связаны с температурой ионов, средней кинетической энергией ионов и скоростью плазмы. Материалы по теме:.
В случае успеха, ITER положит начало использования человечеством нового экологически чистого и эффективного источника энергии. Он считается одной из самых сложных физических установок, которые когда-либо создавались человеком. Общая масса реактора — 23 тысячи тонн, он занимает площадь в 42 гектара, а обслуживают ITER 2,3 тысячи сотрудников.
Схема плазмы в сферическом токамаке. Фото: sciencealert. Это тороидальная установка со сферической вакуумной камерой. В ней формируется и удерживается плазма, пишет ScienceAlert.
Российские ученые масштабировали установку плазменного пиролиза нефти
Но я хотел бы вам сказать, что мы не строим копию Твиттера или ВКонтакте. Они круче... Мы создаем для себя и для вас журнал. Научно-популярный журнал. Который в современных условиях должен не только писать, но и говорить, отвечать, спорить, ругаться и т. Мы создаем площадку для тех, у кого есть что рассказать другим, и они не боятся это сделать. Поэтому давайте без обид.
Москва, ул. Полковая, дом 3 строение 1, помещение I, этаж 2, комната 21.
Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет — его в мире производят десятками тысяч тонн в год. Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 — это безвредный инертный газ. К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы. Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек. И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы. К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития — 12 лет. Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс. Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути. Из чего состоит реактор ITER? Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера.
Как пояснил Гаспарян, это перспективный источник энергии, который считается будущим энергетики — запас топлива для него практически неисчерпаем. Работы ведутся по всему миру. Сейчас всё внимание приковано к международному проекту ITER Международный экспериментальный термоядерный реактор. Россия получила ценный опыт при разработке отдельных элементов проекта. С учетом него сейчас проектируется установка ТРТ токамак с реакторными технологиями », — рассказал специалист.
Во Франции стартовала последняя фаза сборки крупнейшего в мире термоядерного реактора
Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. Результаты данной работы позволят внедрить российские реакторы в создаваемые новые линии производства чипов в России. Красильников заявил, что первую плазму термоядерного реактора ИТЭР зажгут не раньше 2025 года.
Компактный термоядерный реактор американского стартапа разогрел плазму до 37 млн °С
Строительство первого в мире международного термоядерного реактора вышло на новый этап. В рамках эксперимента внутри реактора плазму разогрели до 50 миллионов градусов Цельсия. Основным минусом реакторов типа токамак является такая высокая температура плазмы, которой на Земле просто не существует.
На российском токамаке Т-15МД получена первая термоядерная плазма
Разогрев плазменного шнура происходит за счет пропускания сквозь него очень сильного электрического тока, что также способствует удержание шнура в равновесии в вакууме камеры, за счет создания разности магнитных потенциалов. Но ученые призывают не торопиться праздновать победу и не перестают повторять, что до практического применения еще довольно далеко. Пока еще реактор потребляет много больше энергии, чем может выработать. Это лишь очередной успешный эксперимент, который говорит о том, что управлять плазмой можно и сам по себе термоядерный реактор возможен.
На этот научный проект потрачено уже более 943 миллиарда долларов, но его успех позволит получить Поднебесной доступ к дешевой и чистой энергии, которая не оставляет опасных отходов, а сырье для её производства находится на Земле практически в безграничных количествах. В России также проводятся исследования по удержанию плазменных разрядов при сверхвысоких температурах, но информация о ходе таких экспериментов публикуется крайне редко.
Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму. В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу. Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. Литий - лёгкий элемент, поэтому ядра лития меньше охлаждают плазму и даже могут участвовать в термоядерных реакциях. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для "потеющей стенки" должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться.
Использование установки позволит испытать прототипы теплозащитной облицовки камеры для будущего термоядерного реактора ИТЭР, которые создаются в России», - сказали ТАСС в университете. НИУ «МЭИ» также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе. Установка ПЛМ представляет собой магнитную ловушку для получения и нагрева плазмы.
Государственная фельдъегерская служба Российской Федерации
Литий - лёгкий элемент, поэтому ядра лития меньше охлаждают плазму и даже могут участвовать в термоядерных реакциях. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для "потеющей стенки" должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться. Самый тугоплавкий металл - вольфрам, однако его теплопроводности для эффективного охлаждения стенки недостаточно. Медь обладает очень высокой теплопроводностью, но её нельзя применять для стенок реактора из-за легкоплавкости - металл просто атомизируется при взаимодействии с плазмой и попадёт внутрь реактора, что ухудшит качество плазмы.
Однако учёные придумали, как объединить свойства обоих металлов в одной конструкции.
В России также проводятся исследования по удержанию плазменных разрядов при сверхвысоких температурах, но информация о ходе таких экспериментов публикуется крайне редко.
Установка ПЛМ представляет собой магнитную ловушку для получения и нагрева плазмы. Системы термоядерных реакторов и технологии диагностики плазмофизических процессов - предмет исследований специалистов кафедры "Общая физика и ядерный синтез", действующей в НИУ "МЭИ". Сахаров, преподававший в МЭИ на кафедре электрофизики, предложил использовать магнитное поле для удержания плазмы с целью достижения управляемого термоядерного синтеза, а сейчас уже мы смогли найти многие решения этих проблем и предложений", - приводит пресс-служба вуза слова его ректора Николая Рогалева.
Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Волна термоядерных реакций превращает дейтериево-тритиевое топливо в высокоэнергетический гелий и нейтроны, которые можно улавливать для выработки тепла и электричества. Хотя подход Z-пинч тестировался еще в 1950-х, исследователи столкнулись с проблемой быстрого угасания плазмы. Zap заявляет, что решила ее с помощью стабилизации сдвигового потока — инновации, которая теоретически может продлить срок жизни Z-пинч плазмы почти до бесконечности.