А ведь были ещё аварии на Три-Майл-Айленд, Фукусиме и множестве других, не столь известных объектов, но при этом также разрушительные и смертоносные. 13:46. Авария на АЭС три-майл-айленд. 34 просмотра. Авария на АЭС «Три-Майл Айленд» в США заставила западный мир переоценить свое отношение к ядерной и радиационной опасности с точки зрения обеспечения ее безопасной эксплуатации. А ведь были ещё аварии на Три-Майл-Айленд, Фукусиме и множестве других, не столь известных объектов, но при этом также разрушительные и смертоносные.
История и развитие
- Провокации Киева, или Люди, будьте бдительны! – Трибуна
- 28 марта 1979 года. Произошла авария на АЭС Три-Майл-Айленд в Пеннсильвании
- Авария на АЭС Три-Майл-Айленд — Википедия с видео // WIKI 2
- Произошла крупнейшая в США авария на атомной электростанции
- Авария на атомной станции. США 1979 год — Сообщество «Это интересно знать...» на DRIVE2
Авария на атомной станции. США 1979 год
Хотя многочисленные исследования подтвердили отсутствие радиационных последствий аварии на Три-Майл-Айленд, отношение общественности к этой аварии и к самой атомной энергетике, сформированное СМИ, практически не изменилось. Ядерная авария Авария на Три-Майл-Айленд была частичным расплавлением реактора номер 2 АЭС Три-Майл-Айленд (TMI -2) в округе Дофин, штат Пенсильвания, недалеко от. В 1979-ом название «Три-Майл-Айленд» не сходило с заголовков газет – знаменитая авария на одноименной АЭС привела к тяжелейшим последствиям. По мнению МАГАТЭ, авария на Три-Майл-Айленде стала важным поворотным моментом в мировом развитии ядерной энергетики. А три реактора, оставшиеся на Чернобыльской АЭС, были постепенно выведены из эксплуатации.
Из Википедии — свободной энциклопедии
- ПОДПИСКА. Мы обещаем присылать письма только о самом важном
- История и развитие
- Авария на АЭС «Три-Майл Айленд» (США, 1979)
- Техногенные катастрофы #95. Three Mile Island | Пикабу
- Навигация по записям
- Топ-5 крупнейших радиационных катастроф и аварий, которые потрясли мир |
СМИ вспомнили аварию на американской АЭС
В случае с ураном-235 необходимы так называемые тепловые нейтроны, но в ходе цепной ядерной реакции производится множество более быстрых нейтронов их называют «быстрыми нейтронами». Быстрые нейтроны могут быть замедлены до состояния тепловых нейтронов с использованием замедлителей нейтронов. Это повышает реактивность реактора. Для снижения реактивности реактора используются поглотители нейтронов , которые могут быть представлены водой и управляющими стержнями, которые часто делают из карбида бора. В большинстве легководных реакторов обычная вода используется и для замедления нейтронов, и для поглощения нейтронов. А это значит, что если реактивность реактора возрастает, повышается скорость закипания воды, что увеличивает количество пара. Появление пара означает ухудшение возможностей замедления нейтронов, а это, в свою очередь, приводит к уменьшению количества имеющихся тепловых нейтронов, что создаёт цикл отрицательной обратной связи. Это — то, что называется отрицательным паровым коэффициентом реактивности.
Собственно говоря, в РБМК графит тоже использовался в роли замедлителя нейтронов. Хотя это позволяло применять природный уран, это ещё и означало то, что РБМК работал с положительным паровым коэффициентом реактивности. Когда вода в контуре охлаждения реактора закипала и в ней возникали пузырьки, её возможности по поглощению нейтронов ухудшались, а эффект замедления нейтронов не менялся, что создавало возможность возникновения бесконтрольной ядерной реакции. Эта неоднозначная особенность была признана приемлемой, так как она позволяла реакторам РБМК выдавать тепловую мощность, значительно превышающую ту, которую обеспечивали западные реакторы того времени. Предполагалось, что у хорошо обученного персонала не будет проблем с управлением реактором РБМК. Как уже было бесчисленное количество раз доказано, например, когда затонул Титаник, менеджеры и маркетологи регулярно берут верх над инженерами. Любая катастрофа, которой можно было бы избежать за счёт правильного обслуживания техники и тщательного обучения персонала, становится неизбежной в условиях отсутствия культуры безопасности.
Но, прямо перед тем, как было запланировано начать эксперимент, решено было оставить реактор в работающем состоянии ещё на 11 часов, так как энергосеть нуждалась в энергии, вырабатываемой энергоблоком. Эта задержка привела к тому, что персонал дневной смены, который и должен был проводить эксперимент, сменился сотрудниками вечерней смены. Им, как результат, из-за отключённой САОР, пришлось вручную регулировать вентили гидравлической системы реактора. Когда на службу пришли работники ночной смены, ожидающие, что им придётся иметь дело с остановленным и остывающим реактором, им сообщили о том, что эксперимент должны проводить они. Это означало, что мощность реактора нужно было снизить, перейти с полной мощности к 700 — 1000 МВт тепловых , а потом — прекратить подачу пара на турбину. Схема контуров охлаждения РБМК У реактора РБМК есть одна особенность, которая выражается в том, что он крайне нестабилен и сложен в управлении на низких уровнях мощности. Учитывая положительный паровой коэффициент реактивности, несовершенство конструкции управляющих стержней и образование, в качестве побочного продукта работы реактора, ксенона-135, поглощающего много нейтронов, мощность реактора упала менее чем до 100 МВт.
Это привело к тому, что операторы начали убирать всё больше и больше управляющих стержней включая стержни, имеющие отношение к автоматической системе управления в попытке увеличить реактивность реактора. Это позволило реактивности медленно вырасти и дойти до уровней, близких к тем, которые требовались для проведения эксперимента. Поток охлаждающей жидкости в ядре реактора был усилен для получения большего количества пара, но это понизило реактивность, поэтому два насоса были остановлены для того чтобы снова повысить реактивность реактора.
Особенно ясно я это понял после общения с Андреем Сахаровым.
Это было в один из моих первых приездов в СССР. Его только-только выпустил из ссылки Горбачев. На приеме в посольстве я подошел к нему и представился. Завязался разговор.
Он очень четко обозначил проблему безопасности атомной энергетики и выдвинул несколько тезисов. По одному из них мы стали спорить. Он был уверен, что безопасность станции возрастет на порядок, если ее «прятать» под землей, как это делают японцы. Я доказывал, что сейсмическая активность, движение земной коры делают эту идею рискованной.
Проспорили весь вечер, забыв обо всем. Потрясающего ума был человек! А вообще Чернобыль во мне что-то надломил. При президенте Буше-старшем я сам попросился в отставку, ушел в экспертный Совет по международным связям.
Был примерно в 50 странах — везде, где есть АЭС и где их хотели бы иметь. Последним моим делом было инспектирование безопасности чешской АЭС, причем по заказу обеспокоенных австрийцев. Смысл моего заключения был таким: спите, австрийцы, спокойно». Прожив всю жизнь в Вашингтоне, вместе с супругой Люсиндой вырастив троих детей и выйдя на пенсию, Гарольд Дантон переехал в глубинку — тихий город Ноксвилл на реке Теннесси.
И, выйдя в отставку, я продолжаю иногда давать консультации». Поставив точку в этом материале для газеты «Страна Росатом», я решил напоследок уточнить возраст моего знакомца с фантастической биографией. Набрал в интернете его имя и вдруг увидел, что ровно год назад в 80-летнем возрасте Гарольд Дантон ушел из жизни.
Международное агентство по атомной энергии использует 7-балльную шкалу для оценки аварий на ядерных объектах, где наиболее серьезной считается седьмая степень, а первая - незначительная.
Исходя из этой системы оценки, можно составить список пяти самых опасных аварий на ядерных объектах в мире. Кроме того, ядерная энергия имеет экономические и политические последствия, такие как необходимость строительства и эксплуатации ядерных объектов, а также зависимость от других стран в области ядерных технологий. Поэтому, хотя ядерная энергия может быть важным источником энергии, необходимо рассмотреть ее недостатки и риски, а также поиски других альтернативных источников энергии. Какую категорию присвоит рок аварии на "Фукусиме-1" покажет время.
СССР ныне Украина. Рейтинг: 7 крупная авария Авария на ядерном объекте в Чернобыле всеми экспертами признана как самый худшая катастрофа в истории атомной энергетики. Это - единственная авария на ядерном объекте, которая была классифицирована Международным агентством по атомной энергии в качестве самого худшего, что может быть. Крупнейшая техногенная катастрофа разразилась 26 апреля 1986 года, на 4-м блоке Чернобыльской атомной электростанции, находящейся в маленьком городе Припять.
Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. В ликвидации последствий аварии участвовали более 600 тыс.
Заражены радиацией, оказались обширные территории, больше всего в аварии пострадали воды океана.
Зоной отчуждения стала 30-километровая территория вокруг АЭС. За первый год от лучевой болезни скончались приблизительно 1 тыс. Чернобыль 1986.
Катастрофа на Чернобыльской АЭС произошла 26 апреля. В четвертом энергоблоке, где находилось порядка 190 тонн ядерного топлива, прогремел взрыв. Начавшаяся из-за ошибочных действий персонала авария приобрела неадекватные масштабы вследствие как позже выяснилось нарушений, допущенных при строительстве реактора.
В результате около 50 тыс. В 30-километровую зону отчуждения попал город Припять, население которого на тот момент составляло 50 тыс. А также другие населенные пункты.
Статистика радиационных аварий показывает, что в последующие двадцать лет от облучения погибло около 4 тыс. Ядерные катастрофы ссср. Первая ядерная катастрофа в СССР: зона отчуждения, о которой молчали больше 30 лет.
Об аварии на Чернобыльской АЭС сегодня знает весь мир, однако в истории Советского Союза была и другая катастрофа, повлекшая за собой ядерный взрыв. Информация об этом происшествии не разглашалась больше тридцати лет, в зоне заражения в Челябинской области продолжали жить люди. Судьбы семей, оставшихся жить в зоне отчуждения, - это трагедии, о которых в официальных сводках предпочитают молчать… Кыштымская катастрофа произошла 29 сентября 1957 года: на заводе «Маяк», специализировавшемся на изготовлении ядерного оружия, произошел взрыв.
Причиной стала поломка системы охлаждения емкостей с радиационными отходами. Как только температура достигла критической отметки, в небо поднялось облако радиоактивной пыли. Меры по ликвидации последствий аварии были приняты не сразу.
Показательно, что производственный цикл на заводе не останавливали, к ликвидации привлекли военнослужащих, надлежащих мер предосторожности не соблюдали. Хуже обстояло дело с информированием местных жителей: им даже не объяснили, что произошло, а молодежь через пару дней даже вывели в поле на сезонные работы. Неделю спустя было принято решение об эвакуации людей из зоны заражения.
Тогда вывезли около 10-12 тысяч людей, однако потенциальную опасность радиоактивное заражение представляло для сотен тысяч человек. Деревни, из которых вывезли людей, полностью уничтожили, чтобы предотвратить распространение радиации. Однако в регионе осталась деревня, жителей которых по непонятным причинам не увезли из зоны заражения.
Эта деревня носит название Татарская Караболка. Некогда это было большое поселение на четыре тысячи человек, сегодня тут осталось чуть больше четырех сотен, да и то каждый третий серьезно болен. Основной диагноз в Караболке — рак.
Онкологию выявляют и у взрослых, и у молодежи, и даже у детей. Всего здесь восемь кладбищ, люди умирают катастрофически быстро, но вот никакой помощи от государства не получают сейчас, равно как не получали и на протяжении тех долгих трех десятилетий, пока о трагедии молчали. Замалчивание трагедии было обусловлено рядом причин: авария произошла в закрытом городе Челябинск-40, поэтому информацию нельзя было афишировать.
Кроме того, завод «Маяк» работал на ядерную промышленность, что тоже надлежало хранить в секрете. Эвакуированные люди подписывали бумагу, согласно которой обещали хранить молчание о случившемся на протяжении 25 лет. Жители Татарской Караболки до сих пор пытаются добиться признания своего особого статуса, однако пока это безрезультатно.
На протяжении многих лет они отапливали дома дровами и только спустя годы узнали, что жечь деревья было ни в коем случае нельзя из-за того, что они накапливают загрязнение. Еще одна проблема — вода. Экспертиза признала, что местная вода не пригодна к употреблению, но обеспечить регулярный подвоз воды так и не смогли, поэтому людям ничего не остается делать, как использовать воду из колодцев.
Американский «Чернобыль»: как авария на АЭС едва не стерла с лица земли целый штат
Последний энергоблок атомной станции Три-Майл-Айленд остановят 30 сентября 2019 г. Энергоблок №1 АЭС Три-Майл-Айленд во время аварии не пострадал и продолжает свою работу и сейчас. На самом деле за всю историю атомной энергетики, если ее проследить, случались три крупных инцидента: на АЭС Три-Майл-Айленд, в Чернобыле и на АЭС в Фукусиме. Авария на Три-Майл-Айленде вдохновила Чарльза Перроу Обычная теория аварии, в которой авария происходит в результате непредвиденного взаимодействия нескольких отказов в сложной системе. Айленд», произошла 29 марта 1979 года, радиусе 16 километров от атомной станции, тогда проживало около 200 000, из них более 80 000 покинули свои дома самостоятельно. Однако, авария на Три-Майл-Айленд вызвала, в первую очередь, широкий информационный резонанс и, получив пятый уровень опасности по шкале ИНЕС, ускорила развитие антиядерной кампании в США, которая привела к застою в атомной энергетике страны на десятилетия.
Ядерная авария на Три-Майл-Айленде
Айленд», произошла 29 марта 1979 года, радиусе 16 километров от атомной станции, тогда проживало около 200 000, из них более 80 000 покинули свои дома самостоятельно. Авария на Три-Майл-Айленде произошла в США и получила «5 уровень». После аварии на Три-Майл-Айленд использовалась только одна атомная электростанция TMI-1, которая находится справа. Авария на АЭС «Три-Майл Айленд» произошла через несколько дней после выхода в прокат кинофильма «Китайский синдром», сюжет которого построен вокруг расследования проблем с надёжностью атомной электростанции. это одна из самых известных аварий в ядерной энергетике, произошедшая 28 марта 1979 года на одной из ядерных электростанций США. Сотрудники станции в Три-Майл-Айленде не имели инструкций на случай аварии.
Топ-5 крупнейших радиационных катастроф и аварий, которые потрясли мир
Японское правительство справлялось с ситуацией самыми эффективными и удивительными способами. Проводились различные медицинские осмотры, и людям предоставлялась надлежащая медицинская помощь. Произошёл взрыв, который полностью разрушил реактор. Здание энергоблока частично обрушилось, при этом погибли два человека — оператор ГЦН Валерий Ходемчук и сотрудник пусконаладочного предприятия Владимир Шашенок.
С 1986 по 2000 год около четырех сотен человек были эвакуированы и переселены из загрязненных районов Беларуси, России и Украины в более благоприятные. Всемирная организация здравоохранения ВОЗ оценивает, что число смертей составляет 4 000 человек, в то время как в докладе Гринпис этот показатель составляет 200 000 или более. Среди этих разнообразных показателей было подтверждено, что 31 смерть была вызвана несчастным случаем.
Всемирная организация здравоохранения сообщила, что выброс радиации из чернобыльской аварии был в 200 раз выше, чем ядерные бомбы в Хиросиме и Нагасаки. Это считается самой серьезной катастрофой атомной электростанции в истории, и это единственная авария, классифицированная как событие 7-го уровня на Международной шкале ядерных событий. Это было результатом войны между двумя великими державами мира.
На заключительных этапах Второй Мировой войны в 1945 году Соединенные Штаты провели две атомные бомбардировки против городов Хиросимы и Нагасаки в Японии, первый - 6 августа 1945 года, а второй - 9 августа 1945 года. Эта ядерная катастрофа вызвала бесчисленные смерти и серьезные физические, эмоциональные и генетические проблемы, с которыми сталкивались многие поколения. Семьи были разрушены, и люди потеряли своих близких, дом и деньги за один день.
В течение первых двух-четырех месяцев после взрывов было насчитано около 166 000 убитых человек в Хиросиме и 80 000 в Нагасаки. Пятая часть всех погибших умерли из-за лучевой болезни, примерно столько же от вспышечных ожогов и более половины от прочих травм, усугубляемых болезнями. Вторая часть смертей в каждом городе произошла ещё в первый день.
Даже после столь масштабной катастрофы и неудачи японцы с мужеством столкнулись с этой ситуацией и сделали Японию одной из ведущих стран мира. Очень печально понимать, что виновником страшнейших катастроф на планете в большинстве случаев является сам человек.
США, Пенсильвания. В 4 утра по местному времени во втором энергоблоке атомной электростанции «Три-Майл-Айленд» произошла остановка питательного насоса второго контура. Это привело к прекращению циркуляции воды и, как следствие, перегреву реактора. В этот момент должны были запуститься аварийные насосы второго контура, но этого не произошло из-за ошибки, допущенной во время ремонта. Техники, проводившие незадолго до аварии ремонтные работы, не открыли задвижки на напоре.
Никто из операторов не увидел этого, так как индикаторы задвижек аварийных питательных насосов на пульте управления были закрыты бумажками. В этот момент сработал предохранительный клапан, выпускающий из реактора пар и воду, которая скапливалась в барботере. Но при достижении нормального давления клапан не закрылся, что стало причиной утечки теплоносителя. Эту неполадку операторы обнаружили лишь через 2,5 часа.
Около 06:30 началось быстрое окисление оболочек твэлов в верхней части активной зоны за счёт пароциркониевой реакции с образованием водорода. Образовавшаяся расплавленная смесь из топлива, стали и циркония стекала вниз и затвердевала на границе кипения теплоносителя [43]. Ближе к 7 часам утра кипящий теплоноситель покрывал уже менее четверти высоты активной зоны [44]. Не имея в своём распоряжении приборов, позволявших определить уровень жидкости непосредственно в корпусе реактора [45] , и не осознавая нехватку теплоносителя, операторы попытались возобновить принудительное охлаждение активной зоны. Были предприняты попытки запуска каждого из четырёх главных циркуляционных насосов. В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43].
На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55]. С этого момента процесс разрушения активной зоны был остановлен [48]. Возобновление охлаждения реактора[ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях. Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок. Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар. Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии.
С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой.
Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось.
Хотя датчик температуры показывал превышение 100 градусов, операторы посчитали это остаточным разогревом от сброса пара в начале инцидента, что считалось нормой. Через 14 минут операторы обратили внимание на срабатывание предохранителей в барботере из-за роста давления. Это означало поступление пара в помещение гермооболочки реактора. Насосы были выключены, так как не было понимания о большом количестве воды в баке.
Было замечено снижение поглотителя — борной кислоты. А нейтронный поток наоборот стал усиливаться, хотя регулирующие стержни были полностью погружены. Все эти факторы указывали на появление сильной течи внутри реактора. Операторы приняли решение ввести бор для снижения критичности реактора. В целях сохранения целостности их и трубопроводов, насосы отключили. По причине накопившегося в реакторе газ опарового пузыря, естественная циркуляция также была нарушена. В результате была остановлена течь.
Однако, разрушение активной зоны реактора продолжилось. Температура достигла 2 200 градусов по Цельсию. Началось окисление оболочек ТВЭЛов, что привело их к последующему разрушению и стеканию вниз реактора.
Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года
Усугубили ситуацию пришедшие в негодность приборы и большое количество проблем технического плана. До трагических событий на Чернобыльской АЭС эта авария оставалась крупнейшей в мире. Примерно в 4 часа утра произошла остановка питательного насоса второго контура, в результате чего циркуляция воды прекратилась, а реактор начал перегреваться. Именно здесь случилось главное событие, послужившее началом аварии: из-за грубой ошибки, допущенной во время ремонта, не запустились аварийные насосы второго контура. Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками. Повышение температуры и давления в реакторе запустило систему аварийной защиты, которая заглушила атомный котел. Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду. Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа.
Из-за критического уровня давления лопнули расположенные предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой. Сработала система аварийного охлаждения реактора - в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку.
В абсолютных цифрах это составляет почти 62 тонны. Радиоактивное загрязнение. Из атомного реактора вытекло большое количество радиоактивной воды, в результате чего уровень радиоактивности в помещениях гермооболочки более чем в 600 раз превысил норму. Некоторое количество радиоактивных газов и пара попало в атмосферу, и в результате каждый житель 16-километровой зоны вокруг АЭС получил облучение не больше, чем во время сеанса флюорографии. Самого опасного — выбросов в атмосферу и воду высокоактивных нуклидов — удалось избежать, поэтому местность осталась «чистой». Крах атомной энергетики США. Психология людей и «китайский синдром». По просто удивительному стечению обстоятельств за две недели до аварии на большие экраны вышел фильм «Китайский синдром», повествующий о катастрофе на АЭС.
Жаргонный термин «китайский синдром», придуманный в 1960-х годах физиками-ядерщиками, означает аварию, при которой топливо в реакторе плавится и прожигает защитную оболочку. Так что нет ничего странного в том, что после реальной аварии поднялась паника, и никакие уверения высокопоставленных чиновников, включая самого президента США, не могли окончательно успокоить людей. Второй энергоблок закрыт, внутренняя часть реактора полностью вынута и утилизирована, а за площадкой ведется наблюдение. Станция будет работать до 2034 года. Интересно, что в 2010 году турбогенератор аварийного второго энергоблока был продан, снят и по частям перевезен на атомную станцию Shearon Harris штат Северная Каролина, США , где занял место в новом энергоблоке. Ведь это оборудование проработало всего полгода, а во время аварии не пострадало и не получило радиоактивного заражения — не пропадать же многомиллионному добру! Что сделано, чтобы подобное не повторилось Одним из результатов расследования причин аварии стало понимание, что операторы станции были элементарно не готовы к инциденту. Эту проблему решили пересмотром концепции подготовки операторов АЭС: если раньше упор делался на то, чтобы люди анализировали ситуацию и самостоятельно искали решение, то теперь операторы учились работать преимущественно по заранее подготовленным «сценариям» аварий. Интересно, что ход обеих аварий был схожим, однако в четвертом энергоблоке ЧАЭС произошло то, чего не случилось у американцев — прогремел взрыв, имевший самые серьезные последствия.
В четыре часа ночи 28 марта 1979 года эта самая вода вызвала срабатывание системы пневмоприводов, отключившее системы конденсатоочистки. Проще говоря, штатная циркуляция воды в первом контуре и, соответственно, охлаждение активной зоны оказалась перекрыта. Температура и давление поползли вверх. Умная автоматика распознала аварийную ситуацию. На такие случаи в системе была предусмотрена аварийная подача воды в активную зону. Произошло аварийное глушение реактора отреагировав на рост давления , запустились насосы аварийной подачи воды, открылся клапан компенсатора см. Казалось бы, вин? Именно с этого момента начинает работать эффект кумулятивного действия. Барахливший клапан 1 не закрылся по достижении номинальных значений давления, вода продолжала утекать, а давление — падать. Умная автоматика и в этот раз не сплоховала, запустив насосы аварийной подачи воды. Ситуация проблемная, но еще не критическая. Но тут сплоховали кожаные мешки. Операторы, глядя на контрольную панель о ней чуть позже, это отдельная песня и видя рост уровня воды в компенсаторе, решили, что автоматика лажает, и УМЕНЬШИЛИ подачу воды. Давление в системе продолжало падать клапан-то открыт! В какой-то момент через пять с половиной минут после отключения штатной циркуляции давление упало до величины, при которой вода, нагретая до 300 градусов, закипает. ВВЭР не рассчитаны на пар в качестве теплоносителя первого контура, это обязательно должна быть жидкая вода. Именно поэтому вода в первом контуре реакторов такого типа должна быть под большим давлением. Итак, давление в системе упало ниже критического и вода вскипела, превращаясь в пар, который заполнил трубопроводы. Вода продолжала утекать через неисправный клапан, но с пульта казалось, что воды в системе достаточно, ибо пар вытеснил воду в компенсатор, а количество воды в системе измерялось именно по уровню в компенсаторе.
Ликвидация последствий аварии продолжалась до 1993 года и обошлась правительству страны в 975 миллионов долларов. На станции была проведена дезактивация и выгрузка топлива. Второй энергоблок и сейчас находится под постоянным контролем. Официально не было зафиксировано ни одной жертвы в результате аварии. Радиоактивные частицы, попавшие в окружающую среду были крайне незначительны в своем количестве. Однако, авария на Три-Майл-Айленд вызвала, в первую очередь, широкий информационный резонанс и, получив пятый уровень опасности по шкале ИНЕС, ускорила развитие антиядерной кампании в США, которая привела к застою в атомной энергетике страны на десятилетия, лишь подогреваясь последующими авариями в Чернобыле и на Фукусиме. Это автоматически привело к выключению турбогенератора и включению аварийной системы подачи воды тремя аварийными насосами. Однако вода так и не поступила в генератор. Из-за человеческой ошибки во время планового ремонта, произошедшего за несколько дней до аварии, были закрыты задвижки подачи воды с аварийных насосов. Первые 12 секунд после аварии В результате прекратился отвод тепла с первого контура реактора. Растущее давление уже через несколько секунд превысило допустимый предел. Как правило, это приводит к открытию дополнительного клапана системы компенсации давления, которая позволяет сбросить пар в барботёр — специальную ёмкость. Так случилось и на этот раз, поэтому рост давления на реакторе замедлился. Тем не менее, спустя 9 секунд включилась аварийная защита реактора, так как давление достигло 17 МПа. Температура упала, а объем воды стал уменьшаться.